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Abstract

Comparative analyses between human disease and non-disease genes are of great interest in understanding human disease
gene evolution. However, the progression of neurodegenerative diseases (NDD) involving amyloid formation in specific
brain regions is still unknown. Therefore, in this study, we mainly focused our analysis on the evolutionary features of
human NDD genes with respect to non-disease genes. Here, we observed that human NDD genes are evolutionarily
conserved relative to non-disease genes. To elucidate the conserved nature of NDD genes, we incorporated the
evolutionary attributes like gene expression level, number of regulatory miRNAs, protein connectivity, intrinsic disorder
content and relative aggregation propensity in our analysis. Our studies demonstrate that NDD genes have higher gene
expression levels in favor of their lower evolutionary rates. Additionally, we observed that NDD genes have higher number
of different regulatory miRNAs target sites and also have higher interaction partners than the non-disease genes. Moreover,
miRNA targeted genes are known to have higher disorder content. In contrast, our analysis exclusively established that NDD
genes have lower disorder content. In favor of our analysis, we found that NDD gene encoded proteins are enriched with
multi interface hubs (party hubs) with lower disorder contents. Since, proteins with higher disorder content need to adapt
special structure to reduce their aggregation propensity, NDD proteins found to have elevated relative aggregation
propensity (RAP) in support of their lower disorder content. Finally, our categorical regression analysis confirmed the
underlined relative dominance of protein connectivity, 39UTR length, RAP, nature of hubs (singlish/multi interface) and
disorder content for such evolutionary rates variation between human NDD genes and non-disease genes.
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Introduction

The pathogenesis of neuronal vulnerability in neurodegener-

ative diseases (NDD), involving amyloid formation in specific

brain regions, is still not clear. Therefore, tracing evolutionary

etiology of human misfolding and aggregation related disease

genes can shed light into the molecular mechanism of

neurodegenerative disease pathogenesis by identifying the factors

that harbor disease causing mutations in normal genes. Thus,

we used Homo sapiens as model organism to assess the molecular

divergence of neurodegenerative diseases by computing the ratio

of number of non-synonymous substitution per site (dN) to the

number of synonymous substitution per site (dS) against non-

disease genes as the control parameter [1].

Decades-long continuous efforts have facilitated to characterize

protein evolutionary rates with the signatures of gene expression

level [2,3], protein length [4,5], aggregation propensity [6,7],

number of interacting partners [8], miRNA targets [9], gene

dispensability [10,11] and protein disorder content [12,13]. Due to

lack of proper 3D structure, protein intrinsically disordered region

provide global flexibility that promotes binding to their partners in

protein-protein interactome [14,15]. Moreover, highly connected

miRNA targeted genes are highly disordered in nature [13]. On

the other hand, exposed hydrogen bonds in highly disordered

proteins are known to elevate the risk of protein aggregation,

which may impose selective constraints on protein structures

[13,16]. Hence, to resolve the ambiguity of relations affecting

protein evolutionary rates, we specifically analyzed human

aggregation prone neurodegenerative disease genes compare to

non-disease genes. We considered protein intrinsic disorder

content, miRNA targeting and protein connectivity as the

functions of evolutionary rates.

Finally, our comprehensive analysis revealed the conserve

nature of human NDD genes relative to non-disease genes. We

exploited several evolutionary parameters to explain the slower

evolutionary rates of NDD genes with respect to non-disease

genes. Moreover, we here obtained lower disorder content in

NDD genes, conflicting the previously established analyses of

Roychoudhury et al. [17] and Uversky [18]. Relative impor-

tance of the determinants in modulating evolutionary rates of

proteins was further confirmed from categorical regression

analysis which emphasized that protein connectivity, 39UTR

length, relative aggregation propensity (RAP), nature of hubs

(singlish/multi-interface) and disorder content are largely re-

sponsible for such evolutionary behaviour of human NDD

genes. Furthermore, we also confirmed that the nature of hub is

also an important evolutionary rate regulator.
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Materials and Methods

Dataset Preparation for Evolutionary Rate Estimation
We listed 460 non-redundant NDD genes from Biobase

Knowledge Library (BKL) (http://www.biobase-international.

com/) out of 848 readily available NDD annotations by matching

their functional description with any one of the neurodegenerative

diseases common to literatures (such as Alzheimer disease,

Parkinson disease, Huntington disease, Adrenoleukodystrophy,

Creutzfeldt-Jakob disease, Friedreich ataxia, Leigh syndrome,

Neuronal Ceroid lipofuscinosis, Myoclonic epilepsy, Pick disease,

Spinocerebellar ataxia, Supranuclear palsy, Charcot-Marie-tooth

disease, Wolfram syndrome, Alexander disease, Amyotrophic

lateral sclerosis, Canavan disease, Familial dysautonomia, Leu-

koencephalopathy, Metachromatic leukodystrophy, Multiple scle-

rosis, Myotonic dystrophy, Prion diseases, Rett syndrome,

Schizophrenia, Spastic paraplegia, Spinal muscular atrophy,

Multiple system atrophy and Tay-sachs disease) [19–34]. Howev-

er, some of the afore-mentioned diseases may belong to

neuropathy or lysosomal storage disease groups [35,36] and were

excluded from our gene set. To extract actual disease genes, we

also removed potential risk associated disease susceptible genes as

per Online Mendelian Inheritance in Man (OMIM) [37], Human

Gene Mutation Database (HGMD) [38] and Genetic Association

Database (GAD) [39] from our dataset. In our comparative study,

genes not showing any disease annotation in BKL or OMIM or

HGMD or GAD and did not follow ubiquitous expression pattern

[40], were regarded as non-disease genes. Following 1:1 orthology

relationship [41], we extracted the corresponding mouse ortholo-

gues of the human genes from Ensembl v.60 using biomart [42]

and also obtained their pairwise non-synonymous (dN) and

synonymous (dS) substitution rates to compute gene specific

evolutionary rate (dN/dS). Genes having dS .3 were discarded

from our analysis to get rid of problems due to mutational

saturation [43]. Human protein coding sequences were also

acquired from Ensembl database. For genes with more than one

isoform, the longest isoform was considered. Finally, we yielded

a list of 375 NDD and 7578 non-disease genes with available

evolutionary rate for further analysis (Table S1).

Determining Gene Expression Level and Expression
Width
Following the method of Wu et al. [44], we estimated gene

expression level using HG-U133A affymetrix probe set in addition

to the GNF1B, GCRMA dataset obtained from Gene Expression

Atlas (http://biogps.gnf.org/downloads/). An average intensity

value in 84 tissues was considered as the expression level for each

gene. In case of genes with different probe sets, we averaged the

mean expression values of all the probe sets of a gene to yield final

gene expression level [7]. Gene expression width is determined as

per Park et al. [45], where, we took a cutoff signal intensity value

as 200 to consider a gene is expressed in that particular tissue. We,

thereby, obtained expression data for 356 NDD genes and 3930

non-disease genes.

Protein-Protein Interaction Data
Human protein-protein interaction data was collected from

biological interaction repository BioGRID database v.3.1.77 [46]

which houses over 10271 unique human proteins annotated with

39931 non-redundant interactions. BioGRID acts as an extensive

interaction pool compare to other human interaction databases

like HPRD, MIPS, FlyBase etc [47–49]. Therefore, for systematic

analysis of interaction network, we chose BioGRID database to

compute protein connectivity by counting the number of in-

teraction partners (excluding self interaction) that a protein

connects with.

Identification of Nature of Hub Proteins (Singlish/Multi
Interface Hub)
Hub proteins can be characterized by the proteins with $5

interactors [50]. As per Kim et al. [51], we have assigned the hub

proteins as singlish/multi interface hubs by identifying their

interacting domains using Pfam database [52]. To assign a domain,

the following criteria were used: (a) e-value of alignment should be

,1024, (b) protein sequence should overlap .80% of the domain

length and (c) length of the domain should be greater than 12

residues [51]. Following Kim et al. [50,51] we annotated hub

proteins with one or two interacting interface as singlish interface

hub and those having more than two interacting interfaces as multi

interface hubs.

microRNA Targeting and 39 UTR Length Calculation
Human miRNA target predictions were obtained from micro-

RNA.org database (August’2010 releases) [53]. We only consid-

ered miRNAs, whose target sites remain conserved across the

mammalian phylogeny, to acquire a reliable outcome [13]. Using

the prediction, we next computed the number of regulatory

miRNAs per gene in our dataset. Ensembl v.60 [42] was used to

calculate the length of 39UTR region for each gene.

Estimation of Protein Disorder Content
In our dataset, we predicted intrinsic disorder of a protein using

versatile graphic web server FoldIndex (http://bioportal.

weizmann.ac.il/fldbin/findex) [54] using its default parameters.

To reduce false positive rate only the sequences with 30 or more

disordered residues at a stretch were considered [12,55]. The

fraction of disorder content was estimated by dividing the number

of disordered residues of a protein to the length of that protein.

Computing Protein Relative Aggregation Propensity
(RAP)
Aggregation propensity of both NDD and non-disease proteins

was retrieved using TANGO algorithm [56]. Based on the

physicochemical properties, TANGO predicts the b-aggregation
score of a protein. To calculate RAP of a protein, we took the ratio

of its TANGO aggregation score to the maximal TANGO

aggregation score of the whole dataset [7,57].

Statistical Analyses
The entire statistical analyses were performed using SPSS v.13.

Mann-Whitney U test was used to compare the average values of

different variables between two classes of genes. For correlation

analysis, we performed the Spearman’s Rank correlation co-

efficient r, where the significant correlations were denoted by

P,0.05.

Results

Gene Expression Level Constraining the Evolutionary
Rates of NDD Genes
Neurodegenerative diseases are known to be arisen through

complex interaction between genetics of a given individual and

multiple environmental factors [58]. Therefore, studying evolu-

tionary aspect of progressive degenerative diseases of the central

nervous systems has enormous impact on evolutionary genetics,

which led us to estimate the evolutionary rates (dN/dS) of 375

neurodegenerative disease and 7578 non-disease genes in our

Evolutionary Factors & Neurodegenerative Diseases
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comparative analysis. We observed that NDD genes are under

purifying selection pressure as compare to non-disease genes (dN/

dS of NDD genes = 0.126, non-disease genes = 0.158 and

P= 1.9061026 for NDD vs. non-disease genes). Therefore, to

illuminate the conserved nature of NDD genes, we computed gene

expression levels of both NDD and non-disease genes as

expression levels are known to be the major evolutionary rates

indicator [59]. Reasonably, we noticed that mean expression levels

of NDD genes (94.338) are ,2.54 fold higher than non-disease

genes (Expression level = 37.057, P= 3.3161027 for NDD vs. non-

disease genes).

Moreover, we obtained a strong negative correlation between

gene expression levels and protein evolutionary rates (Spearman’s

r=20.108, P=1.0061026). Hence, it can be concluded that

gene expression levels to be one of the potential evolutionary

features responsible for such rate variations.

Examining Protein Connectivity and miRNA Targeting as
Influential Factors of Protein Evolutionary Rates
Proteins with higher interacting partners evolve slower as

mutations in protein interaction sites may disrupt the network

connectivity affecting the functionality of the proteins [8,60–63].

Hence, considerable lower evolutionary rates of NDD genes in

contrast to non-disease genes directed us to scrutinize whether

protein connectivity has any influence on their evolutionary rates

differences. We found that highly expressed NDD genes encoding

proteins have ,2 fold higher network connectivity in comparison

with non-disease genes encoding proteins (average connectivity of

NDD proteins = 10.59, non-disease proteins = 5.71,

P= 1.95610214 for NDD vs. non-disease proteins). Additionally,

in agreement to Fraser et al. [8,61] a significant negative

correlation is detected between protein connectivity and evolu-

tionary rates (Spearman’s r=20.162, P=1.0061026). Thus, we

infer that protein connectivity may have an impact on evolution-

ary rate differences between NDD and non-disease genes.

It is now obvious that highly connected proteins are targeted by

greater number of miRNAs because genes targeted by various

types of miRNAs are subject to enormous functional constraints

and thus, evolve slowly [13]. Therefore, retrieving miRNA targets

against each gene revealed that NDD genes are highly targeted by

various types of miRNAs compare to the non-disease genes (mean

miRNA targets of NDD gene= 44.88, non-disease gene = 39.44,

P= 1.1161023 for NDD vs. non-disease genes). Moreover,

miRNAs can recognize target sites at the 39UTR regions of the

genes and hence genes with longer 39UTR evolve at slower rates

compare to genes with shorter 39UTR [9]. Estimation of the

39UTR length of NDD and non-disease genes (Mean 39UTR

length of NDD gene= 1749 bp, non-disease gene = 1536 bp,

P= 2.7261022 for NDD vs. non-disease genes) also supports the

earlier results [9]. Correlation analysis revealed that evolutionary

rate is negatively correlated with the number of distinct miRNA

types (Spearman’s r=20.087, P=1.0061026) and also with

39UTR length (Spearman’s r=20.192, P=1.0061026). Thus,

our results emphasize that number of miRNA types and 39UTR

length altogether modulate the rate difference between NDD and

non-disease genes.

Protein Intrinsic Disorder Content and Nature of Hub
Proteins as the Functions of Protein Evolutionary Rates
Genes encoding proteins with higher intrinsically disorder

regions (IDRs) are targeted by higher number of miRNAs rather

than genes encoding proteins with lower IDRs [13]. Therefore, it

is expected that highly connected NDD genes should have greater

disorder content than non-disease genes, as observed earlier

[17,18]. Interestingly, our observation contrasts our expectation

i.e. NDD genes have significantly lower disorder content (21.98%)

than non-disease genes (25.98%) (P= 5.2361023 for NDD vs.

non-disease proteins). In favor of our observation, we also found

a significant positive association (r=0.080, P=161026) between

IDR content and dN/dS. In addition, it is well known that highly

disordered proteins serve as flexible linkers in the protein-protein

interaction networks to promote promiscuous binding to their

interacting partners [64,65]. Since, we observed a greater

connectivity of NDD genes compare to non-disease genes; it is

expected that NDD genes should have higher disorder content

than the non-disease genes as observed previously [17]. Moreover,

highly connected ‘‘hub’’ proteins (with $5 interactors) in the

protein-protein interaction network play a vital role in controlling

biological processes of cell [66]. Surprisingly, we observed that

NDD genes have greater proportion of hub proteins than non-

disease genes (Table 1). Previously, it has been reported that multi

interface hubs (party hubs) interact simultaneously with their

partners and exhibit relatively conserved evolutionary rates with

lower disorder content than singlish interface hubs (date hubs) that

facilitate transient binding with their different partners at different

times/locations [12,50,51]. Moreover, due to lack of compact 3-D

structures in native state, intrinsically disorder proteins are under

less structural constraint and have elevated evolutionary rates [13].

Accordingly, we found that NDD genes are enriched with multi

interface hubs (party hubs) (Figure 1) in favor of their lower

disorder content and also supports for their lower evolutionary rate

compare to non-disease genes.

Relative Aggregation Propensity Negatively Steers
Protein Evolutionary Rates
Earlier it has been reported that the frequency of aggregation

nucleating segments is significantly lower in intrinsically disor-

dered proteins compare to properly folded proteins. These results

have been explained due to lack of structural constraints in

intrinsically disordered proteins which finally safeguards proteins

against aggregation [6,67–69]. This led us to measure the RAP of

each individual protein in our dataset using TANGO algorithm

[7,56–57]. We found that NDD genes encoded proteins are highly

aggregation prone with respect to non-disease gene encoded

proteins (average RAP of NDD proteins = 0.097, non-disease

proteins = 0.083, P= 9.2161026 for NDD vs. non-disease pro-

teins). Moreover, we found an overall negative correlation between

RAP and percentage of intrinsically disordered residues

(r=20.467, P= 161026) and between RAP and evolutionary

rates (r=20.072, P = 161026). Thus, we propose that RAP also

regulate the evolutionary rates of NDD and non-disease genes.

Independent Forces of Protein Evolutionary Rates Using
Categorical Regression Model
We have identified that gene expression level, number of

miRNAs targeting the gene, 39UTR length, percentage of

intrinsically disordered residues, number of interacting partners,

natures of hub (i.e. singlish interface hub/multi interface hub) and

RAP are the attributes regulating the evolutionary rates of the

NDD genes with respect to non-disease genes. In order to excavate

the independent influence of the above mentioned six predictor

variables on protein evolutionary rates, we performed categorical

regression analysis to best predict the value of the dependent

variable as categorical regression can optimally scale the

categorical data to its numerical equivalents [70]. According to

our ANOVA model (F= 13.648, P,0.05), protein connectivity,

Evolutionary Factors & Neurodegenerative Diseases
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39UTR length, RAP, nature of hubs (singlish/multi interface) and

disorder content were found to be the independent evolutionary

rate modulators (Table 2).

Discussion

Profiling human neurodegenerative diseases from the perspec-

tive of protein evolutionary rates and comparing them with non-

disease genes can provide therapeutic clues against disease

pathogenesis. With this aim, we analyzed the evolutionary forces

affecting NDD genes taking non-disease genes as the control one.

We, thereby, found that higher selective pressure prevailed on

NDD genes compare to the non-disease group. To explicate the

reason behind such observation, we studied gene expression level,

protein connectivity, regulatory miRNAs, disorder content, nature

of hub proteins and relative aggregation propensity as evolutionary

functions. In support of the conserved nature of NDD genes, we

obtained higher gene expression level, higher protein connectivity

along with greater miRNA regulation associated with them

compare to the non-disease class. Interestingly, we observed lower

disordered content of NDD genes contrasting previous publica-

tions [17,18]. Moreover, the lesser disordered content of NDD

genes underpin higher aggregation propensity of NDD genes due

to lack of their conformational entropy [56], as reflected in our

results. Emphasizing on the evolutionary rates differences between

NDD and non-disease genes, our categorical regression model

ascertained the independent influence of protein connectivity,

presence of singlish/multi interface hub, protein disorderness,

RAP and 39UTR length among all the evolutionary parameters

studied in this present analysis (Table 2).

Figure 1. Multi-interface proteins are prevalent in NDD genes compare to non-disease genes. The bar diagram depicts the percentage of
hub proteins in NDD and non-disease genes within singlish and multi-interface hubs respectively. In each group, the dark bar represents non-disease
genes whereas other bar belongs to NDD category.
doi:10.1371/journal.pone.0048336.g001

Table 1. Proportions of hub proteins in NDD and non-disease gene encoded proteins with different cutoff values for interaction
partners.

Hub contents in different
conditions

NDD proteins Vs. Non-disease
proteins (Respectively) Z score Significance Level

With partner $5 50.000% vs. 33.880% 5.497 99.9%

With partner $10 31.292% vs. 15.599% 6.803 99.9%

With partner $20 14.966% vs. 5.760% 6.028 99.9%

Note. 100% confidence level refers to significance level: P,0.01.
doi:10.1371/journal.pone.0048336.t001

Table 2. Categorical regression to illustrate the independent
influential evolutionary features.

Parameter Standardized b score P value

Protein Connectivity 20.068 0.003

39 UTR length 20.091 ,0.001

Protein intrinsic disorder 0.101 ,0.001

Singlish/multi interface
hubs

20.092 ,0.001

RAP 20.048 0.036

Gene Expression level 20.035 0.097

Regulatory miRNAs
number

20.012 0.587

doi:10.1371/journal.pone.0048336.t002

Evolutionary Factors & Neurodegenerative Diseases
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Our results share a conflicting view with Roychoudhury et al.

[17] and Uversky [18] regarding disorder content of NDD

proteins compare to the non-disease one. According to Roy-

choudhury et al. [17], NDD proteins are highly disordered

proteins being ‘‘hub’’ in nature whereas we uttered about low

disorderness of NDD proteins besides being hub proteins (Table 1).

The disagreement in our result with Roychoudhury et al. [17]

may arise due to the following reasons. In their analysis,

Roychoudhury et al. [17] chose only three well-known neurode-

generative diseases (‘‘Huntington’’, ‘‘Parkinson’’ and ‘‘Alzheimer’’

diseases) as the representative of NDD group among all the

different neurodegenerative diseases known at that time. However,

for proper characterization of NDD proteins, it is essential to

include all possible neurodegenerative diseases in the analysis.

Since, our analysis highlights evolutionary rate difference between

NDD and non-disease proteins, we only considered NDD proteins

which have available evolutionary rate data. By this means, we

collected 375 NDD proteins excluding neuropathies or lysosomal

storage diseases and risk associated disease susceptible genes

following extensive literature survey. Among them, 21.33%

proteins (80 proteins out of 375 proteins) in our dataset overlapped

with 352 NDD proteins selected by Roychoudhury et al. [17].

Proceeding further, we considered only overlapping 80 proteins

as NDD group. In doing so, our comparative study established

that NDD proteins share non significant (P= 0.722) difference in

disorder content with respect to non-disease group. From these

results, we can conclude that the difference in gene selections may

be a reason for obtaining such dissimilar result with Roychoudh-

ury et al. [17]. Moreover, our in depth analysis revealed that NDD

proteins are enriched with multi-interface hub (party hub) while

the non-disease class are well populated with higher proportion of

singlish-interface hub (date hub) (Figure 1). Since, multi-interface

hubs promote simultaneous binding through their interaction

domains compare to singlish-interface hubs, higher population of

multi-interface hub in NDD category go in favor of their

conserved nature. Hence, we proposed that the nature of ‘‘hub’’

was more important regulator of protein disorderness than hub

content and thereby, protein evolutionary rates. However,

Uversky [18] considered several case studies to demonstrate that

intrinsically disordered proteins can easily form ordered hydro-

phobic b-sheet topology in contrast to folded globular proteins,

required for fibril formation in aggregating proteins. Thus, he

concluded that human aggregation prone neurodegenerative

diseases are highly disordered proteins by nature. Regarding the

aforementioned controversy with Uversky [18], we can say that by

definition intrinsically disordered proteins lack any stable ordered

secondary/tertiary structure under physiological conditions and

prefers hydrophilic residues [13,18]. In addition, intrinsically

disordered positions in protein structures can not adopt any

ordered structure and it is reasonable to assume that the crystal

structures of those proteins do not contain any coordinate data of

the atoms in these intrinsically disordered positions. On the other

hand, b-sheet structures, a class of ordered secondary structures,

have their coordinate data maintained in the X-ray crystal

structures. Therefore, formation of b-sheet topology from in-

trinsically disordered proteins can contradict with their structural

definitions. On a final note, we can say that being a positive

evolutionary rate regulator [13], lower disorderness of NDD

proteins in our dataset can completely describe the conserved

nature of NDD proteins contrast to non-disease group.

From the perspective of gene expression level, our result

supports Bortoluzzi et al. [60] for having higher gene expression

level of human disease genes. On our way, we noticed that NDD

genes are ,2.54 fold highly expressed than non-disease class.

Moreover, tissue expression breadth data also supports our result

(Expression width of NDD genes = 5.37, non-disease genes = 2.16

Figure 2. Expression profiles of NDD and non-disease genes considering 84 tissues in 10 major tissue categories. In this bar diagram,
Cancerous, Circulatory, Connective, Excretory, Gland, Immune, Muscle, Neural, Reproductive and Respiratory tissues are abbreviated as Canc, Circ,
Conn, Excr, Gland, Immu, Musc, Neur, Repr, and Resp respectively. The dark and light bars in each group represent non-disease and NDD genes
respectively. From the picture, it is evident that our NDD genes are highly expressed in nervous system related tissues.
doi:10.1371/journal.pone.0048336.g002

Evolutionary Factors & Neurodegenerative Diseases
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and P= 5.63610218 for NDD vs. non-disease genes). To obtain,

a suitable reason for the elevated expression level for NDD genes,

we checked the tissue distribution pattern of NDD genes compare

to the rest of the non-disease group (Figure 2). Following Greco

et al. [71], we classified 78 normal tissues into 9 major tissue

categories and considered rest of the 6 abnormal tissues as

‘‘cancerous’’ group. In doing so, we obtained that except

cancerous tissues, NDD genes share elevated expression level in

all tissue types (Connective, Excretory, Gland, Immune, Muscle,

Neural, Reproductive and Respiratory as shown in Figure 2).

Since, our primary focus is on neurodegenerative diseases, our

analysis (Figure 2) strongly supports the highest (P=0.0001)

expression of NDD genes near nervous system related tissues. In

addition, we observed that our non-disease genes on average show

uniform gene expression level within the range of 25–60 whereas,

for NDD class the inhomogeneous expression level often fluctuates

within the range of 25–150.

Molecular evolution is strongly fostered by genes’ efforts to

avoid/tolerate errors while producing proteins. Besides identifying

the evolutionary features of human neurological disorders, our

investigation has clarified the complicated relationships between

protein disorder content and RAP. Without these crucial

informations, the ability to diagnose, prevent, and treat neurolog-

ical disorders will remain incomplete.

Supporting Information

Table S1 List of human neurodegenerative disease
genes and non-disease genes used in this study.

(XLS)
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