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Abstract

One of the key issues in the theoretical prediction of RNA folding is the prediction of loop structure from the sequence. RNA
loop free energies are dependent on the loop sequence content. However, most current models account only for the loop
length-dependence. The previously developed ‘‘Vfold’’ model (a coarse-grained RNA folding model) provides an effective
method to generate the complete ensemble of coarse-grained RNA loop and junction conformations. However, due to the
lack of sequence-dependent scoring parameters, the method is unable to identify the native and near-native structures
from the sequence. In this study, using a previously developed iterative method for extracting the knowledge-based
potential parameters from the known structures, we derive a set of dinucleotide-based statistical potentials for RNA loops
and junctions. A unique advantage of the approach is its ability to go beyond the the (known) native structures by
accounting for the full free energy landscape, including all the nonnative folds. The benchmark tests indicate that for given
loop/junction sequences, the statistical potentials enable successful predictions for the coarse-grained 3D structures from
the complete conformational ensemble generated by the Vfold model. The predicted coarse-grained structures can provide
useful initial folds for further detailed structural refinement.
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Introduction

The ability to predict RNA 3D structure is critical for

understanding RNA functions. Recent developments in de novo

prediction of RNA 3D structures have led to highly promising

results [1–18] (for review, see [19–24]). In particular, several de

novo structure prediction methods have been developed based on

the knowledge-based energy function. For example, Dima and co-

workers [25] extracted the base-pair stacking parameters from

RNA native structures and the extracted parameters agree with

the experimental data [26]. Wu et al. [27] explored the correlation

between RNA secondary structural motifs and their thermody-

namic stability to derive energy parameters for base-pair stackings,

and free segments such as hairpin loops, internal loops and bulge

loops. Bernauer and co-workers [15] further extracted a set of

distance-dependent energy parameters between any two bases,

irrespective of the locations of the bases (in a helix or a loop). Das

and Baker [5,9] obtained energy function – made available in the

Rosetta software package – based on the base orientations and

interactions. Parisien and Major [7] predicted 3D structures with a

pipeline of two computer programs: MC-Fold and MC-Sym,

developed based on the nucleotide cyclic motifs (NCMs). All of

these methods have provided valuable insights into the correlation

between loop sequence and their stability. Especially, these

methods are particularly useful for selecting the most probable

conformation from an ensemble of near-native structures.

A key issue in the predictions of RNA stability is how to

compute the loop free energy. For hairpins and RNA secondary

structures in general, the nearest neighbor model, which assumes

that the total free energy is an additive sum of the free energy of

each elements (base-pair stacking, loop), and other models

[6,26,28–32] has enabled successful predictions for RNA struc-

tures and stabilities. In most of the existing models, loop stability is

often assumed to depend on loop size, the identity of the closing

base pair, the interaction of the first mismatch with the closing

base pair, and an additional stabilization term for loops with GA

or UU first mismatches [33–35]. Further detailed sequence-

dependence of the loop stability has been ignored. Experimental

results suggest that loop stability may be sensitive to the sequence

context inside the loop. For example, for unusually stable RNA

hairpin loops, Dale et al. [36] performed optical melting studies for

a series of hairpins. The study led to a set of different stability

parameters for different loop sequences, such as GNRA and

UUCG (where N is any nucleotides and R is a purine) tetraloops,

hexaloops with UU first mismatches, and hairpin loop of iron

responsive element, GAGUGC, all of which are significantly more

stable than other hairpin loops of the same length.

The prediction of sequence-dependent loop free energy requires

a model that goes beyond simple fitting with the experimentally

measured empirical parameters. The formation of the intraloop

base pairs and stacks would cause significant restriction of the loop

conformational space and the loop entropy. It is practically

impossible to exhaustively measure the loop free energy for all the

different possible intraloop contacts for the different sequences and

loop lengths. Therefore, evaluation of loop free energy with an

ensemble of possible intraloop base pairing/stacking interactions

cannot be achieved by experiment alone. We also need a

computational model. The main purpose of the present study is

to develop a statistical potential model that enables predictions of

loop and junction three-dimensional structures from the sequence.

In general, there are two classes of physics-based models for

RNA structure prediction: molecular dynamics (For review, see
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[37]) and Monte Carlo simulation methods and polymer statistical

mechanics methods. Molecular dynamics simulations have pro-

vided much insights into the atomic details of intraloop

interactions and their contributions to the loop stabilities [1,38–

40]. The polymer statistical mechanical models often employ low-

resolution (coarse-grained) conformational models in order to

capture the complete conformational ensemble. Along this line

there have been different ways to construct the low-resolution

RNA structures. For example, with a knowledge-based potential,

Jonikas et al. [8] developed a structure filter model (N AST )

where nucleotides are represented by the C�3 atoms. In another

coarse-grained model where nucleotide are represented by the P
and C�3 atoms, Keating and Pyle [41] developed a semi-automated

approach to build RNA structures with a directed rotameric

search strategy. Furthermore, in an attempt to develop a high-

resolution RNA model (HiRE-RNA), Pasquali and Derreumaux

[11] used six to seven beads for each nucleotide (one bead for the

phosphate P, four beads for the sugar O�5, C�5 , C�4 , C1, respectively,

and one bead for a pyrimidine base and two beads for a purine

base).

Our RNA folding model is based on a virtual bond-based RNA

conformational model (called ‘‘Vfold’’ model; Fig. 5) [42]. The

Vfold model uses two virtual bonds (C�4{P{C�4 ) for each

nucleotide and samples RNA conformations through self-avoiding

walks in a diamond lattice. It provides an effective tool to sample

RNA conformations and to evaluate the conformational entropy.

The model has shown a high promise in predicting the 2D and 3D

structures and the folding stabilities from the sequence [14,42–48].

However, the Vfold model does not account for the sequence-

dependent conformational propensity of the loop, namely, the

model assumes that for any given loop, all the loop conformations

generated in the model have the same energy. Such a simplifi-

cation could cause inaccuracy in the prediction of loop stability

and structure [36,49,50]. Physically, the sequence-dependence of

loop stability arises from the local interactions, which affect the

loop flexibility and hence conformational propensity [50], as well

as the nonlocal interactions between the different nucleotides. In

this study, we develop a method to extract a set of virtual bond-

based (coarse grained) statistical potentials (scoring functions) from

a set of non-redundant RNA structures such as the RNA09

database [51] and the Leontis database (http://rna.bgsu.edu/

nrlist/). Specifically, we aim to derive a set of dinucleotide

statistical potentials uij(h, g) as a function of the (4|4) types of the

dinucleotides base i and j and the backbone pseudo-torsion angles

(h, g) of the dinucleotide conformation. We use the RNA09

database [51], the Leontis database, the Capriotti’s database [52]

and the PDB database [53,54], respectively, to test the extracted

potential functions. We note that the dinucleotide in this work

refers to the two continuous nucleotides within the same loop. The

goal is for a given RNA loop/junction sequence, to identify the

lowest-RMSD structures from the Vfold-generated complete

conformational ensemble.

Results

Pseudo-torsion angles (h, g)
The h and g values of dinucleotides in the 152 RNA loops/

junctions are plotted as a 2D scatter plot (Fig. 6), where each point

represents the h-g coordinates for a dinucleotide. In contrast to the

analysis in the previous studies [55,56], here we find a distinct

category of dinucleotides conformation around (h = 1500,

g = 2250). This region was once considered as the helical region,

because the dinucleotides with h-g coordinates located in this

group are most likely found within the RNA helix. However, as we

only count the dinucleotides in RNA loops and junctions, the plot

shows that the loop/junction residues can also have the tendency

to have the helix-like conformation. This observation provides a

rational in the next step for building the 3D all-atom structures by

adding the helical residues back to the coarse-grained backbone

model.

Table 1. The number of dinucleotides with torsion angles (h,
g).

g

h gz t g{

gz 43 27 21

t 46 99 21

g{ 19 101 43

doi:10.1371/journal.pone.0048460.t001

Table 2. The numbers of sequences with successfully
predicted loop/junction structures for (I) all the 8452 RNA
loops/junctions in TEST-I (II) the 7459 RNA loops and junctions
in TEST-II and (III) the 1119 RNA loops and junctions in TEST-III.

I II III

#SPfold
#SPnative

#SPfold
#SPnative

#SPfold
#SPnative

Top-1 7364 6992 6555 6222 1070 1001

Top-2 7686 7411 6819 6563 1083 1022

Top-3 7796 7715 6909 6826 1101 1060

Top-4 7956 7798 7043 6895 1102 1061

Top-5 8006 7857 7089 6949 1102 1065

TOTAL-# 8452 7459 1119

For each dataset, the numbers in columns are calculated with the SPfold

(‘‘#SPfold
’’, ‘‘true’’ potential parameters) and SPnative (‘‘#SPnative

’’, ‘‘extracted’’
potential parameters), respectively. The potentials are obtained from the RNA09
database. The ‘‘Top-#’’ in the first column means that the ‘‘correct’’ structure is
in the top-# lowest-potential conformations.
doi:10.1371/journal.pone.0048460.t002

Table 3. The types and numbers of loops and junctions in (A)
the RNA09 dataset, (B) the Capriotti’s dataset and (C) the
TEST-III dataset, and the number of the correct predictions
with the ‘‘true’’ potentials SPfold.

RNA09 Capriotti’s TEST-III

Types
Total
#

Correct
#

Total
#

Correct
#

Total
#

Correct
#

Hairpin 72 72 37 37 408 395

Internal/bulge 25 25 14 14 166 165

Pseudoknot 14 14 5 4 148 147

Multibranched 35 35 15 15 329 297

Junction 6 6 1 0 68 66

TOTAL 152 152 72 70 1119 1070

doi:10.1371/journal.pone.0048460.t003
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Quasi-chemical approximation-based potentials
The 152 RNA loops/junctions within our training dataset

consist of a total number of Ntotal = 572 nucleotides, with the

numbers of each type of the nucleotide (rA,rC ,rG,rU )~
(217,105,121,129) and the corresponding mole fraction of each

nucleotide (xA,xC ,xG,xU )~(0:38,0:18,0:21,0:23).

From the dataset of the coarse-grained ‘‘correct’’ structures

(Table 1), for each pair of the nucleotides i~(1,2,3,4) and

j~(1,2,3,4) and pseudo-torsion angles (h, g), we calculate the

numbers robs
ij (h, g) of the dinucleotides conformations and the

total observed number N(h, g) =
P

i,j robs
ij (h, g). According to Eq.

8, we then calculate the expected number rexp
ij (h, g) of each type

of dinucleotides (i,j) with pseudo-torsion angles (h, g). If no

pseudo-torsion angles (h,g) is observed for dinucleotide (i,j), we

assign an unfavorable potential uij(h, g)~z2:0kBT kcal/mol.

From Eq. 7, we compute the potentials as a 4|4|3|3 tensor.

Iterative approach-derived potentials
The convergence speed of the iteration depends on the selection

of convergence criteria. For instance, if the convergence threshold

parameter in Eq. 13 is set to 1023, the iterative process would

converge after around 3000 iterations. In contrast, if the

convergence threshold parameter is set to 1022, the iterative

process would converge after 340 iterations. On an Intel(R)

Xeon(R) CPU 5150 @ 2.66 GHz on Dell EM64T cluster system,

the 3000-cycle iteration process took about 30 minutes and a 300-

step iteration took less than 6 minutes.

Comparison between the two sets of the derived potential

parameters shows that the ‘‘true’’ potentials SPfold are less uniform

than the ‘‘extracted’’ potentials (Fig. 2), suggesting that the ‘‘true’’

potentials SPfold are more sensitive to the sequences and

conformations of the dinucleotide and thus have the ability to

discriminate the ‘‘correct’’ conformation from an ensemble of

conformations for a given RNA loop/junction sequence.

Tests on training datasets
We test the statistical potentials for the accuracy in loop/

junction structure prediction for a large number of sequences. For

a given sequence, we generate the full ensemble of the virtual bond

loop/junction conformations using our Vfold model. Each

conformation is then scored by the total statistical potential,

which is evaluated as the sum of the statistical potentials (SPnative

or SPfold) for the dinucleotide pairs in the conformation. The

conformation with the lowest value of the total statistical potential

is identified as the predicted native structure. If the predicted

native structure is the same as the coarse-grained ‘‘correct’’

structure (i.e., the virtual bond structure that is closest to the PDB

Table 4. The numbers of sequences of the successfully predicted loop/junction structures for (I) all 8452 RNA loops/junctions in
TEST-I (II) the 7459 RNA loops and junctions in TEST-II and (III) the 1119 RNA loops and junctions in TEST-III.

TEST-I

#SPfold
(A) #SPfold

(B) #SPnative
(A) #SPnative

(B)

Top-1 7364 7369 6992 7102

Top-2 7686 7686 7411 7500

Top-3 7796 7862 7715 7665

Top-4 7956 7969 7798 7844

Top-5 8006 8007 7857 7878

TOTAL-# 8452

TEST-II

#SPfold
(A) #SPfold

(B) #SPnative
(A) #SPnative

(B)

Top-1 6555 6567 6222 6332

Top-2 6819 6861 6563 6657

Top-3 6909 6961 6826 6791

Top-4 7043 7055 6895 6947

Top-5 7089 7083 6949 6976

TOTAL-# 7459

TEST-III

#SPfold
(A) #SPfold

(B) #SPnative
(A) #SPnative

(B)

Top-1 1070 1077 1001 1016

Top-2 1083 1084 1022 1053

Top-3 1101 1087 1060 1055

Top-4 1102 1092 1061 1058

Top-5 1102 1098 1065 1058

TOTAL-# 1119

For each dataset, the numbers in columns ‘‘A’’ are calculated from SPfold (‘‘#SPfold
’’, ‘‘true’’ potential parameters) and SPnative (‘‘#SPnative

’’, ‘‘extracted’’ potential
parameters), obtained from the RNA09 database, and the numbers in columns ‘‘B’’ are calculated from SPfold (‘‘#SPfold

’’) and SPnative (‘‘#SPnative
’’), obtained from the

Leontis’ database respectively. The ‘‘Top-#’’ in the first column means that the ‘‘correct’’ structure is in the top # lowest-potential conformations.
doi:10.1371/journal.pone.0048460.t004
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structure, evaluated by RMSD), the prediction is successful for the

sequence; otherwise, the prediction fails.

We first apply the two sets of statistical potentials to the RNA

loops and junctions in the training dataset. Such a test for structure

prediction is nontrivial because the SPnative and SPfold are derived

based on the frequency rij(h, g) (see Eqs. 7 and 10) instead of the

structure. As described above, 152 loops and junctions are

constructed from the 262 RNA structures in the RNA09 dataset,

including 72 RNA hairpin loops, 25 internal/bulge loops, 14

pseudoknot loops, 35 multibranched loops and 6 junctions (the

free segments other than the above 4 types) (Table 3A). Here we

note that the two loops in an internal loops are counted separately

in our calculation, as our model does not specify specific types of

loops or junctions. This rule is also applied to the pseudoknot loops

and multibranched loops.

We found that SPnative succeeded in finding 130 coarse-grained

‘‘correct’’ (lowest potential) structures out of 152 loops and

junctions. In contrast, SPfold can give successful predictions for all

the 152 the coarse-grained ‘‘correct’’ conformations (Table 3A).

SPfold is more reliable than SPnative in structure prediction with

success rate 100% vs 85.5%.

Test on the Capriotti’s dataset
To rigorously test the reliability of the two sets of potential

parameters, we need to perform the test on loops and junctions

outside the training dataset. We will perform tests for several such

test sets. We first choose a dataset collected by Capriotti, et al.

[52], consisting of 85 structures with length §20 nucleotides and

solved at resolution better than 3.5 Å. The 3DNA software

determined a total of 72 loops/junctions with lengths ranging from

3 nt to 8 nt, excluding the 59/39-terminal dangling regions. The

72 loops/junctions can be classified into 37 hairpin loops, 14

internal/bulge loops, 5 pseudoknot loops, 1 junction and 15

multibranched loops (Table 3B).

Our results indicate that SPnative and SPfold potentials can

successfully find out 62 and 70 coarse-grained ‘‘correct’’ confor-

mations, respectively, out of the 72 test cases (Table 3B). The result

indicates that the ‘‘true’’ potential parameters SPfold are more

reliable than the directly extracted potentials SPnative (success rate

97% vs 86%). One of the two failed predictions for SPnative is for a

pseudoknot loop, which has special loop structure due to the

tertiary interactions (base triplets) with the helices. Another failed

prediction is a junction located in a large RNA molecule and the

junction structure is determined by not only its sequence content

but also the surrounding structural environment.

Test on the PDB dataset
The January 2012 version of PDB database contains 2227

structures that contain at least one strand of RNA sequence. These

structures range from hairpin-loop structures to RNA-protein

complexes or RNA-DNA hybrids. We found 8452 loops and

junctions in the 2227 PDB structures (TEST-I). All the loops and

junctions (excluding the 39/59-terminal dangling regions) have

lengths from 3 nt to 8 nt. Within these 2227 RNA molecules, 1609

have structures determined by X-ray crystallography, which

contain 7459 RNA loops and junctions (TEST-II), and 934 of

these 1609 RNAs have high-resolution structures (ƒ3.0 Å), which

contain 1119 RNA loops and junctions (TEST-III).

Our test results show that the numbers of the correct predictions

with the statistical potentials SPfold and SPnative are 7364 (success

rate = 87%) v.s. 6992 (success rate = 83%) for TEST-I, 6553

(success rate = 88%) v.s. 6222 (success rate = 83%) for TEST-II,

and 1070 (success rate = 95%) v.s. 1001 (success rate = 89%) for

TEST-III, respectively. Fig. 10 shows illustrations for two of the

results (a hairpin loop from PDB structure 1IVS and an internal

loop from PDB structure 1JJ2).

If we include the top five lowest-potential conformations, the

numbers of successfully determined loops and junctions are

increased to 8006 with SPfold v.s. 7857 with SPnative for TEST-I,

7089 v.s. 6949 for TEST-II and 1102 v.s. 1065 for TEST-III

(Table 2). Fig. 11 shows the minimal-RMSD structure, the 9-th

potential structure computed with SPnative, and the predicted

Figure 1. Flow chart of the iterative approach.
doi:10.1371/journal.pone.0048460.g001
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structure with the lowest-potential, for multibranched loop from

PDB structure 3CCM.

Moreover, we test the predictions of the first 20 lowest-potential

conformations for the loops and junctions in all the three databases

TEST-I, TEST-II and TEST-III as well as the influence of the

convergence threshold parameter on the accuracy of the structure

prediction. Fig. 12 shows the numbers of successfully determined

loops and junctions in the first 20 lowest-potential conformations

for the three databases. The comparisons between the predicted

results with SPfold and SPnative supports our conclusions in the

previously two benchmark tests that SPfold is more reliable than

SPnative. The loops/junctions that we failed to predict mostly

involve tertiary interactions with helices or other cofactors such as

protein and DNA.

The predicted results using the statistical potentials SPfold and

SPnative, extracted from the Leontis dataset also support the above

conclusions (Fig. 9 and Table 4).

Fig. 13 shows the sensitivity of the convergence threshold

parameter (Dun
ij(h, g) = 0.001 v.s. 0.01) to the RNA structural

predictions. The comparisons of the numbers of the successfully

determined loops and junctions in the three databases show that

the convergence threshold parameters Dun
ij(h, g) do not have

strong influence on the accuracy of the structure predictions.

Figure 2. Comparison between the ‘‘extracted’’ statistical potentials SPnative and the ‘‘true’’ potentials SPfold. The figures from (A) to (I)
stand for the torsion angles (h, g = ): (A) (gz, gz), (B) (gz, t), (C) (gz, g{), (D) (t, gz), (E) (t, t), (F) (t, g{), (G) (g{, gz), (H) (g{, t) and (I) (g{, g{),
respectively. In each figure, the red bars represent the statistical potentials SPfold, the green bars represent the statistical potentials SPnative, both of
which are obtained from the RNA09 dataset, and the x-axis stands for the dinucleotides with different nucleotides (i, j = ) AA, AC, AG, AU, CA, CC, CG,
CU, GA, GC, GG, GU, UA, UC, UG and UU from 1 to 16.
doi:10.1371/journal.pone.0048460.g002
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Furthermore, we categorize the sequences in the dataset TEST-

III and the predicted results according to the types of RNA loops

and junctions. The 1119 RNA loops and junctions can be grouped

into 408 hairpin loops, 166 internal/bulge loops, 148 pseudoknot

loops, 329 multibranched loops and 68 junctions. The correct

predictions with SPfold for each type of RNA loops and junctions

are 395, 165, 147, 297 and 66, respectively (Table 3C). For

junctions, multibranched loops, pseudoknots, internal/bulge loops

and five of the hairpin loops, the failed predictions are due to the

interactions beyond the dinucleotide context, such as the loop-

helix tertiary interactions and RNA-protein interactions. The

possible reason for other six failed predictions for hairpin loops is

that these hairpin loops are not closed by canonical base pairs.

These loops are closed by non-canonical pairs, such as AA or AC,

which may lead to different hairpin loop structures.

For the TEST-I (the 8452 RNA structures in PDB) and TEST-II

(the 7459 x-ray structures in TEST-I) databases, we randomly

selected 3229 RNA loops/junctions from the database TEST-I

and categorize them according to the types of RNA loops and

junctions. The 3229 RNA loops and junctions contain 1406

hairpin loops, 255 internal/bulge loops, 184 pseudoknot loops,

1265 multibranched loops and 119 junctions. The correct (top-1)

predictions with SPfold for each type of RNA loops and junctions

are 1274 (success rate = 90.6%), 245 (success rate = 96.1%), 178

(success rate = 96.7%), 1162 (success rate = 91.9%) and 110

Figure 3. Comparison between the ‘‘extracted’’ statistical potentials SPnative from the RNA09 dataset and the Leontis dataset,
respectively. The figures from (A) to (I) stand for the torsion angles (h, g = ): (A) (gz, gz), (B) (gz, t), (C) (gz, g{), (D) (t, gz), (E) (t, t), (F) (t, g{), (G)
(g{, gz), (H) (g{, t) and (I) (g{, g{), respectively. In each figure, the red bars represent the statistical potentials SPnative extracted from the Leontis
dataset, the green bars represent the ones from the RNA09 dataset, and the x-axis stands for the dinucleotides with different nucleotides (i, j = ) AA,
AC, AG, AU, CA, CC, CG, CU, GA, GC, GG, GU, UA, UC, UG and UU from 1 to 16.
doi:10.1371/journal.pone.0048460.g003

Prediction of RNA Loop Structures

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e48460



(success rate = 92.4%), respectively. The total number of the

successful predictions is 2969 (success rate = 91.9%).

Statistical potentials and the Leontis dataset
The March 17, 2012 version of the Leontis dataset contains 642

RNA sequences with structures of resolution better than 4.0 Å.

The 3DNA software identified a total of 435 RNA loops and

junctions with lengths ranging from 3 nt to 8 nt, excluding the 59/

39-terminal dangling regions. Our calculations show that the

difference between the diamond lattice-represented structures and

the PDB structures varies for the different loop lengths and

sequence contents with RMSD from 0.74 Å to 3.93 Å (Fig. 8), and

the mean and standard deviation of RMSD values are 1.37 Å and

0.29 Å, respectively. We use such coarse-grained structures to

calculate the observed dinucleotide frequencies, to extract SPnative

and to search for the ‘‘true’’ potential functions SPfold.

Figs. 3 and 4 show the comparison between the potentials

SPnative/SPfold extracted from the dataset RNA09 and from the

Leontis dataset. We apply the ‘‘true’’ potential SPfold extracted

from the Leontis dataset to predict the loop/junction structures in

three testing datasets: TEST-I, TEST-II and TEST-III, constructed

from the January 2012 version of PDB database. Our test results

(Table 4) show a success rates of 87% (7369 out of 8452) for TEST-

I, 88% (6567 out of 7459) for TEST-II, and 96% (1077 out of

1119) for TEST-III, respectively.

Figure 4. Comparison between the ‘‘true’’ statistical potentials SPfold obtained from the RNA09 dataset and the Leontis dataset,
respectively. The figures from (A) to (I) stand for the torsion angles (h, g = ): (A) (gz, gz), (B) (gz, t), (C) (gz, g{), (D) (t, gz), (E) (t, t), (F) (t, g{), (G)
(g{, gz), (H) (g{, t) and (I) (g{, g{), respectively. In each figure, the red bars represent the statistical potentials SPfold extracted from the Leontis
dataset, the green bars represent the ones from the RNA09 dataset, and the x-axis stands for the dinucleotides with different nucleotides (i, j = ) AA,
AC, AG, AU, CA, CC, CG, CU, GA, GC, GG, GU, UA, UC, UG and UU from 1 to 16.
doi:10.1371/journal.pone.0048460.g004

Prediction of RNA Loop Structures
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Moreover, the predictions of the top 20 lowest-potential

conformations for the loops and junctions in all the three test

datasets, TEST-I, TEST-II and TEST-III, are shown in Fig. 9, with

comparisons with the predictions based on the SPfold from the

RNA09 dataset. The comparisons for the three test datasets

(Table 4 and Fig. 9) show that the two ‘‘true’’ statistical potentials

SPfold extracted from the RNA09 dataset and the Leontis dataset

lead to similar success rates in structure prediction and the

predictions are not sensitive to the choice of the specific training

set.

Discussion

Motivated by the biological significance to predict sequence-

dependent loop and junction structures, we have developed a

knowledge-based scoring functions/potentials to predict the

structures of RNA loops and junctions. We use a coarse-grained

conformational model (the virtual bond model) to sample RNA

loop/junction conformations. From the known RNA structures,

we extract a set of sequence-dependent dinucleotide-based

statistical potentials using two methods. In the first method, the

statistical potentials (SPnative) are derived from the distributions of

the dinucleotide conformations in the known (native) structures. In

the second method, the statistical potentials (SPfold) are derived

based on the folding stability of the native structures (against all the

other nonnative folds).

For a given sequence, the extracted statistical potentials enable

ranking of the different conformations with the top ranked (the

lowest-potential) structure as the predicted native structure.

Extensive tests indicate that the statistical potentials can success-

fully predict the native structure for a large class of loop and

junction sequences and that SPfold consistently outperforms

SPnative in structure prediction. Our test results also indicate that

our results are not sensitive to the choice of the specific training

dataset (Fig. 9 and Table 4).

The present approach has several advantages. First, the

extraction of the statistical potential SPfold is based on the

sampling of the complete conformational ensemble, including the

native and all the nonnative folds. Second, because we consider all

the nonnative folds in the derivation of the statistical potential, our

statistical potentials can be used to predict folding from the

sequence. The build-up strategy for RNA loop structure in this

study is a de novo approach. Compared with other 3D loop

structure prediction models, such as ModeRNA [22] and RLooM

[50], our loop/junction structure prediction method is based on

the complete ensemble of the (coarse-grained) conformations and

does not rely on the information of template structures or

homologous RNA structures. The only input information for the

prediction is the sequence. Therefore, the model can predict the

low-resolution structure from the sequence if no known homol-

Figure 5. The pseudo-torsional angles. (A) The virtual bond scheme for RNA nucleotides. (B) The bond angles (bC , bP) and the pseudo-torsional
angles (h, g) of the virtual bonds. (C) The three preferred rotamer-like configurations of the virtual bonds: t,gz and g{, with the torsional angles
equal to 1800 , 600 and 3000, respectively.
doi:10.1371/journal.pone.0048460.g005

Figure 6. The distribution of the h and g values for the different
types of dinucleotides in RNA loops and junctions. The RNA
loops and junctions are selected from the RNA09 dataset and the
angles are calculated based on the PDB structures.
doi:10.1371/journal.pone.0048460.g006
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ogous conformations can be found in the PDB. With the predicted

low-resolution scaffold, one may further predict the all-atom

structures using the all-atom potential methods that are derived

based on near-native structures [5,15]. The present coarse-grained

model offers a useful complement to the other all-atom based

models.

We have performed extensive benchmark tests using the

different databases. However, a direct comparison between our

model other methods is not very straightforward. This is because

our model is a coarse-grained model while other models mainly

focus on the all-atom structures. Furthermore, our model aims to

fold a low-resolution structure from the sequence without using

any input information such as homologous templates, while other

models mainly focus on the prediction of the native structures from

near-native folds. Future development of our method, which may

give all-atom structures from the low-resolution folds, would make

direct comparison between our model and other models possible.

Applications of the present statistical potentials to the Vfold

structure prediction model [14] may provide an effective strategy

for better structure prediction. Despite the success, there are

several limitations of our model. First, the current study is based

on the coarse-grained Vfold model, which only provides a low-

resolution approximation for the all-atom structure of RNA loops

and junctions. Ultimately an all atom-based model is required to

treat the detailed tertiary interactions. Future development of the

model should address the issue to build all-atom RNA structures

based on the low-resolution (Vfold-generated) representations.

Second, the statistical potentials are derived for dinucleotide

conformations. In realistic loop and junction structures, the long-

range sequence effects within the loop, such as intra-loop

Figure 7. (A) The RMSD between the PDB structures and the diamond lattice-represented structures for RNA loops and junctions in
the RNA09 dataset. The x-axis represents the index of RNA loops/junctions in the RNA09 dataset. (B) The number of RNA loops/junctions within
each RMSD-value bin (0.1 Å). The mean and standard deviation of RMSD values for the 152 RNA loops/junctions are 1.35 Å and 0.30 Å, respectively.
doi:10.1371/journal.pone.0048460.g007

Figure 8. (A) The structural differences (RMSD values) between PDB structures and diamond lattice-represented structures for the
RNA loops/junctions within the Leontis dataset. The x-axis represents the index of RNA loops/junctions in the Leontis dataset. (B) The number
of RNA loops/junctions within each RMSD-value bin (0.1 Å). The mean and standard deviation of RMSD values for the 435 RNA loops/junctions are
1.37 Å and 0.29 Å, respectively.
doi:10.1371/journal.pone.0048460.g008
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interactions, can influence the loop structure. The present model

cannot explicitly account for such long-range intraloop interac-

tions, which occur frequently in loops and between the different

loops. Following the same procedure outlined above, one may

develop a trinucleotide or higher order many-body statistical

potentials to address this issue. Third, in the current form of the

model, we use the same set of statistical potentials for the different

types of loops/junctions. More refined potentials according to

RNA loop/junction types may lead to further improvement of the

accuracy of model.

Materials and Methods

Vfold model
We use the Vfold model to generate the full conformation

ensemble of a given RNA loop or junction sequence. The Vfold

model is a virtual bond-based RNA folding model [42,45,48],

which is developed based on the two observations: the C{O

torsion in the nucleotide backbone of RNA tend to adopt the trans

(t) rotational isometric state (Fig. 5A) and the P{O�5{C�5{C�4
bonds and the C�4{C�3{O�3{P bonds in the nucleotide

backbone are approximately planar [57]. Therefore, the nucleo-

tide backbone conformations can be reduced into two effective

virtual bonds P{C�4 and C�4{P [58–60]. The length of each

backbone virtual bond is about 3.9 Å. The virtual bonds show

rotamer-like configurations gauchez(gz), trans (t) and

gauche{(g{) (Fig. 5C) [55,56,61]. Such virtual bond conforma-

tions can be well represented by the bonds in a diamond lattice.

Therefore, we can use self-avoiding walks on a diamond lattice to

enumerate the conformations of RNA sequences. This approach

promises proper treatment of the excluded volume effect between

the different atoms and the complete sampling of the conforma-

tional ensemble.

The loop structures are enumerated on a diamond lattice

through exhaustive self-avoiding walks. If the first atom (P) is fixed

at position X0
�!

, then the coordinates (XN
�!

) of N-th atom (P or C�4 )

can be calculated with

XN
�!

~ X0
�!

z
XN

i~1

li bi

! ð1Þ

where, li~3:9A is the bond length of virtual bond bi and bi

!
is the

unit vector of virtual bond bi. Also, the relation between the (i{1)-

th virtual bond (bi{1) and the i-th virtual bond (bi) is:

bi

!
~T(bi, hi):bi-1

�! ð2Þ

where, bi and hi are the related bond angles bi = 1200 and pseudo-

torsion angle hi = gz (600), g{ (3000) or t (1800) (Fig. 5C). The

matrix T is defined as

T(bi, hi)~

1 0 0

0 cos bi {sin bi

0 sin bi cos bi

2
64

3
75|

cos hi {sin hi 0

sin hi cos hi 0

0 0 1

2
64

3
75 ð3Þ

Figure 9. The success rate for the prediction of the coarse-grained correct loop/junction structures for (A) all the 8452 RNA loops
and junctions in TEST-I, (B) the 7459 RNA loops and junctions in TEST-II and (C) the 1119 RNA loops and junctions in TEST-III. The ‘‘Top-
#’’ in x-axis means that the ‘‘correct’’ structure is in the top # lowest-potential conformations. In each figure, ‘‘.’’ and ‘‘&’’ represent the success rate
with SPfold extracted from the Leontis’ database and the RNA09 dataset, respectively; while, ‘‘D’’ and ‘‘e’’ represent the success rate with SPnative

extracted from the Leontis’ database and the RNA09 dataset, respectively.
doi:10.1371/journal.pone.0048460.g009

Figure 10. Comparison between the virtual bond-based PDB
structure and correctly predicted structure with statistical
potentials SPfold. The loops are (A) a hairpin loop from PDB structure
1IVS and (B) an internal loop from PDB structure 1JJ2, respectively. In
both figures, the structures shown in brown (P) and yellow (C�4 ) stand
for the PDB structure, and the ones shown in brown (P) and purple (C�4 )
represent the correctly predicted structure, which have the lowest
potential and the minimal RMSD. The RMSD values are (A) 1.52 Å and
(B) 1.96 Å, respectively. The atomic structures are illustrated with Pymol
software (http://www.pymol.org/).
doi:10.1371/journal.pone.0048460.g010
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Therefore, if the unit vector of the first virtual bond (P{C�4 ) is b1
!

,

we can obtain the unit vector of the i-th virtual bond (P{C�4 or

C�4{P) with

bi

!
~ P

i

j~2
T(bj , hj):b1

! ð4Þ

By considering excluded volume effect, i.e., two atoms cannot

occupy the same site on a diamond lattice, we can generate the

atomic coordinates using equations 1, 2, 3 and 4 and the

conformation ensemble of RNA loops; see Ref. [42] for the

detailed calculations. Here we give an example for illustration. In

Fig. 5, following the 59?39 direction, if the first atom P is fixed at

X0
�!

= col (0, 0, 3.9) (Å), the second atom C�4 is fixed at~xx1 = col (0,

0, 0) (Å), then, b1
!

= col (0, 0, 21). According to Eq. 1, the

coordinate of the third atom P can be computed:

X2
�!

~ X0
�!

zl1b1
!

zl2T(p{bP, g):b1
!

where l1~l2~3:9 Å are the bond lengths, bP(~1200) is the bond

angle and g is the torsion angle (we select 1800 for illustration).

According to Eq. 3, the matrix is computed as:

T(600, 1800)~

{1 0 0

0 {1=2 {
ffiffiffi
3
p

=2

0 {
ffiffiffi
3
p

=2 1=2

2
64

3
75

Therefore, the coordinate of the third atom P is col (0,
ffiffiffi
3
p

/2, 21/

2) (3.9 Å). Following the procedure and considering the excluded

volume between any two atoms, we can compute the coordinates

for other atoms and generate the conformations for a given RNA

loop.

Statistical potential
Assuming an equilibrium Boltzmann distribution for the

structures in the PDB [53,54] and NDB [62] database, one can

extract the interaction potentials:

u(r)~{kBT ln
r(r)

r�(r)
ð5Þ

Figure 12. The success rate of coarse-grained correct loop/junction structure predictions for (A) all the 8452 RNA loops/junctions in
TEST-I, (B) the 7459 RNA loops and junctions in TEST-II, and (C) the 1119 RNA loops and junctions in TEST-III. The ‘‘Top-#’’ in x-axis
means that the ‘‘correct’’ structure is in the top # lowest-potential conformations. In each figure, . and % represent the success rate with SPfold and
SPnative , respectively.
doi:10.1371/journal.pone.0048460.g012

Figure 11. Comparison between the virtual bond-based PDB
structure and top-ranked predicted structures with statistical
potentials SPfold. The loop is a multibranched loop from PDB structure
3CCM. In the figure, the structure shown in brown (P) and yellow (C�4 )
stands for the PDB structure, the one shown in brown (P) and pink (C�4 )
represents the minimal-RMSD structure (RMSD = 2.42 Å), and the one
shown in brown (P) and lightgray (C�4 ) represents the predicted
structure with lowest potentials (RMSD = 2.87 Å), computed with
statistical potentials SPfold . The minimal-RMSD structure has the 9-th
lowest potential. The atomic structures are illustrated with Pymol
software (http://www.pymol.org/).
doi:10.1371/journal.pone.0048460.g011
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Here, kB is the Boltzmann constant, T is the absolute temperature,

r(r) is the observed density, and r�(r) is the density in a

‘‘reference’’ state where no interactions occur.

The above approach can give continuous distance-dependent

pairwise potentials [15,63–66] or discrete base pairs/stacks

potentials [27,67]. In this work, we extract the potentials for the

different dinucleotide conformations described by the pseudo-

torsion angles h (P{C�4{P{C4) and g (C�4{P{C4{P) and the

different dinucleotide sequences ( Fig. 5). The potential uij(h, g) is

extracted based on the following formula:

uij(h, g)~{kBT ln
rij(h, g)

r�ij(h, g)
ð6Þ

where i and j denote the types of the nucleotides (bases) of the two

consecutive nucleotides within the same loop and (h, g) are the

pseudo-torsion angles of the dinucleotide.

Reference state
The proper choice of the reference state is a key issue in deriving

the statistical potentials from the known structures. As pointed out

by Thomas and Dill [68,69], an accurate ideal reference state is

not achievable. Different approximations such as the quasi-

chemical approximation [64] have been used to model the

reference state. Furthermore, to circumvent the reference state

problem, an iterative method for successive refinement of the

statistical potentials was developed and was shown to give reliable

scoring functions for protein folding [68,69] and protein-ligand

interactions [63]. Here, for comparison, we employ the above two

approaches to extract two different sets of RNA knowledge-based

potentials and apply the extracted potentials to RNA loop and

junction structure prediction.

Quasi-chemical approximation-based approach. In the

quasi-chemical approximation [64] we use an ‘‘expected state’’ as

the ‘‘reference state’’. Such an approximation leads to the

Boltzmann relation (Eq. 6):

uij(h, g)~{kBT ln
robs

ij (h, g)

r
exp
ij (h, g)

ð7Þ

where robs
ij (h, g) and r

exp
ij (h, g) are the observed number and the

expected number, respectively, of the dinucleotides (i, j) with

pseudo-torsion angles (h, g) in the entire training dataset. r
exp
ij (h, g)

is computed from the following formulas:

rexp
ij (h, g)~N(h, g)xixj ð8Þ

where N(h,g) is the total observed number of dinucleotides with

pseudo-torsion angles h and g (calculated with a composition-

independent scale, meaning each nucleotide is independent to

other nucleotides in the state (Eq. 8)) [70], and xi and xj are the

mole fraction of nucleotide i and j of the sequences in the entire

training dataset, respectively [70].

The quasi-chemical approximation-based statistical potentials

are the ‘‘extracted’’ energy-like parameters derived from the

observed density in the database of native structures [68]. We

denote such extracted statistical potentials as SPnative. The SPnative

parameters are not the ‘‘true’’ potentials extracted from the

criteria of identifying the ‘‘correct’’/native structure from an

ensemble of the nonnative conformations. We denote the

potentials that can account for the nonnative conformations as

the ‘‘true’’ statistical potentials (SPfold).

Convergent iterative approach. To extract the ‘‘true’’

energy (SPfold), Thomas and Dill developed an iterative approach

based on the folding stability of the native structure [68,69]. The

method has the advantage of accounting for the effect of the

distribution of the whole conformational ensemble, including both

the native and the nonnative states, for a given sequence. The

overall strategy of the iterative approach is to train a set of

potential parameters iteratively until the collection of the native

structures in the training dataset and the full conformational

ensemble (native and nonnative) lead to the same frequencies of

the different dinucleotide conformations [63,68,69].

In our calculation, the iterative process starts with a set of initial

values for the potentials, u
(0)
ij (h, g). The superscript (n) denotes the

n-th iterative step. We use the quasi-chemical approximation-

based statistical potentials SPnative as the initial input.

At each step, we compute the total potential/score for each

conformation of loop/junction by summing over the potential of

all the dinucleotides contained in the loop/junction:

Figure 13. The sensitivity of the structure prediction to the change of the convergence threshold parameter: Dun
ij(h, g) = 0.001 v.s. 0.01.

The tests are based on the predictions of the RNA loops and junctions in all the three databases: (A) TEST-I, (B) TEST-II and (C) TEST-III. In each figure, .
and % represent the success rate of the SPfold-based structure prediction with Dun

ij(h, g) = 0.001 and 0.01, respectively.

doi:10.1371/journal.pone.0048460.g013
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E(n)~
X

dinucleotides

u
(n)
ij (h, g) ð9Þ

Then the predicted frequencies (numbers) of the different

dinucleotide conformations are computed from the Boltzmann

average over all the conformations:

r
pred(n)
ij (h, g)~

XS

s

PL
l nij(h,g):e{E(n)(s,l)=kBT

PL
l e{E(n)(s,l)=kBT

ð10Þ

where E(n)(s, l) is the potential/score for the l-th conformation of

the s-th RNA loop/junction sequence, computed with the

potentials u
(n)
ij (h, g) at the n-th step (Eq. 9), nij(h, g) is the number

of dinucleotide (i, j) with pseudo-torsion angles (h, g) in the l-th

conformation of the s-th RNA loop/junction, L is the number of

conformations of the s-th RNA loop/junction in the training

dataset, and S is the number of RNA loop/junction sequences in

the training dataset.

In each step, we also calculate the difference between the

observed and predicted dinucleotide frequencies:

Du
(n)
ij (h, g)~{kBT ln

robs
ij (h, g)

rpred(n)
ij (h, g)

ð11Þ

where rpred(n)
ij (h, g) is calculated by Eq. 10 and robs

ij (h, g) is the

dinucleotide frequency observed from the ‘‘correct’’ (native)

structures in the training dataset.

In general, the initially guessed potential parameters are not

equal to the ‘‘true’’ potentials and thus there are differences

between the observed dinucleotide frequencies and the predicted

dinucleotide frequencies (Du
(n)
ij (h, g)&0). For each n-th step, we

refine the potentials by accounting for the differences between the

‘‘observed’’ and the ‘‘predicted’’ frequencies of the dinucleotide

conformations (see the parameter Du
(n)
ij (h,g) in Eq. 11):

u
(n)
ij (h, g)~u

(n{1)
ij (h, g)zDu

(n{1)
ij (h, g) ð12Þ

We repeat the above iterative process until DDu
(n)
ij (h, g)D approach-

es 0 (smaller than a threshold number, e.g. 10{3). The final set of

potentials u
(n)
ij (h, g) is the ‘‘true’’ potentials SPfold.

Flowchart
The iterative method is summarized as follows ( Fig. 1):

1. Prepare the training dataset of the native structures. Download

RNA structures from PDB database and extract the loops and

junctions. For each RNA loop/junction in the training set,

generate the full conformational ensemble of RNA backbone

by self-avoiding exhaustive walks on a diamond lattice (Vfold

model). The conformation ensemble is used in the iterative

calculation.

2. Calculate the observed dinucleotide frequencies robs
ij (h, g) by

summing the dinucleotide densities observed in the training

dataset.

3. Choose a set of initially guessed potentials. In this work, we

start with the ‘‘extracted’’ quasi-chemical approximation-based

potentials (SPnative).

4. Calculate the potential/score for each generated conformation of

each RNA loop/junction sequence by using Eq. 9 with iterative

potentials u
(n{1)
ij (h, g). Then calculate the weighted predicted

frequencies r
pred(n)
ij (h, g) of each dinucleotide (i, j) with pseudo-

torsion angles (h, g), by employing Eq. 10.

5. Calculate the convergence parameter Du
(n{1)
ij (h, g) according

to Eq. 11. If the following convergence condition is satisfied:

DDu
(n{1)
ij (h, g)D ƒC0 ð13Þ

with a preset small value of the threshold parameter C0, say,

10{3, then skip to the final step and the ‘‘true’’ potentials

SPfold are obtained; otherwise, continue to the next step.

6. Adjust the current potentials u
(n{1)
ij (h, g) by adding the

correction Du
(n{1)
ij (h, g) (Eq. 12), and obtain a new set of

potentials u
(n)
ij (h, g). Move to the next (n-th) iterative step and

return to Step 4 for the next cycle.

Preparation of the training dataset
We use the RNA 2009 database (RNA09; http://Kinemage.

biochem.duke.edu/databases/rnadb.phb, an updated version of

previous 2005 database (RNA05) [51]) to extract the SPnative

potential and use the database as the training dataset to search for

the ‘‘true’’ potential SPfold. The RNA09 dataset consists of 262

RNA sequences with the experimentally determined structures of

resolution ƒ3.0 Å.

RNA loops and junctions are constructed by all the unpaired

nucleotides in RNA structure. We detect the loops and junctions

by removing the nucleotides involved in the base pairs. Further-

more, we remove all the loop structures with modified bases or

non-RNA atoms and molecules. Advances in the knowledge of the

structures of both the canonical (Watson-Crick and wobbles) base

pairs and non-canonical base pairs (normally classified as tertiary

interactions) [71,72] enable the development of several automated

tools to detect the base pairs in RNA structures. In this work, we

use the 3DNA software package (http://3dna.rutgers.edu/home)

[73] to search for all the possible base pairs from the RNA

structures.

In addition, the time consumption to enumerate the loop

conformations on a diamond lattice increases exponentially with

the length of the loop [45]. Therefore, we only choose loops/

junctions with length ƒ8 nt in the dataset due to the long

computer time for the exhaustive enumeration of the loop

conformations for longer loops [45]. In this study, we use the

algorithm reported in Ref. [74] to search for the best fits on

diamond lattice for the RNA loops/junctions.

Larger loops often involve tertiary interactions with other

subunits of RNA structures, which are not accounted for in this

study. As a result, we found 152 loops/junctions with the length

ranging from 3 nt to 8 nt in the RNA09 dataset. These loop and

junction structures are used as the training dataset in our iterative

approach.

To further test the influence of the use of the different training

dataset on the statistical potentials and the predictive power of the

statistical potentials, we also use another non-redundant high-

resolution RNA structure dataset, collected by Leontis’ lab

(http://rna.bgsu.edu/nrlist/).

Conformational ensembles of RNA loops/junctions
We use the Vfold model to generate the full conformation

ensemble of a given RNA loop or junction sequence. In the Vfold-
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generated loop/junction conformational ensemble, because each

of the two pseudo-torsion angles (h and g) of a dinucleotide

occupies three torsional states in a diamond lattice, there exist

4|4|3|3 parameters for the potentials for the four types of

each nucleotide (A, C, G and U) and the three possible rotamer-

like states for each torsional angle (and hence 3|3 types of the

pseudo-torsion angle pairs h and g).

For each PDB structure of the loop/junction, we find the

minimum-RMSD fit of the virtual bond conformation on the

diamond lattice. We call such a coarse-grained (correct) structure

as the ‘‘coarse-grained correct structure’’; see Step 1 in Fig. 1. Our

calculations show that the differences between the diamond lattice-

represented structures and the PDB structures varies for the

different loop lengths and sequence contents with RMSD in the

range from 0.67 Å to 2.07 Å (Fig. 7), the mean and standard

deviation of RMSD values are 1.35 A and 0.30 Å, respectively..

We will use the coarse-grained correct structure to calculate the

observed dinucleotide frequencies, from which SPnative and SPfold

are extracted.
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