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Abstract

Aim: Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water
counterparts, and even such basic information as their location and extent are currently unknown throughout most of the
world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-
water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and
environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef.

Location: Great Barrier Reef, Australia.

Methods: Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming
megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate
properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with
georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely
operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat
on the GBR.

Results: Our models predict extensive but previously undocumented coral communities occurring both along the
continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for
phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR
lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical
variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs.

Main Conclusion: Extensive submerged coral reef communities that are currently undocumented are likely to occur
throughout the Great Barrier Reef. High-quality bathymetry data can be used to identify these reefs, which may play an
important role in resilience of the GBR ecosystem to climate change.
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Introduction

Coral reefs, along with tropical rainforests, support greater

biodiversity than any other ecosystem on earth. However, coral

reefs worldwide are in decline from multiple threats including

coastal development, over-fishing, land-based pollution and

climate change [1–3]. Rising sea temperatures have resulted in

mass bleaching and mortality of reef corals in recent decades [4],

however deeper ‘‘mesophotic’’ reef habitats may be buffered from

the synergistic effects of light and heat stress which cause corals to

bleach [5,6]. Therefore, deeper reef habitats (known as mesopho-

tic coral reef ecosystems or MCEs) may therefore provide vital

refugia for corals and associated species in coming decades [7,8].

Unlike true deep-water coral reefs which occur in cold water and

do not rely on sunlight for energy [9], mesophotic coral reefs occur

in the middle to lower photic zone and often support rich

communities of shallow-water corals and other photosynthetic

taxa [10,11]. However, MCEs have received little research effort
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compared to their shallow-water counterparts, largely due to their

inaccessibility to traditional SCUBA surveys. Recent technological

developments such as autonomous underwater vehicles (AUV) and

remotely operated vehicles (ROV) have led to a substantial

increase in MCE research in recent years [10–14] in recognition of

both their unique biodiversity and their potential role as refugia.

Despite their potential importance, basic information on the

location and spatial extent of MCEs, particularly those occurring

on submerged reefs too deep to be detected by airborne sensors, is

not available in any of the world’s major coral reef regions.

Marine Protected Areas (MPAs) have become an important

management tool for conserving coral reefs from climate change

and other human impacts [15,16]. However, the effectiveness of

any protected area is contingent upon identifying 1) a represen-

tative sample of habitat types, and 2) areas that best protect species

and ecosystems from processes that threaten their existence [17].

On coral reefs, biodiversity of both corals and reef fish often peaks

in intermediate depths of 15–35 m [18–21], and deeper habitats

are likely to be more stable and more likely to protect coral reef

biota from threats such as rising sea temperatures and increased

tropical storms [6,8]. However, the vast majority of research on

coral reefs is conducted in shallow water, often less than 10 m

deep. Therefore, information used to inform the design of MPAs is

heavily biased towards well-studied shallow habitats, and this may

reduce the effectiveness of MPAs to perform these two functions.

Physical and environmental drivers of species distributions can

be used as surrogates to predict the potential distribution of

benthic marine ecosystems across large spatial scales and to

identify priority sites for management [22,23]. Although direct

observations of MCEs are difficult and often expensive, predictive

habitat models may provide a valuable tool to identify the location

and spatial extent of deep-water coral reef habitats. Coral reef

ecosystems are by nature patchy and fragmented [16], and

biodiversity is generally greatest on hard ‘‘reef’’ substrata and

lower on soft-bottom inter-reef areas [11,14]. On shallow-water

reefs, high-spatial-resolution multi-spectral images have been used

to identify biological and geomorphic features at scales relevant to

scientists and marine managers [24]. Identifying similar charac-

teristic features of deep-water coral reefs using remotely-sensed

data such as multibeam echosoundings would provide better

estimates of the areal extent of coral habitat at regional to global

scales and allow for more effective design and implementation of

MPAs.

A key consideration in the design of MPAs is ‘‘connectivity’’

between reefs, or the exchange or individuals between reefs via the

dispersal of planktonic larvae [16,25]. However, it is likely that

many coral reef connectivity models are missing substantial

amounts of reef habitat, reducing the reliability of connectivity

models. For example, none of the myriad models of coral reef

connectivity on the Great Barrier Reef (GBR) [26–29] take

account of deep reefs as a possible sources or sinks of coral larvae.

If indeed MCEs are linked ecologically to shallow water reefs, data

deficiency regarding their location, extent and ecology represents a

significant knowledge gap in understanding connectivity between

reefs and, by extension, the effectiveness of management strategies

to protect the coral reefs from both natural and anthropogenic

threats.

The GBR Marine Park is one of the world’s largest MPAs,

covering an area of ,345 000 km2. Coral reef habitat is currently

regarded as occupying only ,7% of this area, however this

estimate takes little account of submerged reefs (reefs that do not

approach the sea surface) that occur on both the shelf-edge

[30,31,32] and inside the GBR lagoon [32,33]. Several submerged

reefs in the GBR Marine Park have recently been examined using

AUV, ROV and SCUBA, and shown them to contain diverse

coral reef communities [11,14]. These observations suggest that

total amount of coral habitat within the GBRMP may be

substantially underestimated.

Predictive habitat modelling has been used in a variety of

ecological applications, including predictive modelling of rare or

endangered species [34,35], conservation planning [36,37], and

predicting climate change impacts [38,39]. In recent years, there

has been significant improvement in the performance of models

that require only georeferenced presence-only data [34,40].

Because direct observations of MCEs are sparse and absence data

are generally rare or unreliable, presence-only modelling tech-

niques are well suited to modelling the distribution of mesophotic

coral communities. Presence-only techniques have been effectively

utilised to predict the distributions of both individual coral species

[41] and coral communities [23,42,43] in the deep sea, a habitat

which contains many parallels to mesophotic coral ecosystems (e.g.

inaccessibility, sparse occurrence data). The program Maxent uses

[40] maximum entropy techniques to create maps of relative

habitat suitability across a geographical area, and has been shown

to perform favourably relative to other presence-only modelling

techniques, particularly with small sample sizes [44]. Here, we use

Maxent to create predictive models of the location and spatial

extent of two mesophotic coral reef communities (phototroph-

dominated and heterotroph-dominated) in the GBR Marine Park

using Maxent. We identify areas where MCE habitat is most likely

to occur, and compare the effects of different combinations of

geophysical and environmental data layers on model predictions to

provide estimates of the location and spatial extent of deep-water

coral reef communities within the GBRWHA.

Methods

This research was conducted under a permit issued by the Great

Barrier Reef Marine Park Authority, Townsville, Australia.

Study Area
The GBR is composed of over 2900 individual reefs and

stretches between approximately latitude 9uS and 25uS (Figure 1).

The morphology of the GBR shelf-edge changes from north to

south, being generally steeper in the north, and significantly

affecting the morphology of the reefs which occur along it [30,45].

In the northern GBR, long, linear reefs located right on the shelf-

edge form a true ‘‘barrier reef’’ system, and narrow submerged

reefs occur on their seaward side [30,31]. The shelf-edge in this

region is very steep, and the 500 m isobath is reached only a few

hundred metres from the emergent reefs. Below ,70 m the shelf

becomes an almost vertical wall, leaving little space for the

development of submerged reefs. South of about 16u06’S, the shelf

widens and most reefs are set back from the shelf-edge. This has

allowed the development of an extensive series of submerged reefs,

which run parallel to the shelf-edge for over 800 km in the central

GBR [14,30,45,46]. Submerged reefs also occur inside the GBR

lagoon, and these reefs are most abundant in the far north (10–

12uS) and also in the south-central GBR (20–23uS), which is

consistent with the patterns observed for emergent, shallow-water

reefs [32].

Occurrence Records
Occurrences of phototroph and heterotroph-dominated MCE

communities were derived from georeferenced AUV, ROV and

SCUBA surveys conducted from between September 2007 and

December 2011 (Figure 1; Table S1). At the species and genus

level, MCE community composition on the GBR varies consid-
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erably among sites, however there is much greater uniformity

among trophic groups of sessile benthic megafauna (SBM) known

to occupy particular habitats [11]. To date, sampling of MCEs has

been too sparse to identify distribution patterns of individual

species, therefore models investigating the extent of MCEs at a

GBR-wide scale were conducted using characteristic trophic

groups rather than specific species or genera. Models were

generated for phototroph-dominated and heterotroph-dominated

communities, based on their SBM (Figure 2). Phototroph

communities were comprised primarily of taxa which contain

symbiotic dinoflagellates (Symbiodinium spp.), known as zooxan-

thellae (Figure 2 a, b). Taxa regularly observed in photosynthetic

communities included zooxanthellate Scleractinia (hard corals,

including Porites, Acropora, Montipora) and Octocorallia (soft corals,

e.g. Cespitularia), and phototrophic sponges (e.g. Carteriospongia).

Heterotrophic communities were dominated by zooxanthellae-free

SBM which do not obtain any energy from photosynthate, and

included zooxanthellae-free Octocorallia (gorgonians or sea fans,

e.g. Annella, Ellisella), black corals (Antipathes) and wire corals

(Cirrhipathes spp.), as well as a few deep-specialist phototrophs such

as Leptoseris.

Environmental Data
Environmental data sets were classified into two main catego-

ries: geophysical and environmental. Geophysical data were all derived

from a new high-resolution (1006100 m grid cell) digital elevation

model for the GBR called ‘‘gbr100’’ [47]. The five geophysical

data layers were used were depth, slope, aspect, rugosity, and geomorphic

zones. Slope, aspect, rugosity and geomorphic zones were all derived from

the depth layer and created in ArcGIS 9.3. Aspect and slope layers

were both created using the relevant tools in the Spatial Analyst

toolbox. Rugosity was generated using the Focal Statistics tool,

which calculates a statistic (standard deviation) on a raster over a

specified neighbourhood (in this case 363 cells). The Geomorphic

zones layer was generated using the Benthic Terrain Modeler

(BTM) plug-in in ArcGIS, which delineates benthic zone

boundaries of the physical landscape [48]. BTM uses an input

depth grid to generate Bathymetric Position Index (BPI) datasets

through a neighbourhood analysis function. Positive cell values

within a BPI dataset denote features that are higher than the

surrounding area, such as ridges and pinnacles. Negative cell

values within a BPI dataset denote zones that are lower than the

surrounding area, such as canyons and gullies. BPI values near

zero are either flat areas where the slope is near zero, or areas of

constant slope where the slope is significantly greater than zero

[48]. Both broad-scale (565 pixels) and fine-scale (363) BPI grids

were generated to calculate geomorphic zones. For this study,

grids were reclassified into four basic zones: crests, depressions,

flats and slopes, using a 3u slope angle to differentiate between a

flat and sloping seafloor.

Environmental data were derived from Bio-ORACLE, a global

environmental dataset designed for marine species distribution

modelling [48]. Environmental variables selected as potentially

important influenced on the distribution of coral reef communities

were minimum and mean monthly Chlorophyll A concentration,

mean monthly cloud cover, interpolated nitrate concentration,

maximum and mean monthly Photosynthetically Active Radiation

(PAR), interpolated pH, interpolated Phosphate concentration,

and mean, minimum, maximum, and range of monthly sea

surface temperature (SST) (see [49] for further information on

source of each variable). We also derived one additional

environmental variable from the available Bio-ORACLE layers,

SST range, which was defined as the SST Maximum minus SST

Minimum. For this analysis, it was important to use the finest-scale

spatial resolution possible (in this case 1006100 m) in order to

resolve potential unmapped reef habitat. Therefore, environmen-

tal layers from Bio-ORACLE, available at the scale of 10610 km,

were transformed to match the geophysical data sets (1006100 m)

using ArcGIS in order to conform to Maxent’s input data

requirements.

Modelling
Modelling was conducted using Maxent 3.2.19 (http://www.cs.

princeton.edu/̃ schapire/maxent/). Maxent uses the values of

environmental or geophysical variables at known species occur-

rence localities to impose constraints on unknown localities such

that the mean of each variable is close to the empirical average at

sites where a species is known to occur [50]. We used Maxent for

this study because (1) it is accurate with small numbers of

occurrence records [40,50,51] and (2) reliable absence data are not

available for MCEs. Default model parameters used were a

convergence threshold of 1025 and a maximum iteration value of

500, which have been shown to achieve good performance on

comparable data sets [50]. Model predictions are presented as

cumulative probabilities, where the value of a given grid cell is the

sum of that cell and all other cells with equal or lower probability

[40]. These values can be interpreted as an estimate of the

probability of presence under a similar level of sampling effort as

that used to obtain the known occurrence data [50]. Duplicate

records (where multiple records were present within a single grid

cell) were removed from the analysis.

In each model, 70% of the occurrence localities were used as

training data, with the remaining 30% used to test model results.

The performance of both training and test data sets and of each

environmental variable was evaluated using receiver operated

characteristic (ROC) curves, with the area under the ROC curve

(AUC) reflecting the overall performance of the model and the

relative importance of each explanatory environmental variable.

In some cases AUC is sensitive to the total spatial extent of the

model [52,53], therefore test gain was also used as a measure of

model performance. Gain can be interpreted as the average log

probability of the presence samples used to test the model. The

total area of MCE habitat in the GBRWHA was estimated using

cumulative probability model outputs that had been reclassified

into Boolean maps in ArcGIS using two separate thresholds: the

10 percentile training value within Maxent and the lowest

presence threshold [44]. The 10th percentile assumes that 10%

of occurrence records are erroneous to due factors such as low-

resolution environmental data, and therefore excludes all proba-

bility values below the highest 10% of records. The lowest

presence threshold (LPT) identifies pixels with probability values

equal or greater than the value of the lowest occurrence locality,

and is therefore a conservative estimate [44]. Model results were

also qualitatively tested by comparing model results to empirical

observations in areas where extensive sampling effort had

occurred, particularly at Hydrographers Passage (see [14]).

Models were run for both phototroph and heterotroph

communities using four combinations of environmental data:

Geophysical layers only (GEO); Environmental layers only (ENV);

all geophysical and environmental layers (GEO-ENV) and the best

Figure 1. Map of north-east Australia showing location of occurrence records along the Great Barrier Reef. Yellow circles show the
location of heterotroph communities and red triangles indicate phototroph communities.
doi:10.1371/journal.pone.0048203.g001
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combination of geophysical and environmental layers as deter-

mined by AUC values (BEST). Although Maxent is relatively

robust to covariation among environmental variables [40], the

BEST layer was chosen to examine if removing covarying layers

improved model accuracy. Values chosen as the best combination

of variables for phototroph communities were Depth, Mean

Chlorophyll, SST range, Rugosity and Geomorphic Zones. For hetero-

trophs, the best combination was Depth, rugosity, SST range, and pH.

Results

Model Evaluation
AUC values for all models were high (.0.96 in all cases),

however gain values were substantially higher for models which

contained geophysical data (Table S2). Estimates of the total

extent of suitable habitat varied substantially depending on input

data and independent of the threshold used to define suitable

habitat, with particularly large discrepancies observed for hetero-

trophs (Table 1). Models generated using both geophysical and

environmental data tended to overfit predictions of suitable habitat

towards regions containing more occurrence records. This pattern

was observed in all three models which used environmental data

(ENV, GEO-ENV and BEST), and was particularly apparent for

heterotrophs. The location of occurrence records did not appear

to affect the performance of GEO models.

For both phototrophs and heterotrophs, models without any

geophysical data were not able to resolve reefs and were therefore

generally poor predictors of mesophotic reef habitat, likely because

of the comparatively low resolution of ENV-only layers

(10610 km) relative to the scale of reef habitat identified using

geophysical layers (Figure 3). Gain was significantly lower in ENV

models for both phototrophs and heterotrophs, although this was

not reflected in AUC values. However, given that the GBR spans

over 13u of latitude, we used models incorporating both

geophysical and environmental data to identify whether broad-

scale environmental variability could improve predictions of

mesophotic coral communities along the entire length of the

GBR. Due to the overriding importance of geophysical variables,

the results of both GEO-ENV and BEST were very similar,

therefore estimates of total habitat area (Table 1) are provided

GEO and GEO-ENV models only.

Phototroph Communities
Models of phototroph communities were reasonably consistent

regardless of input variables, aside from ENV. Models consistently

Figure 2. Examples of phototrophic and heterotrophic mesophotic communities on the Great Barrier Reef. Phototrophic communities
shown in (a), (b), and heterotrophy communities in (c), (d). Photo (a) by Ed Robert at Mantis Reef, (b), (c) and (d) taken by Sirius autonomous
underwater vehicle (Australian Centre for Field Robotics) at Hydrographers Passage.
doi:10.1371/journal.pone.0048203.g002
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predicted the occurrence of phototroph MCE communities on the

submerged reefs occurring along the outer-shelf and also on the

deeper flanks of emergent reefs (Figure 3). However, model

predictions were sensitive to the quality of input geophysical data,

which varies substantially throughout the GBR (Figure 4). Some

sections of the GBR outer-shelf have been mapped with multi-

beam swath sonar providing 100% coverage of the seafloor at

high-resolution, and in these locations the gbr100 grid is of

sufficient quality to readily identify the full extent of shelf-edge

reefs. However, between these well-mapped sites, much of the

shelf-edge has only been surveyed using widely-spaced singlebeam

echosounder transects. In regions where singlebeam bathymetry

data records a topographic rise due to the presence of a shelf-edge

reef, the models show up as patches of phototrophic habitat

(Figure 4). Between these transects, the gbr100 grid is relatively

smooth due the lack of source bathymetry data and consequently

the models do predict suitable habitat at these locations, despite

the high probability of shelf-edge reefs being present.

The GEO model predicted greater habitat area than the

models using environmental variables. When the LPT was used

Table 1. Estimated habitat area for phototroph and heterotroph communities using both Lowest Presence (LPT) and 10th

Percentile thresholds in square km (km2).

Phototroph - LPT
Phototroph - 10th
Percentile Heterotroph - LPT Heterotroph - 10th Percentile

GEO only 1583 2002 16276 2528

ENV only 611 111 18 190

Both 1423 414 322 89

Total GEO 3006 2416 16598 2617

Total ENV 2034 525 340 279

GEO indicates the total area estimated.
doi:10.1371/journal.pone.0048203.t001

Figure 3. Habitat suitability models for phototrophs for a section of central Great Barrier Reef. (a) GEO; (b) GEO-ENV; (c) ENV; and (d)
BEST.
doi:10.1371/journal.pone.0048203.g003
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to determine suitable habitat, the GEO model predicted ,50%

more total habitat area than GEO-ENV (3006 versus

2034 km2), with 1423 km2 of habitat area predicted by both

models (Table 1). Both models consistently predicted suitably

habitat occurring on the submerged reefs along the outer-shelf.

The largest discrepancy between models occurred on mid-shelf

reefs of the central and southern GBR, where GEO predicted

the occurrence of phototroph communities on the deeper flanks

of emergent mid-shelf reefs as well as on the outer-shelf. In

contrast, GEO-ENV suggested that phototroph communities in

this region were likely to be restricted to the outer-shelf. When

applying 10 percentile threshold, the total amount of habitat

area predicted by GEO was similar to LPT (3006 V 2416 km2).

However, there was a significant difference in the amount of

habitat area predicted by models using environmental data

(2034 V 525 km2). Habitat area estimates using this threshold

generally did not predict suitable habitat along the shelf-edge of

the central and southern GBR outside of areas where multi-

beam sonar data are available, and also did not predict

mesophotic reef habitat on the deeper flanks of emergent reefs.

Geophysical layers Geomorphic zone, Slope and Rugosity were the

most explanatory variables for phototrophs (Table S2). The

most predictive environmental variable was SST range, although

no environmental variables were very predictive for photo-

trophs.

Heterotroph Communities
Heterotroph communities showed greater variability in both

the location and spatial extent of habitat suitability among

modelling techniques. As with phototrophs, the ENV model

performed poorly, and the inclusion of environmental data (in

addition to geophysical data) appeared to reduce the accuracy

of models compared to the GEO-model (Figure 5). The GEO

model predicted high habitat suitability in the deeper waters

along the outer-shelf, and also on the deeper flanks of emergent

reefs (Figure 5a). Despite high AUC values indicating good

model performance, models incorporating environmental data

(Figure 5 b, c, d) consistently indicated low habitat suitability in

regions with few occurrence records. This effect was particularly

pronounced in the region around Hydrographers Passage,

which contained the greatest number of occurrence records

(Figure 6). Estimates of the total spatial extent of heterotroph

habitat varied widely depending upon input variables and

thresholds from over 16 000 km2 (GEO LPT) to less than

300 km2 (ENV 10th percentile), although GEO consistently

predicted greater heterotroph habitat than models using

environmental variables (Table 1).

Figure 4. Predictions of phototroph communities in the Hydrographers Passage region, central Great Barrier Reef. GEO only and
GEO-ENV both predicted suitable habitat along the outer-self, although model results were more accurate in areas with multibeam (right hand side)
compared to singlebeam echosoundings (left). GEO also predicted higher habitat suitability on the deeper flanks of emergent reefs inside the GBR
lagoon.
doi:10.1371/journal.pone.0048203.g004
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Discussion

These results indicate that coral reefs may be far more extensive

and exist across a broader range of habitats than previously

realised, and provides important new information for assessing the

vulnerability of coral reef ecosystems to global climate change.

This study represents the first attempt to quantify the spatial extent

of deep reef habitat anywhere in the world, although [54]

previously used depth (30–100 m depth range) to identify areas

that may potentially support MCEs in United States territorial

waters. Their study indicated that MCEs may occur over large

areas, both on continental and insular shelves, and may occupy a

greater areal extent than shallow-water coral reefs. Similarly,

Harris et al. [32] recently used the gbr100 bathymetry model to

conduct a geomorphologic analysis of submerged banks on the

GBR, and concluded that these features occupy over 41 000 km2

of the GBRWHA, 160% of the area of emergent, shallow water

reefs. Although not all these banks would support mesophotic

coral communities, these results confirm earlier geological studies

indicating that submerged reefs are common features of

continental shelves and around oceanic islands in many of the

world’s coral reef provinces. Although many of these earlier studies

focused on the geomorphology of submerged reefs, they point to

the potentially significant proportion of coral reef habitat which

has received very little attention from ecologists or marine

managers.

Our results indicate that coral reef communities are likely to

occur on submerged reefs and on the deeper flanks of emergent

reefs both along the GBR outer-shelf and inside the lagoon. Given

the unique biodiversity already reported from MCEs in the GBR

[11,14] and their potential importance as refugia for coral reef

species, these habitats should receive greater research interest from

both scientists and managers. Our results indicate that high-

resolution geophysical data is well suited to identifying MCE

communities, and is effective even without other environmental

data such as sea temperature. However, unlike many terrestrial

studies, the patchy nature of coral reefs means that geophysical

data of sufficient resolution to delineate reefs are critically

important. Given that direct in-situ observations of submerged

reefs are not feasible given time and funding constraints, modelling

efforts such as those presented here will provide important tools for

marine managers, allowing greater consideration MCEs in

management decisions and MPA design. Furthermore, although

this study focuses primarily on submerged coral reefs, it is likely

these results would be transferable to other marine ecosystems. For

example, kelp forests replace coral reefs as the dominant habitat-

forming benthos in southern Australia; however, despite significant

research effort on shallow-water kelp reefs, deeper kelp forest reefs

currently represent a significant knowledge gap [55].

Many reefs on the GBR are relatively small, often 1–10 km

diameter. In the northern GBR shelf-edge reefs are also very

narrow, with many submerged reefs only tens of metres wide. This

Figure 5. Habitat suitability models for heterotrophs for a section of central Great Barrier Reef. (a) GEO; (b) GEO-ENV; (c) ENV; and (d)
BEST.
doi:10.1371/journal.pone.0048203.g005
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presents difficulties in resolving reefs, and therefore for the ability

of the models to detect MCE habitat. Widely-spaced single-beam

echosoundings were generally not sufficient to resolve reefs, and

resulted in underestimation of total habitat area. More accurate

estimates of total extent of MCE habitat would be best achieved

via collection of multibeam bathymetry for areas of the reef where

only single-beam soundings are currently available, and would be

of significant value for regional-scale marine habitat modelling. It

is also important to note that submerged reefs may well support a

higher percentage of coral cover, on average, than emergent reefs.

Predictive habitat modelling conducted at Hydrographers Passage

using 565 m grid cell bathymetry [32] suggested that mesophotic

coral communities in that region occupy ,55% of the area of

submerged banks. Many emergent reefs feature extensive sandy

lagoons, not conducive to high coral cover ([56] estimate mean

coral cover on emergent reefs in the GBR at ,29%). Currently,

the GBRWHA is regarded as supporting ,20 000 km2 of reef

habitat, of which ,30% is likely to be covered by live corals [57].

If ,50% of submerged banks support living corals, as these studies

suggest, then the GBR actually supports significantly more coral

cover than currently appreciated. Further investment in the

collection systematic, high-resolution multibeam data would

enable more accurate predictions of the exact location and spatial

extent of deep reef habitat throughout the entire GBRWHA.

In this study, models run using environmental variables were

consistently overfitted to the input data. Although Maxent has

consistently performed favourably relative to other presence-only

modelling techniques such as GARP [44], it can sometimes bias

predictions towards areas with more input occurrence records,

particularly at higher probability thresholds [58]. In this study,

models incorporating environmental data consistently failed to

predict distributions in regions with fewer occurrence records

regardless of the environmental variables used, while models using

geophysical data only seemed more robust to the spatial

distribution of occurrence records. Although other modelling

techniques such as GARP are less prone to overfitting, they have

the drawback of generalising distribution predictions, and are

therefore not suitable for delineating reefs. Occurrence records

used in this study are widely distributed along the GBR but were

still relatively sparse owing to the lack of observations on MCEs.

Obtaining a greater spatial distribution of occurrence records may

help alleviate the problem of overfitting of model predictions when

using environmental variables.

Another issue encountered during this study was selecting

suitable environmental variables. This problem was exacerbated

by the spatial scale of environmental layers (10610 km) compared

to geophysical layers (1006100 m). Furthermore, some environ-

mental correlations indicated to be important by Maxent are likely

to be casual in the field. For example, AUC values suggested that

Figure 6. Predictions of heterotroph communities for the same region of Hydrographers Passage, central Great Barrier Reef. GEO
models consistently predicted suitable habitat on the outer-shelf, and low suitability in shallower waters. Models using environmental data overfitted
the predictions towards the location of occurrence records.
doi:10.1371/journal.pone.0048203.g006

Predictive Modelling of Submerged Coral Reefs

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e48203



mean chlorophyll should be an important factor controlling the

distribution of heterotrophs. Heterotrophic octocorals feed on

phytoplankton, and previous studies have shown that their

taxonomic richness is greatest in areas of highest productivity

[59]. However, paradoxically, habitat predicted to be highly

suitable for heterotrophs in the present analysis was correlated

with low chlorophyll values. Although shallow-water chlorophyll

concentration is lowest in the clear, oceanic waters of the outer-

shelf, it does not necessarily reflect plankton availability to deep

MCE communities. Seafloor chlorophyll, therefore, may be a

more effective predictor of suitable heterotroph habitat. Although

the GEO models appear to be relatively good at predicting

suitable habitat for broad trophic groups, the availability of more

detailed environmental data would likely improve model perfor-

mance, and allow more detailed modelling at higher taxonomic

resolutions. Such modelling would also require more mesophotic

faunal occurrence records to be collected before it could materially

improve our ability to predict the location of and structure of

phototrophic and heterotrophic MCE communities.

These results suggest that coral reef habitat within the

GBRWHA is likely to be more extensive than current estimates.

Moreover, given that submerged reefs have been reported from

continental shelves and oceanic islands in many locations around

the world [60], it is likely that many coral reef provinces support

extensive mesophotic coral reefs that are currently undocumented.

The models presented here are clearly transferable to other parts

of the world provided that sufficient quality bathymetry data are

available, and could be used to generate testable hypotheses about

where MCEs occur as the basis for planning for field sampling. So

verified, model predictions could then be used in the planning for

networks of MPAs, particularly those aiming to identify areas less

likely to be exposed to threats associated with global climate

change. Given that MCEs may be buffered from many of the

threats shallow coral reefs currently face, identifying and

preemptively protecting mesophotic coral reefs from threats such

as over-fishing should be an urgent priority for marine resource

managers. Although direct observation of MCEs is difficult, our

results show that increased focus on collecting broad-scale

geophysical data, particularly high-resolution multibeam bathym-

etry, and small, well-focused field campaigns to verify faunal

predictions, will provide sufficient detail to identify submerged

reefs and associated coral reef ecosystems which can then be

incorporated into MPAs. The use of robust models such as these

thus means that a precautionary approach to MPA design in the

absence of complete information could be far more comprehensive

and cost-effective that it would be without it.
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