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Abstract

The characterization of the complex diffusion signal arising from the brain remains an open problem. Many representations
focus on characterizing the global shape of the diffusion profile at each voxel and are limited to the assessment of
connectivity. In contrast, Multiple Fascicle Models (MFM) seek to represent the contribution from each white matter fascicle
and may be useful in the investigation of both white matter connectivity and diffusion properties of each individual fascicle.
However, the most appropriate representation of multiple fascicles remains unclear. In particular, a multiple tensor
representation of multiple fascicles has frequently been reported to be numerically challenging and unstable. We provide
here the first analytical demonstration that when using a diffusion MRI acquisition with only one non-zero b-value, such as
in conventional single-shell HARDI acquisition, a co-linearity in model parameters makes the precise model estimation
impossible. Motivated by this theoretical result, we propose the novel CUSP (CUbe and SPhere) optimal acquisition scheme
to achieve multiple non-zero b-values. It combines the gradients of a single-shell HARDI with gradients in its enclosing cube,
in which varying b-values can be acquired by modulation of the gradient strength, without modifying the minimum echo
time. Compared to a multi-shell HARDI acquisition, our scheme has significantly increased signal-to-noise ratio. We propose
a novel estimation algorithm that enables efficient, robust and accurate estimation of the parameters of a multi-tensor
model. In conjunction with a CUSP acquisition, it enables full estimation of the multi-tensor model. We present an
evaluation of CUSP-MFM on both synthetic phantoms and invivo data. We report qualitative and quantitative experimental
evaluations which demonstrate the ability of CUSP-MFM to characterize multiple fascicles from short duration acquisitions.
CUSP-MFM enables rapid and effective investigation of multiple white matter fascicles, in both normal development and in
disease and injury, in research and clinical practice.
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Introduction

Measuring water diffusion with magnetic resonance diffusion

weighted imaging (MR-DWI) has enabled non-invasive investigation

and characterization of the white matter architecture and micro-

structure in the brain. The diffusion in a white matter fascicle has

been observed to be highly anisotropic, with primary orientation

corresponding to the orientation of the fascicle [1,2]. The underlying

microstructure that gives rise to this anisotropy has been reviewed

recently by [3–5]. Diffusion tensor imaging (DTI) [6] was proposed

to describe the three-dimensional nature of anisotropic diffusion.

Assuming homogeneous Gaussian diffusion within each voxel, DTI

describes the magnitude and orientation of water molecule diffusion

with a second-order tensor estimated from diffusion measurements

in several directions. More precisely, DTI relates the measured

diffusion-weighted signal Sk along a gradient direction gk to the non-

attenuated signal S0 via the Stejskal-Tanner equation [7]:

Sk(D)~S0e{TE=T2e{c2d2(D{d=3)gk
T Dgk , ð1Þ

where TE is the echo time, T2 the spin-spin (or transverse) relaxation

time of the tissue, c the gyromagnetic ratio, d and D the diffusion

sensitizing pulse gradients duration and time separation, and D is the

3|3 diffusion tensor. The applied b-value defined by

bk~c2d2(D{d=3)G2
k, which depends on the gradient strength

G2
k~ gkk k2

, has been introduced [8] to simplify the notations in Eq.

1 and describes the diffusion sensitization strength. The nominal b-

value bnominal~c2d2(D{d=3) describes the b-value for the unit-

norm gradients. The term e{TE=T2 is generally considered constant

across all gradients and omitted. However, and importantly, it

highlights how the signal amplitude Sk(D) decreases exponentially

for increasing TE. A larger TE considerably alters the signal-to-noise

ratio for all the measurements (see Fig. 1), regardless of the applied b-

value. This is essential because minimum achievable TE and

nominal b-value are linked. They follow a complex relationship

[9,10] via the timing parameters d and D, which can be

approximated by TE&
12bnominal

c2

� �1=3

[11,12]. Consequently,

increasing the nominal b-value increases the minimum achievable

TE, which in turn leads to an exponentially decreased signal

amplitude closer to the noise floor (see Fig. 1). Considering that the

noise amplitude is constant, this signal dropout leads to a lower SNR

for each DW image, regardless of their b-value [13]. This leads to a

fundamental trade-off in diffusion imaging: while higher b-values are
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known to increase the contrast between the DW gradient directions

[14], and therefore to increase the reliability of estimation of

orientation of each fascicle, the higher nominal b-value also leads to

a longer TE and to a lower SNR for each DW image, decreasing the

estimation certainty and quality. An optimal diffusion-weighted

acquisition must achieve a trade-off between acquiring adequate b-

values while minimizing the TE to maximize the SNR.

DTI and its underlying mono-exponential signal attenuation

assumption are generally considered to satisfactorily represent

single fascicles when imaging with b-values lower than 3000s=mm2

[15–17], which is frequently the case in clinical settings. Non-

monoexponential behavior of the signal at a voxel in this b-value

range can arise from CSF partial voluming [18], mixtures of

fascicles present in the voxel [19] and other sources [4]. The

diffusion tensor enables representation of the orientation of a

single fascicle as well as the characterization of the diffusion

process. Tensor parameters such as the fractional anisotropy (FA),

the mean diffusivity (MD), the axial diffusivity (AD) and the radial

diffusivity (RD) can be computed and have been shown to provide

valuable information that reflects changes in the white matter due

to development, disease and degeneration. DTI requires relatively

short acquisition times and has been successfully employed in

clinical studies.

DTI is however well known to be a poor parametric model for

representing the diffusion signal arising at voxels that encompass

multiple fascicles with heterogeneous orientation such as fascicle

crossing, kissing or fanning. A wide number of approaches have

been investigated to overcome this fundamental limitation. They

involve both novel diffusion signal sampling schemes and novel ways to

analyze the diffusion signal as detailed below.

Image acquisition strategies
Mainly two q-space sampling strategies have been used for

complex fiber structure assessment: Cartesian sampling and

spherical sampling. Cartesian sampling is used by diffusion

spectrum imaging (DSI) [20,21]. However, it requires an

extremely high number N of measurements, typically

200ƒNƒ512, preventing the technique from being used in

routine clinical practice. Spherical sampling as employed in high

angular resolution imaging (HARDI) techniques reduces the

imaging time and requires moderate imaging gradients intensity.

A large number of HARDI-based techniques have been proposed

(see next section). Note that in this work, to avoid any confusion

between the image acquisition strategy and the signal modeling

strategy, we denote by HARDI the acquisition scheme only. Single-

shell HARDI acquisitions with a single non-zero b-value have

been considered to image a sphere of constant radius in q-space.

Multiple-shell HARDI acquisitions have also been proposed. They

combine in a single acquisition the sampling of multiple shells of

different radius in q-space. It enables acquisition of multiple non-

zero b-values. Multiple-shell HARDI, however, leads to a large TE

that depends upon the highest b-value. This leads in turn to a

significantly lower signal-to-noise ratio (SNR) for all the measure-

ments (see Eq. 1 and [22]) and to a longer imaging time. In

addition, imaging a higher b-value is generally achieved by using

longer diffusion gradient pulse duration, which in turn leads to

larger eddy current distortion [23,24].

Other sampling techniques have been proposed for reasons

other than assessing complex fiber structures. Sampling using the

tetrahedral
ffiffiffi
3
p

-norm gradients has been employed [9] to measure

the apparent diffusion coefficient (ADC) from four diffusion

measurements. Because bk~bnominalG
2
k, it enables imaging at

higher b-value than the nominal b-value without modifying the

timing parameters d and D, but by using gradients with norm greater

than one. It provides the optimal minimum achievable TE for the

corresponding applied b-value, leading to a better SNR and

potentially to lower eddy current distortion because the diffusion

gradient pulses can be shortened. Using the same concept [25],

employed the six hexahedral
ffiffiffi
2
p

-norm gradients to estimate a

diffusion tensor from seven measurements. Furthermore, in

CURVE-Ball (CUbe Rays to Vertices and Edges) [26], a spherical

sampling and the hexahedral [25] and tetrahedral [9] gradients

were combined to perform the estimation of a single-tensor model

at three different diffusion scales bnominal, 2bnominal and 3bnominal.

Models for characterization of the diffusion signal
A large number of approaches have been investigated to analyze

the diffusion signal and represent multiple white-matter fascicles

Figure 1. Illustration of the signal decrease when the echo time and the b-value increase in DWI. Diffusion-weighted acquisition with
b~0s=mm2 (a), b~1000s=mm2 (b), b~2000s=mm2 (c) and b~3000s=mm2 (d). Comparison for TE~78ms (first line) obtained when using our CUSP
sequence with bƒ3000s=mm2, and TE~108ms (second line) obtained when using multi-shell HARDI sequence with bƒ3000s=mm2. It shows how
the signal amplitude decreases (and so does the signal-to-noise ratio) when the b-value and the TE increase (first line versus second line). Acquisitions
with a short TE should be favored, particularly when imaging at high b-value.
doi:10.1371/journal.pone.0048232.g001
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with complex geometry. Both parametric (model-based) and non-

parametric (model-free) approaches have been proposed. They

generally focus on estimating either (1) the diffusion displacement

probability density function (diffusion PDF), (2) the diffusion

orientation distribution function (dODF) which is the angular

profile of the diffusion PDF or (3) the fiber orientation distribution

function (fODF), also known as the fiber orientation density (FOD)

and which is of central interest for tractography.

Model-free approaches include diffusion spectrum imaging

(DSI) [20,21]. In this technique, the diffusion PDF is directly

estimated from the inverse Fourier transform of the measured

signal, requiring a very high number of measurements to satisfy

the Nyquist condition. Q-ball imaging (QBI) [27] estimates an

approximate non-parametric angular profile of the diffusion PDF

without actually computing the diffusion PDF, by using the Funk-

Radon transform. Fast and robust analytical QBI estimation

procedures have been proposed [28–31]. However, QBI results in

the estimation of an approximated dODF related to the true

dODF by modulation with a zero-order Bessel function. This leads

to a spectral broadening of the diffusion peaks of individual

fascicles at moderate b-values accessible on a clinical scanner,

perturbing the FOD reconstruction necessary for carrying out

tractography. Mixing of individual tracts in a voxel leads to local

maxima that do not coincide with the true fascicle orientation

[32], leading to a relatively low fidelity representation. To avoid

the usual Q-Ball approximation, Canales-Rodrı́guez et al. [33]

have derived in Exact Q-Ball Imaging (EQBI) a direct relationship

between the dODF and the diffusion data. Its enables the

estimation of the exact dODF under the assumption of a Gaussian

profile.

Q-space approaches such as DSI, QBI, or EQBI are however

limited by three major error sources. First they are based on the

narrow pulse approximation assumption, considering that molecules do

not diffuse during the application of the diffusion sensitizing

gradients. The gradient pulses are then modeled by a Dirac shape

which is not practically feasible, especially on clinical systems. In

practice, in clinical settings, the diffusion-encoding gradient

duration d is typically of the same order of magnitude as the

time offset D between encoding gradients [34] (D=d&1) to

minimize T2 decay and to obtain better SNR, which is a very poor

approximation of a Dirac shape. Second, since the imaging time

has to be finite, only a finite region in q-space is imaged. This has

been shown to lead to a blurred propagator with decreased

contrast and angular resolution [35]. Third, they are limited by the

need to truncate the Fourier representation which is required to

numerically compute the infinite series involved in the Fourier

transformation, leading to quantization artifacts [33].

In contrast, parametric models describe a predetermined model

of diffusion rather than an arbitrary one. They potentially require

a smaller number of images to be acquired, leading to a reduced

acquisition time. A large number of model-based approaches have

been investigated. Among them, generalized diffusion tensor

imaging (GDTI) [36,37] models the white-matter fascicles with

higher-order tensors ; spherical deconvolution (SD) [38–40]

directly estimates the FOD instead of the dODF and has a better

angular resolution; diffusion orientation transform (DOT) [16]

employs a model-based q-space modeling based on the assumption

of a monoexponential decay of the signal attenuation.

A major drawback to DSI, QBI, DOT, SD and GDTI is that

they focus on describing the general shape of the diffusion profile in

each voxel. They do not represent each fascicle independently and

therefore do not characterize the proportion of each fascicle

passing through a voxel. Importantly, they do not enable

characterization of each fascicle. Diffusion parameters such as

the generalized fractional anisotropy (GFA) can be computed but

represent a DW signal dispersion property rather than an

individual fascicle property. For example, a synthetic fascicle

consisting of an identical tensor at every voxel crossed by another

synthetic fascicle has a GFA that varies in the crossing region [41],

which is not clinically relevant. It is not possible to distinguish

whether a change in diffusion parameters along a fascicle is

associated with a change in the intrinsic fascicle property or

because of the presence of crossing fascicles. These approaches

provide information about the distribution of fascicle orientations in

the voxel but are limited to connectivity assessment.

In contrast, multi-fascicle models (MFM) consider at each voxel

a mixture of independent fascicles with heterogeneous orientation.

Making the assumption of a slow exchange between the fascicles’

compartments, the diffusion signal in each voxel is modeled as a

mixture of the diffusion signal arising from each individual fascicle.

Integration of an isotropic component has also been investigated

[17,42–45] to model the diffusion of unrestricted water. This

enables characterization of pathologies such as edema, stroke or

inflammation. This also enables characterization of the CSF

contamination [46] due to partial volume effect, known to perturb

the accurate estimation of the anisotropic diffusion compartments

[18,47]. Ultimately, the diffusion-weighted signal Sk along a

gradient direction gk for MFM with an isotropic compartment and

Nf fascicles can be described by the following general mixture:

Sk(D,f)~S0(f0Sfree water
k z

XNf

j~1

fjS
single fascicle
k,j ), ð2Þ

where S
single fascicle
k,j is the diffusion signal arising from a single

fascicle, Sfree water
k is the diffusion signal arising from the

unrestricted water diffusion, and f~(f0, . . . ,fNf
) describes the

fractions of occupancy of each compartment (fj[ 0,1½ �) and sum to one.

The diffusivity of free water is generally considered to be well

modeled by an isotropic Gaussian distribution [17,42–45], leading

to Sfree water
k ~e{bkDiso with Diso is the diffusivity of free water.

In a particular case of multi-fascicle model, the ball-and-stick

model [42,43], each individual fascicle has been represented by a

stick in the expression of S
single fascicle
k,j . With this simplification, an

essential advantage of multi-fascicle models is lost: the ball-and-

stick model provides information only about the fascicles

orientation. It does not enable the assessment of fascicle properties

such as the fascicle anisotropy and diffusivity, limiting the use of

the ball-and-stick model to connectivity studies.

In contrast, since an individual fascicle is generally considered to

be well represented by a single tensor in DTI, a natural candidate

has been to represent each fascicle by a tensor. Considering Nf

tensors D~(D1, . . . ,DNf
) representing the Nf fascicles, this

amounts to setting S
single fascicle
k,j ~e{bkgk

T Dj gk , leading to the so-

called multi-tensor model [42,45,48–52]. The multi-tensor model

has the fundamental advantage over other common representa-

tions of modeling each fascicle independently. It enables the

assessment of individual fascicle characteristics by computing

diffusion tensor parameters for each fascicle. This enables

characterization of the white-matter appearance, changes and

alterations. This also enables comparison of diffusion character-

istics between corresponding anatomical fascicles across individ-

uals, which is of great interest for clinical applications. In addition,

the full multi-tensor model estimation enables characterization of

the fraction of occupancy for each fascicle, providing information

Parametric Representation of Multiple Fascicles
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about the mixing proportions and compensating for partial volume

effect.

Multiple works have pointed out that a non-monoexponential

decay may be observed in voxels when imaging with high b-values

[3–5,15,6,53–59], providing evidence that the single tensor model and

its underlying Gaussian assumption is not appropriate to

accurately represent the diffusion signal in the voxel. The biophysical

mechanisms responsible for the non-monoexponential behavior

are, however, numerous and not completely understood. First, it is

commonly recognized that compartmentalization of the voxel in

different subregions with heterogeneous properties can lead to a

non-monoexponential decay [3,4,56] under certain acquisition

conditions. Particularly, as illustrated by Fig. 2, mixing of an

isotropic unrestricted water compartment with multiple anisotrop-

ic compartments (Equation 2), each of them being modeled with a

purely monoexponential decay, leads to a non-monoexponential

decay due to partial volume averaging, even at moderate b-values.

At a smaller diffusion scale, the presense of intra- and extracellular

compartments does lead to a non-monoexponential decay for very

high b-values, even for a single fascicle. Nevertheless, the presence

of this phenomenon at clinically relevant b-values, with long

diffusion sensitization pulse duration d, long echo times and low

signal-to-noise ratio remains unclear.

Importantly, compartmentalization is not a prerequisite for the

presence of a non-monoexponential decay. Schwarcz et al. [57]

have reported the presence of a biexponential decay in the cold-

injured brain parenchyma after massive membrane disintegration, and in

centrifuged erythrocyte samples. Sehy et al. [54] have observed

non-monoexponential behavior within the intracellular space of a

single cell, the frog oocyte. Other biophysical mechanisms, such as

the proximity of cell membranes which locally restrict motion, and

intra- and inter-cellular heterogeneities, are likely to contribute to

the MR signal decay behavior. Imaging strategies that uniquely

characterize each of these properties remain under development

[3–5,56].

Multiple approaches have been investigated to account for the

non-Gaussianity of the diffusion signal in a voxel [5], including

fitting a multi-exponential model [4,16,53,58] and a ‘‘stretched-

exponential model’’ [55]. Jensen et al. [59] have investigated the

estimation of a Kurtosis term, which is a dimensionless measure of

the deviation of the water diffusion profile from a Gaussian

distribution. Assaf et al. [15] proposed a ‘composite hindered and

restricted model of diffusion’ (CHARMED), in which the diffusion

signal was characterized by components arising from hindered

(extra-axonal water) and restricted (intra-axonal) water diffusion,

featuring a perpendicular diffusion component that is non-

monoexponential. CHARMED requires long acquisition times

and very high b-values (up to 10000s=mm2), limiting its use in

routine clinical practice.

To the best of our knowledge, all approaches accounting for the

non-monoexponential signal decay have considered the case of a

single fascicle in each voxel. For example, Cheung et al. [60] have

measured significant deviation from the Gaussian distribution with

estimation of a single tensor and a single Kurtosis term with b-

values as low as b~2500s=mm2. However, as illustrated by Fig. 2,

the intra-voxel orientation heterogeneity and the partial volume

effect may be the predominant sources of the observed non-

monoexponential decay at such diffusion scale. More precisely,

while the presence of a non-monoexponential decay for an individual

fascicle is commonly accepted when using very high b-values and

short gradient pulse duration d, its presence in data acquired with

a clinical scanner with limited b-value range and large d remains

unclear. Particularly [15–17], suggest that the non-monoexpo-

nential behavior is negligible when considering b-values lower

than bƒ3000s=mm2, and that when the acquisition time or the

available gradient strength is limited, a monoexponential per-fascicle

model can be safely employed [16].

Therefore, in this work, we focused on a representation of each

individual fascicle by a single tensor model. The full multi-tensor

model estimation enables the assessment of individual fascicles

characteristics in addition to the brain connectivity. Diffusion

parameters (FA, MD, AD, RD) can be computed for each fascicle

independently which is of central interest for fascicle integrity

assessment. The number of parameters involved is relatively small,

requiring a limited number of acquisitions for their estimation.

However, full multi-tensor approaches have frequently been

reported to be numerically challenging and unstable, experiencing

difficulties for their estimation in practice. We show that this is due

to inappropriate imaging acquisition settings leading to an under-

determined system of equations, and we propose a complete

solution.

Contributions
The contributions of this work are three-fold. First we provide

the theoretical demonstration that multi-tensor models cannot be

fully estimated with a single-shell HARDI acquisition because the

tensor size and the fraction of occupancy are collinear, leading to a

system of equations with an infinite number of solutions. With a

single non-zero b-value, only the tensor orientation can be

correctly estimated, but not the tensor size nor the fractions of

occupancy. Multiple non-zero b-values are required to ensure a

unique solution and to entirely estimate the full multi-tensor

model, enabling simultaneous estimation of the tensor orientation,

the tensor size and the fractions of occupancy.

Second, we propose a novel multi-tensor optimization tech-

nique based on the maximum a posteriori (MAP) principle. This

allows us to combine the model estimation and the model

regularization to reduce the effect of noise. Our prior is based on a

finite difference scheme in which only tensors which are part of the

same fascicle are regularized together. It is formulated in the log-

Euclidean framework, which prevents leaving the set of symmetric

Figure 2. Intra-voxel orientation heterogeniety and partial
volume averaging leads to a non-monoexponential decay in a
voxel. (a): Illustration of the monoexponential decay arising from a
single tensor (FA = 0:9, diffusivity = 2:1|10{3mm2=s) as shown by the
linearity of log(S=S0) in both the parallel and perpendicular directions
with respect to the tensor orientation (noise-free case). (b): Illustration
that mixing of an isotropic compartment (f0~0:2, Diso~3|10{3mm2=s)
and two crossing fascicles represented by two single tensors
(f1~f2~0:4, FA = 0:9, diffusivity = 2:1|10{3mm2=s, crossing an-
gle = 900) using Equation 2 leads to a non-monoexponential decay in
the voxel, even for b-values below 3000s=mm2 . This illustrates that a non-
monoexponential decay in a voxel may arise from a sum of mono-
exponential behaviors.
doi:10.1371/journal.pone.0048232.g002
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positive definite matrices during the optimization and ensures non-

degenerate solutions. Our formulation enables efficient optimiza-

tion of the parameters and enables the introduction of suitable

constraints on the estimated tensors.

Third, we propose to employ a novel acquisition scheme that

enables estimation of a full multi-tensor model with optimal TE

and consequently optimal SNR. Our CUbe and SPhere (CUSP)

acquisition technique combines a single shell HARDI with images

in the enclosing cube of constant echo time. We show that the

enclosing cube of the shell is a cube of constant TE, in which

gradients with varying b-values can be imaged without increasing

the TE, by using gradients with norm greater than one. This

satisfies the need for multiple non-zero b-values, enabling the

estimation of the complete multi-tensor model. It incorporates

high b-values which allows for better characterization of multi-

compartment models [43,61]. We propose three ways to construct

a CUSP acquisition based on a projected or a truncated multi-shell

HARDI. The strength of our imaging technique is to achieve

multiple b-values higher than the nominal b-value while achieving

the same low TE as a single-shell HARDI. Compared to a

multiple-shell HARDI, CUSP leads to a significantly higher signal-

to-noise ratio, shorter imaging time and to potentially lower eddy

current distortion.

The paper is organized as follows. We provide in Section 0.1 the

theoretical demonstration that multi-tensor models require mul-

tiple non-zero b-values to be fully estimated. We describe our

novel algorithm for estimating the parameters of the multi-fascicle

model (MFM) in Section 2. We detail our Cube and Sphere

(CUSP) imaging technique in Section 0.3. The CUSP-MFM

evaluation includes several qualitative and quantitative experi-

ments with both synthetic and in vivo data: angular resolution

performance, comparison with the state-of-the-art ball-and-stick

model and bootstrap experiments. We show that CUSP-MFM

enables the characterization of multiple white-matter fascicles

from short duration acquisitions compatible with routine clinical

practice.

Materials

1 Theory: demonstration that multiple b-values are
required

We demonstrate in this section that the tensors and fractions of

occupancy of a multi-tensor model cannot be uniquely determined

when using a single shell HARDI acquisition [62]. Consider a

model with two fascicles represented by the two diffusion tensorsbDD ~(bDD1,bDD2) and the fractions bff~(bff1,1{bff1), and let consider an

acquisition with a unique non-zero b-value b. If (bDD ,bff ) are the

underlying true tensors and fractions, then for any a, bw0
Equation 2 can be written as:

Sk
bDD ,bff� �

~S0(
a

a
bff1e

{bgT
k
bDD1gkz

b

b
(1{1)e{bgk

TbDD2gk )

~S0 abff 1e
{bgT

k
bDD 1gk{ log a

zb(1{1)e
{bgT

k
bDD2gk{ log b

� �

Let yk be the measured signal for the direction k and K the

number of diffusion gradients. D and f are generally estimated by

a least-square approach by considering:

D̂D,̂ff
� �

~arg min
D,f

XK

k~1

Sk(D,f){yk½ �2 ð3Þ

Because gT
k gk~1, we have log a~gT

k log a I3|3ð Þgk and:

D̂D,̂ff
� �

~arg min
D,f

XK

k~1

S0 abff1e
{bgT

k
bDD1z

log a

b
I3|3

� �
gk

0
B@

2
64

zb(1{bff 1)e
{bgT

k (bDD2z
log b

b
I3|3)gk

1
A{yk

3
5

2

We can show that for b~
1{abff 1

1{bff 1

and a[ 0,1� � then bw0 is

satisfied and so are the fundamental properties of a mixture model:

(1) the fractions sum to one, i.e. abff1zb(1{bff1)~1 and (2) each

fraction is positive and not greater than one, i.e. 0va1v1 and

0vb(1{bff1)ƒ1.

Consequently, when using a single non-zero b-value acquisition,

then if (1,1{1) and (bDD1,bDD2) is a solution of Equation 3, then for

any 0vav1, bff ’~(abff1,1{a1) and bDD0~(bDD1z
log a

b
I3|3,bDD2z

log(
1{abff 1

1{1

)

b
I3|3) is a solution of Equation 3 as well, because

Sk(bDD’,bff ’)~Sk(bDD ,bff ) for all k. There is an infinite number of

solutions. Additionally, non-degenerate tensors are obtained for

awe{blmin
1 , lmin

1 being the minimum eigenvalue of bDD1. The tensor

size indicated by the magnitude of its eigenvalues and the partial

volume fractions are collinear and cannot be uniquely determined.

Intuitively it indicates that when using a single non-zero b-value, a

decrease of the signal modeled by one of the tensors can be

compensated for by an increase of the signal modeled by the other

tensor, by transforming the tensor diagonals and the fractions.

It is not the case with multiple non-zero b-values bk becausebDD1z
log a

bk

I3|3 and bDD2z
log b

bk

I3|3 are function of bk. For

example, if we consider two b-values b1 and b2, and separate the

terms depending on b1 corresponding to the indices k~1, . . . ,Kb1

and the terms depending on b2 corresponding to the indices

k~Kb1
, . . . ,K , it follows that:

D̂D,̂ff
� �

~arg min
D,f

XKb1

k~1

S0 abff1e
{b1gT

k
bDD 1z

log a

b1
I3|3

� �
gk

0
B@

zb2e
{b1gT

k (bDD2z
log b

b1
I3|3)gk

{yk

1
CA

2

zS0

XK

k~Kb1
z1

S0 abff1e
{b2gT

k
bDD1z

log a

b2
I3|3

� �
gk

0
B@

zbbff2e
{b2gT

k (bDD2z
log b

b2

I3|3)gk
{yk

1
CA

2

A unique new multi-tensor model (bDD1z
log a
bk

I3|3,bDD2z
log b
bk

I3|3)

does not satisfy Sk(bDD ,bff )~Sk(bDD 0,bff 0) for all k because, in contrast
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to the single non-zero b-value case, it depends on k. The use of

multiple non-zero b-values enables a unique solution to be found

and disambiguates the estimation of f and D. This allows

measurements of the fractions of occupancy and of each tensor

size and orientation.

2 A novel multi-tensor parameter estimation procedure
We consider the image domain V to be a regular 3-dimensional

(3D) grid, and consider the full multi-tensor model described by :

Sk(D,f)~S0(f0e{bkDisoz
XNf

j~1

fje
{bkgT

k
Dj gk ) ,

Our aim is to recover the multi-tensor models D~(Di,i[V ) and

the fractions f~(f i,i[V ) for each voxel of V . When estimating

tensors, particular care must be taken to ensure the positive-

definitive property of the Dj and to avoid degenerate tensors with

null or negative eigenvalues. Although such tensors are non-

physical, they commonly arise in high anisotropy regions or due to

noise corruption [63]. Here we ensure the symmetric positive

definite property of each tensor by parameterizing them in the log-

Euclidean framework [64,65], by setting Li~(Li
1, . . . ,Li

Nf
)~

(log(Di
1), . . . ,log(Di

Nf
)). It ensures that tensors with null or

negative eigen-values are at an infinite distance. In contrast to

Euclidean approaches, it does not require any particular care to

preserve tensor attributes during the computation because all

operations are performed within the appropriate manifold.

We denote by y the set of gradient images, with yi
k denoting the

ith voxel of the gradient image k. The simultaneous estimation and

regularization of f and L (and consequently D) is performed

according to a maximum a posteriori principle, by maximizing:

bLLMAP,bffMAP~arg max
L,f

p(L,fDy)

~arg max
L,f

p(yDL,f)p(fDL)p(L)

~arg max
L,f

ln p(yDL,f)zln p(fDL)zp(L)½ � ,

ð4Þ

which decomposes into a likelihood term and two prior terms. We

assume statistical independence of the noise between the images

and between the voxels, so that p(yDL,f)~ P i[V PK
k~1 p(yi

k DL
i,f i).

Furthermore, we assume a Gaussian noise with zero-mean and

variance sk, and consider the following likelihood:

p(yk DL,f)~ P
i[V

1

sk

ffiffiffiffiffiffi
2p
p exp {

XK

k~1

DDSk eLi
,f i

� �
{yi

k DD
2

2s2
k

0
BBBB@

1
CCCCA : ð5Þ

The term p(L) in Eq.4 enables us to incorporate a prior knowledge

on the multi-tensor field L. In this work we consider an anisotropic

regularization prior that exploits spatial homogeneity but preserves

sharp contours. More precisely, we favor smoothness of each Lj by

setting p(L)~ P i[V P
Nf
j~1 exp({aw(DD+Li

j DD) where DD+Li
j DD is the

norm of the spatial gradient of Li
j , and a is a parameter controlling

the regularization strength. As generally employed, we set

w(s)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zs2=K2

p
to account for anisotropic regularization, K

being a normalization factor for the gradient. Following the one-

tensor log-Euclidean model of [64] we set DD+Li
j DD

2~P3
m~1 DDLj,mLi

j DD
2
LE with DD:DDLE the log-Euclidean metric [65]. The

regularization of multiple tensor models is, however, not the

straight extension of the single-tensor case. Rather, only tensors

which are part of the same fascicle should be regularized together.

To achieve this, we propose an original approximation of the

spatial gradient for the multiple tensor case. The partial derivative

in a direction im (m[f1,2,3g) is approximated by considering the

two most similar neighbors Li+im
q to Li

j in the following finite

difference scheme:

Lj,mLi&
arg min

Lq
DDLizim

q {Li
j DDLE{2Li

jzarg minLq DDLi{im
q {Li

j DDLE

2DDimDD
ð6Þ

Note that this formulation is compatible when regularizing

neighboring voxels containing a different number of tensors. A

softmax approximation of the arg min operator can be considered

to ensure the differentiability of the regularization term. Indeed,

by considering a finite set of measures fh(Lq)gq, arg minLq h(Lq)

can be approximated by:

arg min
Lq

h(Lq)&
X
Lq

v(Lq)Lq with v(Lq)~1{
ech(Lq)P

Lq’
e

ch(Lq’)
:

This expression ensures v(Lq)&1 for the smallest h(Lq) and v&0

for the others. Choosing a large value for c allows faster transitions

of v between 0 and 1.

In this work we did not considered any prior knowledge on the

estimated fractions and considered p(fDL) (see Eq.4) to be a

uniform density. Ultimately, by considering constant noise

characteristics across acquisitions, maximization of the posterior

distribution in Eq.4 leads to the following minimization:

bLLMAP,bffMAP~arg min
L,f

X
i[V

XNg

k~1

(Sk eL(x),f(x)
� �

{yk(x))2

za
XNf

j~1

q(jj+Lj(x)jj)

ð7Þ

Euler-based parameterization of the tensor orien-

tations. We parameterize each tensor’s orientations with the

Euler angle. We experimentally found this representation to

enable a more efficient optimization of the parameters. In

addition, it enables the choice of introducing various constraints

to further reduce the number of parameters: symmetry of the

eigenvalues (e.g. l11~l21), cylindrical shape of each tensor (e.g.

lj2~lj3), bounds on the magnitude of the eigenvalues, equiplanar

configuration for the tensors, and others.

Initialization. The model parameters are estimated by

performing an iterative minimization which requires a starting

point. As in [50] we initialize the multi-tensor fitting procedure by

considering the one-tensor solution obtained by a robust least-

squares estimate. We denote by D1T~RT
1TL1TR1T the one-tensor

solution with eigen values L1T~diag(l1T
1 ,l1T

2 ,l1T
3 ). To enable a

faster convergence, the first two tensors exp L
(0)
1 and exp L

(0)
2 are

initialized according to the rotation of D1T of angle q~+
l1T

2

l1T
1

p

4
.

The rotation is applied in the plane formed by the two largest
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eigen values (l1T
1 ,l1T

2 ) and composed with a shrink of l1T
2 . In

consequence, when l1T
1 wwl1T

2 , which is likely to indicate an

individual fascicle in that voxel, the initial Dj ’s are two tensors with

almost parallel principal diffusivities. In contrast, when l1T
1 ~l1T

2 ,

the initial Dj ’s describe two tensors whose principal diffusivities are

perpendicular. When estimating more than two tensors, the

orientation of exp L
(0)
t§3 is initialized with a random rotation of

D1T.

Numerical optimization. The solution of Equation 7 is

obtained using the BOBYQA algorithm [66], a recent derivative-

free bound-constrained optimization technique. BOBYQA is an

iterative algorithm. At each iteration, it computes from a set of

points a quadratic approximation for the objective function. The

point giving the largest value for the objective function is replaced

by the minimum of the quadratic approximation computed in a

trust region. At each iteration the trust region is updated.

BOBYQA converges faster than the Newton method and enables

the introduction of constraints. The introduction of constraints on

the fj ’s enables the estimation of properly bounded fractions of

occupancy (fj[ 0,1½ �), while constraints on the Euler angles ensures

the uniqueness of the Euler parameterization. We found it to be

less sensitive to local minima than a conjugate gradient descent

scheme. The numerical optimization is achieved by considering a

diffusion model with gradually increasing complexity, starting

from a simple stick model and finishing by the estimation of the full

multi-fascicle model including the fractions of occupancy, the

tensor orientations, the tensor eigen-values and the unrestricted

water compartment. This makes the minimization less sensitive to

the initialization, providing a robust full MFM estimate at each

voxel.

3 The CUSP gradient encoding scheme
We have demonstrated in Section 0.1 that multiple non-zero b-

values are required to fully estimate multi-tensor models. In this

section we provide an optimal gradient encoding scheme which

satisfies this requirement.

In diffusion weighted imaging, a key parameter in controlling

the signal-to-noise ratio (SNR) is the echo time (TE). An increase

in TE leads to a signal dropout due to T2 relaxation and therefore

to a decrease in SNR (see [22], Eq. 1 and Fig. 1). Keeping the TE

as low as possible is essential to acquire high quality measure-

ments. However, the TE cannot be set to an arbitrary value, but is

constrained by the choice of the nominal b-value

bnominal~c2d2(D{d=3) of the acquisition. The minimum achiev-

able TE follows a complex relationship with bnominal [9,10] which

can be approximated [12] by:

TE&
12bnominal

c2

� �1=3

: ð8Þ

An ideal acquisition scheme for the estimation of a full multi-

tensor model should (1) achieve multiple non-zero b-values and (2)

achieve the optimal trade-off between imaging high b-values and

minimizing the TE to maximize the SNR.

Single-shell HARDI as used in [19,45,48–50] to estimate a

multi-tensor model employs gradients of constant strength

DDgkDD~1 for each direction and provides a single-radius spherical

sampling in q-space. Because the applied b-value is

bk~bnominalDDgk DD2, a single-shell HARDI acquires only a single

non-zero b-value equal to bnominal, which is not suited for the full

estimation of multiple tensors. Separate single-shell HARDI scans

with different nominal b-values can be employed to image multiple

non-zero b-values. However, modifying the nominal b-value leads

to a different TE for each scan (see Eq. 8). This causes different

signal dropout artifacts between the scans and potentially different

eddy current distortion, making the alignment of the DW images

challenging and perturbing the MFM estimation. Additionally,

acquisition of several separate single-shell HARDI is more prone

to patient motion between the scans. Multi-shell HARDI

combines in a single acquisition the sampling of multiple spheres

in q-space by modulation of bnominal with various gradient

strengths DDgk DDƒ1. Because the unit-norm gradients DDgk DD~1
correspond to the shell of largest radius, this requires to set the

nominal b-value based on the highest b-value of the acquisition.

Since imaging of high b-values (2000s=mm2 or more) is known to

provide a better separation of multiple fascicles and to facilitate the

estimation of their orientation [14], a multi-shell HARDI with a

high nominal b-value should be preferred. This, however, results

in a substantially increased TE (see Eq. 8). This results in an

increased acquisition time and a lower signal-to-noise ratio for all

the measurements (see Eq. 1), impacting both the low and the high

b-value measurements. Additionally, imaging a higher nominal b-

value is generally achieved by using longer diffusion gradient

pulses, which in turn leads to larger eddy current distortion.

We propose instead the novel CUbe and SPhere (CUSP)

acquisition technique. We incorporate multiple non-zero b-values

by combining a single-shell HARDI acquisition at a specified

bnominal with gradients lying in the enclosing cube of the shell [67].

More precisely, the single-shell HARDI uniformly samples the

diffusion signal on the hemisphere, which is described by unit-

norm gradients DDgkDD~1. This shell employs the b-value providing

the optimal SNR for the diffusion weighted acquisition. It can be

determined by boptimal~1:11=ADC [10,68], and is often suggest-

ed to be bnominal~boptimal~1000s=mm2 for an adult brain and

boptimal~800s=mm2 for a pediatric brain [69]. The single-shell

HARDI provides a full spherical sampling with the optimal SNR

and the optimal TE for the b-value bnominal. We then acquire

additional b-valuesbk’~bnominal gkk k2
without modifying the TE by

modulation of bnominal with gradients whose strengths is greater than 1:

DDgk DDw1. The only constraint for gk is to have unit norm

components, corresponding to the normalized current intensity in

each gradient coil. Denoting by gk~ gX
k ,gY

k ,gZ
k

	 
T
the gradient

components, this leads to DgX
k Dƒ1,DgY

k Dƒ1,DgZ
k Dƒ1 which describes

the enclosing cube of the sphere of radius gkk k~1. We call this

region the cube of constant TE. Any gradient in this region can be

acquired without modifying the TE by choosing the appropriate

gradient strength. Because the diffusion sensitivity is dependent on

the square of the gradient norm, imaging in the cube of constant TE

enables the acquisition of b-values up to 3bnominal. This maximum

b-value is obtained when using the four non-symmetric
ffiffiffi
3
p

-norm

tetrahedral gradients [9] lying on the corners of the cube of

constant TE (DgX
k D~DgY

k D~DgZ
k D~1).

We envisage three ways to construct a CUSP acquisition which

are based on a generalization of a multi-shell HARDI (see Fig. 3).

First, in CUSP-T (Truncated), we consider a conventional multi-

shell HARDI composed of K§2 shells and truncate those parts of

the shells that project outside the cube of constant TE of the inner

shell (Fig. 3a). In this acquisition scheme, multiple shells with

uniformly distributed b-values across the cube of constant TE are

employed. However, the signal strength varies as

Sk(D)~S0e{TE=T2e{bkgT
k

Dgk and so the SNR exponentially

decreases with increasing b-value bk. Therefore, in CUSP-xT

(eXponential Truncated), we propose to employ shells with

exponential spacing (Fig. 3b). The obtained exponentially

increasing shell density with increasing b-value enables us to
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counter-balance the loss in SNR. This samples q-space in a

manner that achieves an improved uniformity of SNR. Finally, in

CUSP-P (Projected), we consider an acquisition composed of an

inner shell at bnominal and an outer shell at 3bnominal. The outer

shell passes exactly through the corners of the cube of constant TE.

Any other gradients of this shell are outside of the cube and cannot

be imaged without modifying the TE. Instead, we propose to

project them onto the faces of the cube of constant TE (Fig. 3c) by

reducing the gradient strength until the cube surface is reached.

This preserves the gradient orientations and provides high angular

resolution imaging with a large number of different b-values above

bnominal without any additional cost in TE. The gradient scheme

optimization algorithm of Cook et al. [70] can be used to identify

maximally isotropic subsets of gradient orientations between the

shells. Furthermore, if desired certain gradient directions and

strengths can be fixed and others optimized around them.

Our work is the first report of utilizing such a CUbe and SPhere

acquisition to enable the full estimation of a multiple fascicle

model. The strength of our technique is to provide multiple non-

zero b-values and higher b-values than the nominal b-value while

achieving the same low TE as a single-shell HARDI. Conse-

quently, it does not increase the imaging time, does not increase

the eddy current distortion and provides the optimal signal-to-

noise ratio for all the measurements.

4 Summary
We provided the theoretical demonstration that only the tensor

orientation can be uniquely estimated when using a single non-

zero b-value. Multiple non-zero b-values are required to fully

estimate the tensors’ direction in addition to the tensors’ size and

their respective fraction of occupancy. We proposed a novel

algorithm for the estimation of the parameters of a multi-fascicle

model (MFM). It is formulated as a log-Euclidean Maximum A

Posteriori estimation problem. It ensures we estimate non-degener-

ate tensors and incorporates a finite difference spatial regulariza-

tion scheme. In conjunction with our optimization algorithm we

provided an optimal CUbe+SPhere (CUSP) imaging strategy

based on a generalization of a multi-shell HARDI. It satisfies the

requirement of multiple non-zero b-values and incorporates high

b-values while employing the same minimum achievable TE as a

single-shell acquisition. Consequently, the imaging time and the

eddy current distortion are not increased. Compared to a multi-

shell HARDI, CUSP achieves a better SNR. The performance

and properties of our novel CUSP-MFM technique are investi-

gated through several experiments described in the next section.

Methods

MFM estimation algorithm
The multi-tensor estimation algorithm was implemented in C++

and parallelized over the image space. The model parameters

were set as follows. The diffusivity of free water at 370C was set to

Diso~3:0x10{3 mm2=s [17]. The anisotropic regularization

parameter K was set to 0:01 and the regularization influence

parameter a progressively increased between 0,amax~1½ �, playing

the role of the inverse of a decreasing temperature as proposed in

[71]. This allows to first explore a larger number of solutions (high

temperature) and in a second step to constrain the solution by

gradually increasing the weight of the neighborhood (low

temperature). Since the minimization was performed with the

BOBYQA algorithm, which is a derivative-free optimization

technique, we used the original arg min operator in Equation 6

and not its softmax approximation. Depending on our experi-

ments, we considered a maximum of Nf ~2 or Nf ~3 tensors per

voxel. The isotropic water fraction was initialized to f
(0)
0 ~0:1 and

the fascicle fractions to f
(0)
j ~0:9=Nf for j[1, . . . ,Nf . All param-

eters may be estimated simultaneously with CUSP-MFM.

However, in order to reduce the number of parameters, each

tensor was constrained to have a cylindrical shape by setting

lj,2~lj,3 for j~1, . . . ,Nf . A cylindrical shape was also employed

in [15] and is generally considered reasonable with regard to the

expected shape of a fascicle. Consequently, fitting our model

involved the estimation of 5Nf free parameters: four parameters

per tensor, and Nf parameters for the Nf z1 fractions. Model

order selection was used to determine the number of fascicles at

each voxel when appropriate. This was achieved by the F-test

method [44]. A number of other model selection approaches have

been investigated in the literature [43,44,61,72]. Their compar-

ison, however, fall outside of the scope of this current work.

Two-tensor synthetic data
We generated various synthetic phantoms to evaluate CUSP-

MFM. The tensor profile Dj representing an individual fascicle

was chosen to match typical in vivo data observations. A trace of

Tr(Dj)~2:1|10{3 mm2=s was chosen [12], and varying FA for

each tensor (FA1~0:9; FA2~0:7) simulated. This was achieved

by considering the following relationship between the eigen-values

(l1,l2,l3) of a cylindrical tensor Dj and the tensor FA and trace

Tr(Dj): (l1,l2,l3)~Tr(Dj)=3(1z2u,1{u,1{u) with u~

FA=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3{2FA2

p
. The fractions for the isotropic compartment

(f0) and the tensors (f1, f2) were set to (f0,f1,f2)~(0:15,0:6,0:25).

Figure 3. CUbe and SPhere (CUSP) imaging can be constructed as a truncated or a projected multi-shell HARDI. (a): In CUSP-T
(Truncated), we consider a multi-shell HARDI with uniformly spaced radius (blue, green, red) and truncate those parts of the shells that project
outside of the cube of constant TE of the inner shell. (b): CUSP-xT (eXponential Truncated) employs portion of multiple shells with exponentially
spaced radius to achieve an improved uniformity of SNR. (c): In CUSP-P (Projected), we consider an inner shell at b~bnominal (blue) and an outer shell
at b~3bnominal (red). The gradients of the outer shell are projected to the cube of constant TE (grey) to avoid any increase in TE. In these figures, the
spherical and cubic sampling were shown in different partitions of q-space for visualization purpose.
doi:10.1371/journal.pone.0048232.g003
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The diffusion-weighted signal was simulated for different acqui-

sition schemes and corrupted by various Rician-noise levels. The

reported SNR were computed on the b~0 s/mm2 images.

We focused here on short duration acquisitions with a low

number of directions which are of practical interest for clinical

applications. We considered a CUSP-T acquisition consisting of a

total of thirty-five images, referred to as CUSP35 (Fig. 3a).

CUSP35 was constructed from a truncated three-shells HARDI

composed of five b~0s=mm2, an inner shell of sixteen directions

at b~1000s=mm2, a second shell at b2~2000s=mm2 and a third

shell at b3~3000s=mm2. The gradients of the inner shell were

uniformly distributed on the hemisphere by minimizing the sum of

the electrostatic repulsive forces [10]. The second shell was

truncated to the cube of constant TE by imaging the six

hexahedral gradients which are located at the intersection of the

second shell and the edges of the cube of constant TE. The

truncation of the third shell to the cube of constant TE led to the

four b~3000s=mm2 tetrahedral gradients only. Two repetitions of

these gradients were achieved [67] to counterbalance the lower

SNR associated with such high b-value measurements.

We compared the CUSP35 acquisition scheme to a single-shell

HARDI acquisition, referred to as HARDI35, which includes five

b~0s=mm2 images and one shell of thirty directions at

b~1000s=mm2. We also considered an acquisition scheme with

five b~0s=mm2 and 251 unique directions (HARDI256). Again,

we employed the electrostatic repulsion algorithm of [10] to

determine uniformly distributed gradient orientations on the

hemisphere for both HARDI35 and HARDI256. In the following,

HARDI35-MFM and CUSP35-MFM refers to the MFM

estimation performed by our novel algorithm with respectively

the HARDI35 and the CUSP35 acquisition schemes. Identical

estimation parameters were employed in HARDI35-MFM and

CUSP35-MFM.

For each experiment we reported both qualitative and

quantitative results. For the quantitative analysis, we compared

the estimated multi-fascicle model to the synthetic ground truth by

means of different metrics. The tensors were compared in term of

average log-Euclidean distance (tALED), taking into account a

possible permutation between the estimated and the reference

tensors:

tALED(Da,Db)~min jjDa
1{Db

1 jjLEzjjDa
2{Db

2 jjLE ,
�

jjDa
1{Db

2 jjLEzjjDa
2{Db

1 jjLE

�
:

Using the log-Euclidean metric enables us to fully compare the

tensors and not just the crossing angle as frequently done in the

literature. The corresponding fractions were compared in terms of

average absolute difference (fAAD). We also compared our multi-

fascicle model to the ball and stick model [42] implemented in

FSL. Since this model estimates only the fascicle orientations it was

not possible to compare the full tensors nor to compare diffusion

scalar parameters. We consequently compared our fitting algo-

rithm to the ball-and-stick algorithm by assessing the average

minimum angle (tAMA) [48] widely used in the literature. Finally,

we simulated the diffusion signal arising from two uniform crossing

fascicles, for various Rician noise corruption levels (50dB and

30dB). We carried out the MFM estimation and then character-

ized the uniformity of diffusion scalar parameters along the

fascicles.

In vivo data
The performance of CUSP-MFM was assessed on in vivo data

acquired on a Siemens 3T Trio scanner with a 32 channel head

coil. The scanned subjects were all healthy volunteers, of age

between 28 and 30 years old. The acquisition parameters used

were as follows: 66 slices, FOV = 215mm, matrix = 1206120,

resolution = 1:861:862:4mm3. Eddy current distortion was min-

imized by utilizing a twice-refocused spin echo sequence [23]. In

the first experiments, we employed the same gradient strength and

orientation as those used in our synthetic experiments (CUSP35

and HARDI35). The minimum achievable TE/TR for both

CUSP35 and HARDI35 were identical and equal to TE~86ms/

TR~9500ms, achieving an acquisition duration lower than 6
minutes.

We acquired a multi-shell HARDI composed of 5 b~0s=mm2

and three shells of 20 gradient directions each at b~1000s=mm2,

b~2000s=mm2 and b~3000s=mm2, referred to as MSHARDI-

65. Maximally isotropic gradient subsets were obtained by using

the algorithm of [70].

We acquired a CUSP-P acquisition referred to as CUSP65 and

constructed from a projected two-shell HARDI (Fig. 3c) consisting of 5

b~0s=mm2 images, 30 gradients on the inner shell at b~

1000s=mm2 and 30 gradients on the outer shell at b~

3000s=mm2.

We employed a generalization of the optimization algorithm of

[70] to determine maximally isotropic gradient subsets for such a

CUSP-P. More precisely, we first optimized the subset of 30
gradients of the inner shell with the electrostatic repulsion model of

[10], providing uniformly distributed gradient directions on the

hemisphere. We then optimized the second subset of 30 gradients

with the electrostatic repulsion model of [10] while (1) taking into

account the repulsion in orientation with the first subset and (2)

enforcing the inclusion of gradients at b~2000s=mm2 and

b~3000s=mm2 to ensure that high b-value images are acquired

and for comparison to the multi-shell HARDI. The gradients of

this second shell were projected to the cube of constant TE to

avoid any increase in TE (see Fig. 3c) compared to imaging the

inner shell only. The TE for MSHARDI-65 and CUSP-65 was

respectively 108ms and 78ms, and the acquisition time lower than

12 minutes.

Finally, a T1-weighted MPRAGE image was acquired with the

following parameters: 160 slices, FOV = 205mm, matrix =

2566256, resolution = 0:860:861mm3, TE = 2:27ms, TR =

1410ms, 3min 50sec. This anatomical scan was used to visualize

the results.

The diffusion weighted images were corrected for head motion

during the scan by rigid registration of the DW-images to the

b~0s=mm2 image [73]. The gradient orientations were compen-

sated for the rotation component of the transformation for each

image. We considered the estimation of Nf ~2 and Nf ~3

fascicles, with and without employing the F-test model selection.

The multi-fascicle model estimation time was approximately

1 hour and 30 minutes for Nf ~2 and 2 hours for Nf ~3 on a

8 Core 3 Ghz Intel Xeon. We compared the Nf ~2 fascicles case

with the ball-and-stick model implemented in FSL [42]. We also

estimated the ball-and-stick model after noise correction of the

DW images with the Joint Linear Minimum Mean Squared Error

(LMMSE) filter proposed by [74].

We performed an experiment to examine the effect of CUSP-

MFM on the assessment of tensor diffusion parameters. We

applied 20 random rotations to both the in vivo CUSP35 and

HARDI35 acquisitions. This simulates variations of the partial

volume effect in each voxel, and consequently variations of the
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partial volume fractions of each tensor in each voxel. However, the

fractional anisotropy should be stable across the rotations. We

selected a fascicle of the corticospinal tract and assessed the

fraction anisotropy along this same tract for the multiple rotations.

We compared the results when using CUSP and the single-shell

HARDI.

Finally, a quantitative comparison of CUSP to a multi-shell

HARDI was achieved by assessing the estimation uncertainty via

residual bootstrapping [75]. The residual bootstrap is a model-based

resampling technique. It is based on the estimation of a model

(here the multi-fascicle model) and on the generation of a set of

virtual new DWI acquisitions by randomly sampling the model

residuals. In contrast to repetition-based resampling techniques, it

does not require any repetition of the gradient directions during

the acquisition. Contrary to the wild bootstrap [76], it does not

assume any symmetry in the distribution of the residuals. The

residual bootstrap has been shown to lead to smaller biases and

reduced overall errors in comparison to the wild bootstrap,

enabling the estimation of uncertainties with higher accuracy [75].

Here, the residual bootstrap method was employed to quantita-

tively compare the estimation uncertainty with CUSP-65 and with

MSHARDI-65.

Results

Synthetic data
We generated a set of phantoms containing one hundred two-

tensor models separated by a given angle with various orientations (see

Fig. 4a). Ten phantoms with crossing angles from 0 to 900 were

generated. Fig. 4 qualitatively shows the improvement when

estimating the tensors from the CUSP35 acquisition (Fig. 4b)

compared to a single-shell HARDI35 acquisition (Fig. 4c). Both

the tensors and the fraction f1 are more uniform with CUSP35-

MFM.

Fig. 5 quantitatively reports the estimation accuracy for various

SNR (50dB, 30dB). It shows for each angle (from 00 to 900) the

mean and variance of the tALED and fAAD metrics over the one

hundred tensors. Particularly, it shows the CUSP35 encoding

scheme achieves better results than HARDI35 and HARDI256. It

experimentally supports our theoretical demonstration that

multiple non-zero b-values are required to fully estimate the

tensors. Employing even up to 251 unique directions does not

dramatically improve the results since it does not solve the

collinearity of the parameters.

Fig. 6 shows the comparison of our MFM algorithm to the the

ball-and-stick algorithm implemented in FSL [42]. We noticed

that FSL does not perform well with the CUSP35 acquisition

scheme. CUSP35-MFM provides the best angular resolution

compared to the other approaches, particularly for small angles,

while it provides more information by estimating the full tensors.

With CUSP-MFM, each fascicle can be characterized by

evaluating the diffusion tensor parameters (FA, MD, etc.) of each

tensor.

Finally, we investigated whether or not CUSP introduces an

angular preference for certain spatial directions when character-

izing fascicles (Fig. 7). We simulated the DW-images for a single

tensor with constant FA (FA = 0:9) with various orientations, for

both the CUSP and the multi-shell HARDI acquisitions. The

tensor was rotated around its third eigenvector by increments of 5
degrees between 0 and 360 degrees. For each orientation, the

tensor representing the fascicle was estimated, and its FA assessed.

This was repeated one hundred times. Fig. 7 shows the mean FA

for each tensor orientation over the hundred repetitions. The

mean FA obtained with a multi-shell HARDI and with CUSP are

comparable, showing that such a multi-shell HARDI and CUSP

have a uniform angular sensitivity to fascicle orientation.

We then generated a phantom representing two uniform

fascicles (FA1~0:9 ; FA2~0:7) crossing with an angle of 600

(see Fig. 8). In this experiment, the F-test model selection was used.

The resulting multi-tensor field is reported in Fig. 7a. It shows

more uniform tensors when using CUSP35-MFM. Fig. 7b reports

the estimated fraction f0 of the isotropic diffusion compartment. It

shows that CUSP35-MFM provides an estimate of f0 very close to

the true simulated value (0:15), while the isotropic water fraction

cannot be accurately estimated with HARDI35-MFM. Finally,

Fig. 7c depicts the FA (non-)uniformity along the fascicles. For

illustration, we modified the z-coordinate of the tract streamlines

to encode for the FA along the tract. It shows that CUSP35-MFM

provides a much more uniform FA than HARDI35-MFM.

These findings were quantitatively verified by simulating one

hundred times the diffusion signal for different signal-to-noise

ratios (50dB and 30dB). Fig. 9 reports the mean and variance of

the FA (Fig. 9a) and of the radial diffusivity (RD) (Fig. 9b) over

these experiments. With CUSP35-MFM, the FA and the RD of

Figure 4. Qualitative evaluation of CUSP-MFM. (a) One hundred synthetic tensors crossing at 500 in various configurations. (b) Estimated
tensors with a CUSP35 gradient encoding scheme (SNR = 30dB) superimposed on the first tensor’s fraction f1 (window: 0:2 ; level 0:7). (c) Estimated
tensors with the HARDI35 gradient encoding scheme. With a single non-zero b-value (Fig. c), the tensor eigenvalues and the fractions are collinear,
leading to a poor multi-fascicle estimate. When using CUSP35 (Fig. b), the system is better determined, leading to a better estimate. Both the tensors
and the fraction f1 are more uniform when using CUSP35-MFM compared to HARDI35-MFM.
doi:10.1371/journal.pone.0048232.g004
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Figure 5. Quantitative evaluation of the CUSP-MFM estimation accuracy. Quantitative evaluation of the estimation accuracy for the
fractions (first line, fAAD metric) and the tensors (second line, tALED metric). Each plot shows the quality metric (fAAD, tALED) in function of the
crossing angle for various gradient encoding scheme and various signal-to-noise ratios. It shows that employing a large number of directions
(HARDI256) does not dramatically improve the results whereas introducing multiple non-zero b-values does (CUSP35). CUSP35-MFM consistently
provides the best estimation accuracy.
doi:10.1371/journal.pone.0048232.g005

Figure 6. Quantitative evaluation of the angle detection accuracy. Evaluation of the angle detection accuracy in term of average minimum
angle error (tAMA) and comparison with the ball-and-stick model of FSL. CUSP35-MFM provides on average the best angular resolution, particularly
for angles lower than 50 degrees, while it provides more information for clinical studies by estimating the full tensors: diffusion parameters such as
the fractional anisotropy or the radial diffusivity can be computed for each fascicle independently.
doi:10.1371/journal.pone.0048232.g006
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two uniform fascicles is distinctly more uniform than with

HARDI35-MFM, which is highly relevant to accurately charac-

terize the fascicles.

In vivo data
We report in this section the results of experiments on in vivo

data. In Fig. 10, we qualitatively compare the multi-tensor

estimation performances when using a HARDI35 acquisition

scheme (first column) and a CUSP35 acquisition scheme (second

Figure 7. Angular dependency of the fractional anisotropy with CUSP and a multi-shell HARDI. The DW-images for a single tensor with
constant FA (FA = 0:9) were simulated one hundred times for various tensor orientations (0–3600) and for both CUSP and a multi-shell HARDI,
corrupted by Rician noise (SNR on the b~0s=mm2 : 25dB). We report the mean of the estimated FA for each angle, for CUSP-35 (a) and CUSP-65 (b).
The average FA is compared to the average FA obtained when using MSSHELL-35 (MS35: 5 b~0s=mm2 and three shells of 10 gradients each at
b~1000s=mm2 , b~2000s=mm2 , b~3000s=mm2) and MSSHELL-65 (MS65). The angular dependency of CUSP and of a multi-shell HARDI is similar.
doi:10.1371/journal.pone.0048232.g007

Figure 8. Two uniform crossing fascicles have uniform characteristics (FA) with CUSP-MFM. Estimation of two synthetic crossing fascicles
(angle = 600, SNR = 30dB) with HARDI35-MFM (first line) and with CUSP35-MFM (second line). (a) Estimated tensors and (b) fraction of the isotropic
water compartment. (c) Illustration of the fractional anisotropy uniformity for each fascicle. In this image, the z-coordinate of the tract streamlines
encode for the fractional anisotropy along the tracts (red: FA~0:9; green: FA~0:7). It shows the FA of two uniform fascicles to be qualitatively more
uniform with CUSP35-MFM than with HARDI35-MFM.
doi:10.1371/journal.pone.0048232.g008
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column). In this experiment, to fully characterize our multi-fascicle

model approach, we did not employ any model order selection but

estimated Nf ~2 tensors at each voxel. Tensors with estimated

fraction of occupancy lower than 0:05 were, however, not

visualized. In the first line we compare the results of HARDI35-

MFM (Fig. 10a) and CUSP35-MFM (Fig. 10b). HARDI35-MFM

leads to tensors with degenerate tensor size (areas 1), and leads to

non-null tensors in the CSF (area 2), confounding isotropic water

fraction and mixture of fascicles. In contrast, CUSP35-MFM

achieves a better tensor uniformity.

Fig. 10c and Fig. 10d reports the results of HARDI35-MFM

and CUSP35-MFM but without the estimation of the isotropic

compartment. It shows that ignoring the isotropic compartment

has substantially more impact when using CUSP35 (see Fig. 10d).

Fig. 10e and Fig. 10f reports the results of the ball and stick model

of FSL. It results in distinct estimated sticks in the body of the

corpus callosum (area 3), a region known to contain a single

fascicle orientation, probably fitting the noise. Additionally, sticks

with orientations matching poorly the known anatomy are

estimated (area 4). Thirty-five directions is perhaps not enough

for this MCMC Bayesian ball-and-stick model to be accurately

estimated. Applying a preprocessing noise-correction filter (Fig. 10g

and Fig. 10h) improves the results but creates anatomically

implausible crossings (areas 5 and 6).

Fig. 11 reports, for the same coronal slice, the MFM estimation

results with Nf ~3 fascicles at each voxel without model order

selection. Again, HARDI35-MFM leads to tensors with a

degenerate size, and confounds the estimation of the isotropic

water fraction and of the fascicles. In contrast, with CUSP35-

MFM, the location of voxels in which three distinct fascicles are

estimated with non-null fractions matches the known anatomy,

whereas only 35 images were acquired. Additionally, the estimated

orientation in the body of the corpus callosum matches the

anatomy, whereas Nf ~3 tensors were estimated at each voxel.

In Fig. 12, we show the CUSP-MFM estimation results when

using the CUSP-65 acquisition and the F-test model order

selection with a maximum of Nf ~3 fascicles. Again, it shows

estimated tensors that match the anatomy. Particularly, the

outlined three tensor models correspond to a known region in

the centrum semiovale where three fascicles are crossing.

Fig. 13 demonstrates how CUSP-MFM enables the estimation

of the full multi-tensor, including the fractions of occupancy of

each tensor. We performed various rotations of the diffusion-

weighted images to simulate various partial volume effects. We

considered a reference tract belonging to the corticospinal tract

(see Fig. 13a), applied the same rotation to each tract point, and

assessed the fractional anisotropy along the tract across the rotations.

Fig. 13b shows the variance of the FA when the MFM is estimated

without any regularization, with CUSP35 and with HARDI35. It

shows that the FA variance is much larger with HARDI35,

because using an acquisition with a single non-zero b-value does

not enable the full multi-tensor estimation. In contrast, the FA

variance is reduced with CUSP35. Fig. 13c shows that when

adding the regularization, the FA variance is reduced for both

HARDI35 and CUSP35. However, as shown on Fig. 13d, adding

the regularization has a significant impact on the mean of the FA

with HARDI35, but not with CUSP35. With HARDI35, the

regularization better constrains the optimization but leads to a

wrong solution. In contrast, CUSP-MFM enables estimation of the

full multi-tensor model, and consequently estimation of diffusion

tensor parameters which do not vary with the partial voluming nor

the regularization.

Finally, we report in Fig. 14 the results of the residual bootstrap

analysis, illustrating the benefits of employing CUSP instead of a

multi-shell HARDI. From the initially fitted multi-fascicle model,

we generated five hundred new virtual acquisitions. For each

virtual acquisition, we estimated at each voxel the MFM and

computed the maximum FA of the estimated fascicles. The

maximum FA was used as a proxy to identify the same fascicle

across multiple iterations of the bootstrap analysis. Fig. 14a and

Fig. 14b shows the variance of the FA of the fascicle with the

largest FA over the five hundred bootstrap iterations, respectively

for MSHARDI-65-MFM and CUSP-65-MFM. It shows the

uncertainty when estimating the fascicle of higher FA at each

voxel. The uncertainty in FA is significantly lower with CUSP

compared to the multi-shell HARDI, because MSHARDI-65

requires a larger TE to achieve a nominal b-value of 3000s=mm2

which leads to an acquisition with lower SNR.

Discussion

Several methods have been investigated to overcome the

limitations of DTI and to represent multiple white matter fascicles

from diffusion-weighted imaging. Approaches such as DSI, QBI,

EQBI, DOT, SD or GDTI focus on estimating the global shape of

the diffusion profile resulting from multiple fascicles present in

each voxel. The major drawback is they do not consider each

fascicle independently. Consequently, they do not enable charac-

terization of each fascicle, and do not enable comparison of the

fascicle characteristics between individuals. The assessment of

Figure 9. Quantitative evaluation of the fascicle characteristics along a uniform fascicle. Quantitative evaluation of diffusion parameters
along the horizontal synthetic tract of Fig. 8 for SNR of 50dB and 30dB and for HARDI35-MFM and CUSP35-MFM. (a) Fractional anisotropy assessment.
(b) Radial diffusivity assessment. It shows the FA and the RD of two uniform fascicles to be almost uniform with CUSP35-MFM, which is clinically
relevant to assess individual fascicle characteristics when studying white matter development or degeneration.
doi:10.1371/journal.pone.0048232.g009
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parameters such as the generalized fractional anisotropy (GFA) or

the generalized mean diffusivity (GMD) has also been proposed

[41]. However, these measures do not represent a fascicle property

but a dispersion property of the diffusion signal inside each voxel. For

example, a synthetic uniform fascicle can be simulated by

considering an identical tensor at each voxel. Such a uniform

fascicle crossed by another synthetic fascicle has a GFA that varies

in the crossing region [41] because the dispersion of the diffusion

signal is different in the crossing region. Therefore, the GFA which

represents a voxel property provides misleading data. A uniform

fascicle should have constant diffusion parameters along its path.

This essential limitation reduces the scope of DSI, QBI, EQBI,

Figure 10. Evaluation with in vivo short duration DWI acquisitions with Nf ~2, without any model selection. Comparison of the
HARDI35 (first column) and CUSP35 (second column) acquisitions. Fig.a and Fig.b: in contrast to CUSP35-MFM (b), HARDI35-MFM (a) leads to
degenerate tensors (area 1) and confounds CSF contamination and fascicles (area 2). Fig.c and Fig.d: when ignoring the estimation of the isotropic
compartment, the performance of CUSP35-MFM (d) are strongly affected. The diffusion of unrestricted water cannot be ignored when using a
multiple b-values acquisitions. Fig.e and Fig.f: FSL estimates sticks with noisy orientation (area 4), and leads to non-aligned sticks in a single fascicle
region of the corpus callosum (area 3). Fig.g and Fig.h: FSL estimation after denoising the DW images (dHARDI35 and dCUSP35).
doi:10.1371/journal.pone.0048232.g010
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DOT, or GDTI to connectivity analysis. In addition, these

approaches generally require a relatively high number of DWI

acquisitions, limiting their use in clinical practice. Recently, Raffelt

et al. [77] have demonstrated through Monte Carlo simulations of

a model of diffusion in cylinders of a certain size range with certain

permeability characteristics, that the signal measured by a single

shell HARDI acquired at b~3000s=mm2 (with timing parameters

achievable on a clinical MRI scanner) arises primarily from

restricted water. Under these assumptions, the amount of signal

can be related to the underlying density of white matter fascicles,

thus enabling the formation of a measure of the ‘apparent fiber

density’. In addition, the orientation of white matter fascicles can

be determined from the local signal maxima.

In contrast, our model enables the determination of the

orientation of the white matter fascicles, measures of their local

diffusion properties and the characterization of an unrestricted

water component that is important in assessing edema and

inflammation. Multi-fascicle approaches generally require the

determination of the number of white matter fascicles at each

voxel. This and only this enables characterization of each fascicle

in addition to the orientation information, which is of central

interest to study the white matter development or degeneration in

research and clinical practice. Recently [78], have proposed to

estimate a general ODF at each voxel and then fit tensors on the

ODF to extract geometric features of the peaks. However, this

requires the estimation of the ODF, which is sensitive to noise and

requires a high number of DW images. In contrast, direct

estimation of a MFM from the DW images enables representation

of multiple fascicles and involves a small number of parameters,

requiring potentially a small number of acquisitions. MFMs allow

the computation of diffusion parameters such as the FA for each

fascicle, which is essential for straightforward characterization of

multiple fascicles.

Multi-tensor models have however frequently been reported to

be numerically challenging and unstable [43,44,48]. Among

others, Kreher et al. [44] have observed that with a model

including one entirely isotropic diffusion tensor and multiple

entirely anisotropic tensors, the mean diffusion and the relative

ratio of components could not be separated with DW images

measured at a single high b-value. In this paper we have shown

that the reason lies in a collinearity in the parameters when a

single non-zero b-value acquisition is employed, leading to an

infinite number of solutions. With only one non-zero b-value, as

often used in the literature [19,45,48–50], the tensor size indicated

by the magnitude of its eigenvalues and the estimated volume

fractions are collinear. Consequently, fitting them together may make

a fascicle with a uniform D1 across its entire length grow and

shrink as it passes through voxels and experiences different partial

Figure 11. Evaluation with in vivo short duration DWI acquisitions with Nf ~3 fascicles, without any model selection. Estimation of
Nf ~3 fascicles with HARDI35 (a) and with CUSP35 (b), which contain only 35 images. The tensors with fraction of occupancy smaller than 0:05 were
not visualized. CUSP35-MFM results in the estimation of three fascicles in a region (see outlined voxels) that matches the known anatomy, the
centrum semiovale.
doi:10.1371/journal.pone.0048232.g011

Figure 12. Estimation of Nf ~3 fascicles with F-test model order selection and CUSP-65. (a) Estimated MFM superimposed on the T1-
weighted anatomical image. Particularly, three tensor were correctly estimated in the centrum semiovale, which is a known brain region in which
three fascicles are crossing. (b) Illustration of the tractography streamlines passing through the voxel encircled in yellow in (a), showing the three
crossing fascicles.
doi:10.1371/journal.pone.0048232.g012
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volume effects. Algebraically one constraint in the modeling could

resolve this ambiguity: imposing a symmetry between the tensors’

eigenvalues such as l1,1~l2,1 as used in [17]. Such a constraint is

however not suited to accurately characterize each fascicle

independently. In [44,52], the fractions of occupancy were

merged together. This, however, does not adequately represent

the signal arising from each fascicle in presence of partial volume

effect, and does not allow the computation of a full diffusion tensor

associated with each white matter fascicle. Only the use of multiple

non-zero b-values is a satisfying solution to disambiguate the

estimation of the tensors and the fractions, and to enable

characterization of each individual fascicle and of the unrestricted

water component.

Our solution lies in a novel multi-fascicle estimation framework,

CUSP-MFM, which is the combination of a novel multi-tensor

estimation algorithm and an optimal acquisition scheme which

satisfies the need of multiple non-zero b-values. The characteristics

of our multi-tensor estimation procedure were driven by the

objective to make it possible to represent multiple fascicles in

clinical DWI with a relatively short acquisition time, compatible

with pediatric and adult imaging. The Maximum A Posteriori

formulation we employed enabled us to perform accurate and

reliable multi-fascicle model estimation. Our model includes the

estimation of an isotropic tensor which represents the free

population of water molecules that is not affected by fiber

structure barriers [42,43,45]. In this work we qualitatively did not

observe a dramatic impact of adding this parameter when using a

single-shell HARDI (Fig 10a and Fig 10c). In this case, there is no

unique solution to the estimation due to the collinearity of the

parameters, and the part of the DW signal coming from the free

water population is incorporated in the tensor magnitude and in

the fractions. In contrast, with multiple non-zero b-values (CUSP),

the tensor magnitude and the fractions are not collinear anymore.

We showed that the attempt to fit a model without the isotropic

water compartment, i.e. a model that poorly represents the signal,

perturbs the whole tensor estimation (Fig 10d). Therefore, to

ensure reliable estimates, both multiple non-zero b-values and a

model that accounts for the unrestricted water diffusion are

necessary.

We show that when using an optimized acquisition scheme and

when estimating the diffusion of unrestricted water, we can

accurately estimate the fascicle orientation from the hindered

Figure 13. CUSP-MFM enables the estimation of diffusion tensor parameters which do not vary with the partial volume effect. We
computed the FA along a same tract (Fig.a) for various artificial rotations of the diffusion-weighted images. For each streamline point, the most
aligned anisotropic tensor with the streamline orientation was selected and its FA assessed. Fig.b shows the variance of the FA along the tract across
the rotations, when using the CUSP or the HARDI acquisition and the MFM estimator without regularization and with the same parameters. HARDI
has dramatically increased variance, as it conflates tensor size with partial voluming. CUSP does not. Fig.c shows the FA variance when adding the
regularization to the estimation with both CUSP and HARDI. Fig.d shows the corresponding value of the FA along the tract. It shows that CUSP-MFM
enables estimation of diffusion tensor parameters which do not vary with the partial volume fractions nor the regularization.
doi:10.1371/journal.pone.0048232.g013
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diffusion. In this work, we have relied on the assumption that, for

each fascicle, the DW signal mono-exponentially decays with

increasing b-value. Based on non-monoexponential decays mea-

surements in voxels, other authors have suggested that a non-

monoexponential model may be more appropriate [55,58–60],

even for relatively low b-values [60]. However, these approaches

have ignored the fascicle orientation heterogeneity (Nf ~1) and

the CSF contamination when considering a model with non-

monoexponential decay. In this case, the source of the non-

monoexponential decay remains unclear. As illustrated in Fig. 2,

mixing of monoexponential decays as modeled in our approach

does lead to a non-monoexponential behavior in voxels. As

established by [16], when the gradient strength is limited and

when the DW signal is properly modeled by taking into account

both the fascicle orientation heterogeneity (Nf w1) and the CSF

contamination, a monoexponential decay for the signal arising

from each fascicle can be safely assumed. In contrast, if the diffusion

signal of a single fascicle exhibits a non-monoexponential decay,

then our current multi-fascicle model cannot fully represent it and

a generalization of our model may be necessary. Other per-fascicle

models could be easily introduced in our framework and will be

investigated in future work.

We have formulated our multi-tensor estimation approach in

the log-Euclidean framework [65] which is an elegant way to

guarantee that each tensor matrix is symmetric positive definite

during the fitting. Other authors have considered a Cholesky

parameterization of the diffusion tensor [79], or Bayesian

approaches with priors on the eigenvalues [42,45] to ensure valid

tensors. With the log-Euclidean framework, all computations are

performed within the appropriate manifold, ensuring valid tensors

at each step. To our knowledge the log-Euclidean framework has

never been employed for multi-fascicle models. Not only does it

ensure non-degenerate tensors, it also provides us with a metric to

compare and regularize tensors. All of the information carried by

tensors is taken into account with the log-Euclidean metric, and

not only features extracted from the tensors. Importantly, tensor

determinants in this framework are monotonically interpolated. It

prevents the regularized tensors from experiencing the swelling

effect which has been observed in both the Euclidean and

Cholesky frameworks [64,65]. The swelling effect makes the

estimated tensors larger than they should be. It particularly affects

tensors at tissue borders such as the cerebrospinal fluid/white

matter interface, where neighboring tensors are very dissimilar.

Based on Monte Carlo experiments [80], have however suggested

that an affine-invariant metric such as the log-Euclidean metric

might lead to a larger bias in the case of extreme ADC values

(either low or high). However, for the major brain tissues [80],

shows that this bias is not observed.

We proposed a log-Euclidean regularization scheme which is

not the direct extension of the one-tensor regularization. We

suggested a particular approximation of the spatial gradient for

multi-tensor fields (Equation 6). It relates neighboring tensors

which are part of the same fascicle. Consequently, only tensors

which are part of the same fascicle are regularized together.

Introducing this regularization strategy is possible because we

consider each fascicle independently. It would be difficult to

integrate in DSI, QBI, GDTI, or SD because these approaches

consider the general shape of the diffusion profile and not

individual fascicles.

In this work we propose an acquisition scheme designed to

enable accurate assessment of multiple white matter fascicles. Our

CUSP (CUbe and SPhere) imaging technique combines a single-

shell HARDI with gradients in its enclosing cube. The single-shell

HARDI provides a full spherical sampling with the optimal SNR

and the optimal TE for the chosen nominal b-value. Any gradient

in the enclosing cube of the single-shell HARDI can be acquired

without modifying the TE by choosing the appropriate gradient

strength. It corresponds to a cube of constant TE. It enables

acquisition of b-values up to 3 times the nominal b-value while

achieving the same low TE as a single-shell HARDI. Conse-

quently, and in contrast to multi-shell HARDI, it does not increase

the imaging time, does not increase the eddy current distortion

and it maintains the DWI signal-to-noise ratio by maintaining

exp({TE=T2). We envisaged three different CUSP variants

(Fig. 3). The first, CUSP-T, is a truncated multi-shell HARDI. It

employs the portion of multiple shells with uniformly spaced radius

contained in the cube of constant TE. The second, CUSP-xT, is a

truncated multi-shell HARDI which employs portions of shells

with exponentially spaced radius to counter-balance the exponen-

tially decreasing SNR with increasing b-values, and to achieve an

improve uniformity of SNR. Finally, CUSP-P is a projected multi-

shell HARDI, built by projecting the gradients of an outer shell at

3bnominal onto the faces of the cube of constant TE to avoid any

increase in TE. This provides a uniform angular resolution and a

large number of different b-values.

Our evaluation shows clear evidence that the estimation of both

the tensors and the fractions of occupancy are improved when

using CUSP instead of a single shell acquisition (Fig. 4, 5, 8).

Additionally, we observed a substantial improvement of the

angular resolution when using CUSP instead of a single shell

Figure 14. Comparison of CUSP and multi-shell HARDI via residual bootstrapping. (a) T1-weighted image showing the anatomy. (b)
Standard deviation of the maximum FA when using MSHARDI-65-MFM. (c) Standard deviation of the maximum FA when using CUSP-65-MFM. The
standard deviation of the maximum FA is significantly lower when using CUSP, showing a lower uncertainty in the MFM estimates.
doi:10.1371/journal.pone.0048232.g014
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(Fig. 6). From an algebraic point of view, only the tensor

magnitude and the fractions are collinear with a single non-zero

b-value. Introducing several non-zero b-values should not impact

the tensor eigen vectors in a noise free model system. However,

consistent with the literature [14,43,61], we observed that

introducing higher b-values helps in differentiating the different

compartments. Consequently, CUSP benefits are three-fold: First

it solves the collinearity inherent to the multi-fascicle modeling

with a single-shell HARDI. Second it enables imaging at higher b-

values, which facilitates the estimation of the orientation of each

fascicle [14]. Third, when compared to a conventional single-shell

HARDI acquisition, it does not increase the acquisition time, does

not increase the eddy current distortion and does not alter the

signal-to-noise ratio.

The CUSP-MFM’s performance was assessed via various

experiments on both synthetic and in vivo data. We focused on

short acquisitions suitable for routine clinical use, especially for

pediatric MRI. The angular resolution is substantially superior to

the state-of-the-art ball-and-stick model implemented in FSL

(Fig. 6), while CUSP-MFM estimates the full tensor. This might be

explained by the fact that the stick is an over-simplification which

does not fully capture the true signal arising from a fascicle.

Incorrect estimation of the tensor eigenvalues perturbs the

estimation of the orientation because the optimization attempts

at fully explaining the DW signal with an unrealistic model,

leading to less accurate estimates. This also leads to the detection

of multiple sticks in the body of the corpus callosum, which is a

known single fascicle region (Fig. 10). In contrast, CUSP-MFM

incorporates a more complex model for each fascicle and enables

the assessment of individual fascicles characteristics in addition to

the brain connectivity, by computing diffusion tensor parameter

for each fascicle. The estimated diffusion parameters of two

uniform synthetic crossing fascicles were shown to be almost

uniform with CUSP-MFM (Fig. 8 and Fig. 9). It was verified on

real acquisitions by simulating variations of the partial volume

fractions for each tensor, by rotation of the diffusion-weighted

images with various angles. We showed that with CUSP-MFM,

the fractional anisotropy computed along a tract did not vary with

the partial voluming effect nor the regularization, which was not

the case when using a single-shell HARDI acquisition (Fig. 13).

CUSP-MFM enables the full estimation of the multi-fascicle

model, which enables characterization of the fascicles.

Fig. 5 showed that for small angles and in the absence of model

order selection, the reconstruction error for the fractions of

occupancy (fAAD) is significantly increased. Indeed, in the case

where D1~D2, we have: f1e{bkgT
k

D1gk zf2e{bkgT
k

D1gk ~

(f1zf2)e{bkgT
k

D1gk z0. It is not possible to estimate the fractions

of occupancy f1 and f2 because of a collinearity in the parameters.

The DW signal can be explained either with two compartments

with non-null fractions f1 and f2 or with a single compartment

with fraction (f1zf2). This case (D1&D2), however, can be easily

detected and handled with model order selection.

The qualitative evaluation on real data (Fig. 10, 11 and 12)

showed that the estimated tensors orientation matches the

expected underlying anatomy. The estimation without model

order selection (Fig. 10, 11) showed that CUSP-MFM recovers the

fascicle orientations better than the ball-and-stick model in regions

of a single fascicle, either with Nf ~2 or Nf ~3. Importantly, the

estimation of Nf ~3 fascicles with only 35 DW-images were

consistent with the anatomy (Fig. 11). We also observed that in

contrast to HARDI-MFM, CUSP-MFM enables correct estima-

tion of the isotropic water fraction in the CSF (Fig. 10, 11).

Finally, we demonstrated that the estimation uncertainty is

higher when using a multi-shell HARDI instead of CUSP (Fig. 14).

This is due to the larger minimum achievable TE when imaging

the full multi-shell HARDI, leading to an acquisition with

exponentially decreased SNR (see Eq 1 and Fig. 1).

Future work
Future work will focus on assessing different gradient schemes

for the CUSP acquisition. Particularly, we will investigate the

optimal ordering of the gradient directions. CUSP-MFM perfor-

mance will be compared to Q-Ball Imaging and Spherical

Deconvolution approaches for the assessment of connectivity.

Robust estimation will be also explored. It enables to reduce the

influence of large residuals, making the estimation less sensitive to

outliers than when using the least square criteria. It may provide a

better robustness to patient motion and will be of particular

interest for pediatric imaging.

Conclusions

We demonstrated and experimentally verified that multiple

non-zero b-values are required to fully estimate multi-tensor

models. As a solution we proposed CUSP-MFM which combines

an optimal CUbe and SPhere (CUSP) acquisition technique with a

novel algorithm for the estimation of the parameters of a Multi-

Fascicle Model (MFM). Our proposed CUSP acquisition tech-

nique provides multiple high b-values with the optimal achievable

TE. It does not increase the imaging time nor the eddy current

distortion compared to a single-shell HARDI. Additionally, it does

provide the optimal signal-to-noise ratio, leading to estimates with

higher certainty. Our novel multi-fascicle fitting algorithm MFM is

formulated as a Maximum A Posteriori estimation problem. It

integrates an isotropic compartment, constrained estimation and

an original regularization scheme in which only the tensors that

are part of the same tract are regularized together. It ensures non-

degenerate tensors and robust-to-noise estimates. Our evaluation

shows that CUSP-MFM enables the representation of multiple

white matter fascicles from a short duration acquisition. It enables

characterization of each fascicle, in addition to the brain

connectivity, which is of great interest for clinical applications.

CUSP-MFM may enable new investigations of the white matter

development and degeneration in research and in clinical practice.

CUSP Gradient Encoding Scheme
We provide the CUSP65 gradient encoding schemes in the

Siemens format. On a Siemens scanner, this requires to set the

imaged b-value to b~3000s=mm2 which corresponds to the b-

value of the gradient of higher norm in the table. With this choice,

the resulting minimum achievable TE correctly matches the

minimum achievable TE of a single-shell HARDI at

b~1000s=mm2.

[directions = 65]

CoordinateSystem = xyz

Normalisation = none

Vector[0] = (0, 0, 0)

Vector[1] = (0, 0, 0)

Vector[2] = (0, 0, 0)

Vector[3] = (0, 0, 0)

Vector[4] = (0, 0, 0)

Vector[5] = (1.00000, 0.00000, 0.00000)

Vector[6] = (0.16600, 0.98600, 0.00000)

Vector[7] = (0.11000, 20.66400, 20.74000)

Vector[8] = (0.90100, 20.41900, 20.11000)

Vector[9] = (0.16900, 0.60100, 20.78100)

Vector[10] = (0.81500, 0.38600, 20.43300)

Vector[11] = (20.65600, 20.36600, 20.66000)
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Vector[12] = (20.58200, 20.80000, 20.14300)

Vector[13] = (20.90000, 20.25900, 20.35000)

Vector[14] = (20.69300, 0.69800, -0.17800)

Vector[15] = (0.35700, 20.92400, 20.14000)

Vector[16] = (0.54300, 20.48800, 20.68300)

Vector[17] = (0.52500, 0.39600, 20.75300)

Vector[18] = (0.63900, 20.68900, 20.34100)

Vector[19] = (20.33000, 20.01300, 20.94400)

Vector[20] = (0.52400, 0.78300, 20.33500)

Vector[21] = (0.60900, 20.06500, 20.79100)

Vector[22] = (0.22000, 20.23300, 20.94700)

Vector[23] = (20.00400, 20.91000, 20.41500)

Vector[24] = (20.51100, 0.62700, 20.58900)

Vector[25] = (20.41400, 20.73700, 20.53500)

Vector[26] = (20.67900, 0.13900, 20.72100)

Vector[27] = (20.88400, 0.29600, 20.36200)

Vector[28] = (20.26200, 20.43200, 20.86300)

Vector[29] = (0.08800, 0.18500, 20.97900)

Vector[30] = (20.29400, 0.90700, 20.30200)

Vector[31] = (0.88700, 20.08900, 20.45300)

Vector[32] = (20.25700, 0.44300, 20.85900)

Vector[33] = (0.08600, 0.86700, 20.49100)

Vector[34] = (0.86300, 0.50400, 20.02500)

Vector[35] = (21.00000, 21.00000, 21.00000)

Vector[36] = (1.00000, 21.00000, 21.00000)

Vector[37] = (21.00000, 1.00000, 21.00000)

Vector[38] = (1.00000, 1.00000, 21.00000)

Vector[39] = (1.00000, 1.00000, 0.00000)

Vector[40] = (20.00000, 21.00000, 21.00000)

Vector[41] = (21.00000, 20.00000, 21.00000)

Vector[42] = (21.00000, 1.00000, 0.00000)

Vector[43] = (20.00000, 1.00000, 21.00000)

Vector[44] = (1.00000, 20.00000, 21.00000)

Vector[45] = (1.00000, 20.11968, 20.22826)

Vector[46] = (0.45391, 1.00000, 20.74490)

Vector[47] = (0.30929, 20.52908, 21.00000)

Vector[48] = (1.00000, 0.32570, 20.82547)

Vector[49] = (20.53649, 20.28378, 21.00000)

Vector[50] = (1.00000, 0.28277, 20.16662)

Vector[51] = (0.37769, 0.13072, 21.00000)

Vector[52] = (20.18512, 0.21731, 21.00000)

Vector[53] = (20.32054, 21.00000, 20.32795)

Vector[54] = (0.37433, 1.00000, 20.18999)

Vector[55] = (21.00000, 0.49160, 20.79472)

Vector[56] = (20.09712, 1.00000, 20.03398)

Vector[57] = (21.00000, 20.00905, 20.41514)

Vector[58] = (0.36282, 21.00000, 20.54229)

Vector[59] = (20.52123, 1.00000, 20.11772)

Vector[60] = (20.31196, 1.00000, 20.73018)

Vector[61] = (21.00000, 20.69636, 20.40808)

Vector[62] = (21.00000, 0.32257, 20.12697)

Vector[63] = (1.00000, 20.48206, 20.55084)

Vector[64] = (20.06116, 20.17609, 21.00000)
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