
Recombination Activating Gene-2 Regulates CpG-
Mediated Interferon-a Production in Mouse Bone
Marrow-Derived Plasmacytoid Dendritic Cells
Xin M. Luo1*, Margarida Y. Y. Lei2

1Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia, United States of America, 2Division of Biology, California Institute of Technology, Pasadena, California, United States of America

Abstract

Using mice that lack recombination activating gene-2 (Rag2), we have found that bone marrow-derived plasmacytoid
dendritic cells (pDCs) as main producers of interferon-a (IFNa) require Rag2 for normal development. This is a novel function
for Rag2, whose classical role is to initiate B and T cell development. Here we showed that a population of common
progenitor cells in the mouse bone marrow possessed the potential to become either B cells or pDCs upon appropriate
stimulations, and the lack of Rag2 hindered the development of both types of progeny cells. A closer look at pDCs revealed
that Rag22/2 pDCs expressed a high level of Ly6C and were defective at producing IFNa in response to CpG, a ligand for
toll-like receptor 9. This phenotype was not shared by Rag12/2 pDCs. The induction of CCR7, CD40 and CD86 with CpG,
however, was normal in Rag22/2 pDCs. In addition, Rag22/2 pDCs retained the function to promote antibody class
switching and plasma cell formation through producing IL-6. Further analysis showed that interferon regulatory factor-8,
a transcription factor important for both IFNa induction and pDC development, was dysregulated in pDCs lacking Rag2.
These results indicate that the generation of interferon response in pDCs requires Rag2 and suggest the lymphoid origin of
bone marrow-derived pDCs.

Citation: Luo XM, Lei MYY (2012) Recombination Activating Gene-2 Regulates CpG-Mediated Interferon-a Production in Mouse Bone Marrow-Derived
Plasmacytoid Dendritic Cells. PLoS ONE 7(10): e47952. doi:10.1371/journal.pone.0047952

Editor: Volker Thiel, Kantonal Hospital St. Gallen, Switzerland

Received July 5, 2012; Accepted September 18, 2012; Published October 24, 2012

Copyright: � 2012 Luo and Lei. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was financially supported by Dr. David Baltimore at California Institute of Technology through various grants. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: xinluo@vt.edu

Introduction

Plasmacytoid dendritic cells (pDCs) were first described as

‘‘plasma cell-like’’ by pathologists [1] and later found to be

identical to the ‘‘professional interferon-producing cells’’ in the

peripheral blood and secondary lymph organs [2,3]. Their

primary function is to produce type I interferons but they also

produce other cytokines and are involved in antigen presentation

[4,5]. They are considered a functional link between innate and

adaptive immune responses.

Whether pDCs originate from the myeloid or lymphoid lineage

has been a focus of debate for the last decade. The myeloid

hypothesis is supported by the observations that Flt3+ myeloid

progenitors can generate pDCs [6] and that the depletion of

common lymphoid progenitors does not appear to affect pDC

generation [7]. However, more evidence supports the lymphoid

hypothesis. First, adoptive transfer experiments have shown the

generation of pDCs from lymphoid progenitors [6]. Second,

common myeloid progenitor-derived pDCs have been shown to

express lymphoid-associated genes such as pre-Ta and recombi-

nation activating gene-1 (Rag1) [8]. Third, pDCs share many

molecular features of B cells, such as the expression of B220, Tdt,

VpreB, Rag1, Rag2, and D-to-J rearrangement of the immuno-

globulin (Ig) heavy chain locus [8–10]. Why pDCs need to express

B cell-specific genes and rearrange the Ig heavy chains locus is

unknown but it raises the possibility that pDCs and B cells may

have differentiated from the same progenitor cells.

Rag proteins play an essential role in V(D)J recombination by

inducing site-specific cleavage and recombination of variable (V),

joining (J), and sometimes diversity (D) gene segments that are

initially separated in the germline configuration [11–13]. Although

they were originally identified in T and B cells [14,15], Rag1 and

Rag2 transcripts have been found in non-T/B cells such as

dendritic cells [8,16] and natural killer cells [17]. In addition,

Rag1 has been shown to function in neurogenesis in the central

nervous system [18,19]. However, whether and how Rag proteins

may play a role in non-T/B cells remain unclear.

Here we show that Rag2 is required for toll-like receptor 9

(TLR9)-mediated induction of IFNa in bone marrow-derived

pDCs. Our results show that, although the numbers and

expansion of pDCs are similar between wildtype and Rag22/2

mice, Rag22/2 pDCs appear to be defective at producing IFNa in

vitro and in vivo in response to the TLR9 ligand, CpG. In

contrast, Rag22/2 pDCs retain the functions to (1) upregulate

functional surface markers CCR7, CD40 and CD86 in response to

CpG and (2) promote antibody class switching and plasma cell

formation, indicating that Rag2 specifically regulates CpG-

induced IFNa production. In addition, we show that interferon

regulatory factor-8 (IRF8), an essential transcription factor that

regulates pDC development, is dysregulated in pDCs lacking
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Rag2. These results suggest Rag2 as an important regulator of

interferon response in pDCs.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of Laboratory

Animals of theNational Institutes ofHealth.Rag12/2 andRag22/2

mice, which were of BALB/c background, had been housed at

California Institute of Technology (Animal Assurance Number:

A3426-01) for several years prior to the start of the study. Age-

matched wildtype mice were purchased from Jackson Laboratory.

Theprotocolwasapprovedby the InstitutionalAnimalCareandUse

Committee (IACUC) of California Institute of Technology (IACUC

protocol number 1403-05T). All efforts were made to minimize

suffering and mice were euthanized by CO2 inhalation followed by

exsanguination by transcardiac blood collection.

Cell Isolation and Culture
For the isolation of progenitor cells, bone marrow cells were

sorted using a FACSAria sorter (BD Biosciences) for a population

that was lineage2B220+Flt3+CD43+CD24+, where the lineage

markers were Ly6C, PDCA-1, CD11c, Ter-119, and CD3e. For

other experiments, bone marrow cells and splenocytes were

isolated and sorted for different cell populations using magnetic-

activated cell separation (MACS) kits (Miltenyi Biotec). The

isolation steps were repeated whenever necessary to achieve 90%

purity as determined by flow cytometry. Mouse CD19 microbeads

were used for the isolation of B cells. Mouse PDCA-1 microbeads

were used for the isolation of pDCs. Ly6Chi and Ly6C2/low cells

were also separated with MACS. Cells were cultured in RPMI

1640 medium supplemented with 10% fetal bovine serum, 2 mM

L-glutamine, 50 mM b-mercaptoethanol, 10 mM HEPES, 1 mM

sodium pyruvate, 16 MEM nonessential amino acids, and

penicillin/streptomycin. In some experiments, cells were cultured

with 100 ng/mL mouse Flt3 ligand (R & D Systems), 5 mM of

mouse Type A CpG oligonucleotide ODN1585 (InvivoGen),

10 ng/mL mouse IL-7 (R & D Systems), or 0.5 mg/mL of an anti-

mouse IL-6 blocking antibody or isotype control (eBioscience).

Reverse Transcription-quantitative PCR (RT-qPCR)
Total RNA was isolated from total bone marrow cells or

MACS-sorted cells (.90% purity as determined by flow

cytometry) using RNeasy Mini Kit (Qiagen) per manufacturer’s

instructions. Reverse transcription was performed by using

iScriptTM cDNA Synthesis Kit (Bio-Rad). SYBR Green-based

quantitative real-time PCR was conducted with a 7300 Realtime

PCR system (Applied Biosystems) to assay Rag1, Rag2, IRF8, and

L32 mRNA amounts with gene-specific primers (sequences

available upon request). For all experiments, mRNA expression

was normalized to that of a relatively stable ribosomal protein L32

[20].

Wright’s Stain
For Wright’s stain, single cell suspensions were cytospinned onto

slides, air-dried, stained, and examined on an Olympus BX-51

microscope and photographed using a Spot Digital Camera.

Flow Cytometry
Fluorophore-conjugated monoclonal antibodies specific to

PDCA-1, B220, Ly6C, CD11c, CD11b, TLR9 (intracellular),

CD40, CD86, CCR7, or CD138 (eBioscience) were used to stain

cells. After washing, stained cells were assayed with a BD

FACSCalibur flow cytometer (BD Biosciences). Results were

processed with FlowJo software (Tree Star).

Enzyme-linked Immunosorbent Assays (ELISAs)
Mouse IFNa, IL-6, IgM, and IgG2a ELISAs were performed

with cytokine-specific kits (PBL Interferon Source or eBioscience)

or antibody-specific kits (Bethyl Laboratories) and carried out

according to the manufacturer’s instructions.

In vivo CpG Stimulation
To prepare each milliliter of the ODN1585/1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP) complex for in vivo CpG

stimulation, 100 mL of 500 mM ODN1585 was mixed with 20 mL
of PBS and 30 mL (30 mg) of DOTAP (Roche), incubated for

15 min at room temperature, and then diluted with 850 mL of

PBS to make 50 mM of the complex. For each mouse, 150 mL of

ODN1585/DOTAP complex was injected intravenously.

Statistical Analysis
Student’s two-tailed t tests were performed using Microsoft

Excel statistical software module (Microsoft). All data, unless

specified, are shown as the mean + standard error, and the

difference was considered statistically significant when the P value

was less than.05.

Results

Requirement for Rag2 in pDC Development
In the mouse bone marrow, Rag1 and Rag2 proteins are

expressed in early stages of B cells to regulate V(D)J rearrangement

of the Ig heavy and light chain loci. PDCs have also been shown to

express Rag proteins and undergo D-to-J rearrangement [9],

raising the possibility that pDCs and B cells may have

differentiated from the same progenitor cells. Thus, we sorted

Hardy fractions B-C from mouse bone marrow cells and examined

the potential of the sorted cells to generate B cells and pDCs,

respectively. These fractions of cells were previously defined as

pre-pro-B and pro-B cells (lineage2B220+Flt3+CD43+CD24+) and

had D-to-J, but not V-to-DJ rearrangements [21]. As anticipated,

the sorted progenitor cells generated CD19+m+ pre-B cells in vitro

upon stimulation with mouse IL-7 (Fig. 1A, upper panels) and the

expression of m heavy chain was abolished in the absence of Rag2

(Fig. 1A, lower panels). Importantly, the same progenitor cells were

also able to generate IFNa-producing PDCA-1+ pDCs in the

presence of Flt3 ligand and a TLR9 ligand (Type A CpG

oligonucleotide ODN1585), regardless of Rag2 expression

(Fig. 1B–C). However, we observed that pDCs generated from

Rag22/2 progenitors expressed a higher level of Ly6C (Fig. 1B)

and produced significantly less IFNa than Rag2+/+ pDCs (Fig. 1C;

p,.05). These results indicate that B cells and pDCs may be

generated from a common population of progenitor cells and that

Rag2 may be required for the development of both types of

progeny cells.

We next compared the expression of Rag1 and Rag2 in pDCs

versus B cells and other cells in the bone marrow. As anticipated,

both Rag1 and Rag2 were highly expressed in pDCs and B cells

but not in other cells (Fig. 2A). Importantly, we found that while

Rag1 was expressed equally in pDCs and B cells, the expression of

Rag2 was 3-fold higher in pDCs than in B cells (p,.05), indicating

that Rag2 is preferentially expressed in pDCs. This indicates that

Rag2 might have a unique function in pDCs. In addition, we

found that bone marrow-derived Rag22/2 pDCs were morpho-

logically different from Rag2+/+ pDCs (Fig. 2B). While Rag2+/+

pDCs were uniformly ‘‘plasma cell-like’’ under the microscope,

Rag2 Regulates IFNa6 Production in pDCs
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there appeared to be two subpopulations of Rag22/2 PDCA-1+

pDCs in the bone marrow–one was morphologically similar to

Rag2+/+ pDC but the other possessed the morphology of activated

interdigitating pDCs [1]. This also suggests that Rag2 may have

an unknown function in pDCs.

Phenotypic Difference between Rag2+/+ and Rag22/2

pDCs
PDCs are phenotypically defined as B220+CD11c+/lowPDCA-

1+ cells in mice [1]. Siglec-H, another pDC-specific marker, is

uniformly expressed on B220+CD11c+/lowPDCA-1+ cells that have

not been previously stimulated [22]. Although PDCA-1 is

expressed at a low level in some subpopulations of B cells and

inducible in many cells upon activation [23], we chose to use

Figure 1. Generation of B cells and pDCs from a common population of mouse progenitor cells. Bone marrow cells were isolated from
Rag2+/+ and Rag22/2 mice, sorted with a FACSAria sorter for a population that was lineage2B220+Flt3+CD43+CD24+, where the lineage markers were
Ly6C, PDCA-1, CD11c, Ter-119, and CD3e. A. Generation of B cells from the sorted cells. The sorted cells (2 6 105 sorted cells/200 mL/well) were
cultured in the presence of IL-7 for 4 days and analyzed by using flow cytometry. Over 90% of the derived cells were CD19+ and some of them also
expressed surface Igm heavy chain (m-HC), indicating the presence of pre-B cells. B. Generation of pDCs from the sorted cells. The sorted cells (26105

sorted cells/200 mL/well) were cultured in the presence of Flt3 ligand and ODN1585 for 4 days and analyzed by flow cytometry. About 90% of
progeny cells were PDCA-1+. The expression levels of Ly6C on the surface of PDCA-1+ cells are also shown. Representative plots of 3 independent
experiments are shown. C. IFNa production from the generated pDCs. The unit of measurement for IFNa production, pg/106 cells/day, was based on
the starting number of sorted cells when they were seeded. The difference in IFNa production was significant (n = 3, p,.05).
doi:10.1371/journal.pone.0047952.g001
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a relatively high level of PDCA-1 as one specific marker for pDCs

in the analysis and sorting of unstimulated cells because antibodies

against Siglec-H have been shown to inhibit IFNa production in

pDCs [24]. PDCs also react with antibodies that recognize Ly6C

but it is controversial whether Ly6Chi or Ly6Clow pDCs, or both,

are capable of producing IFNa [16,25–27]. We found that bone

marrow B220hiLy6C+/low cells (shown in red gate), but not

B220hiLy6C2 cells (shown in black gate) or B220low cells (gate not

shown), were positive for PDCA-1 (Fig. 3A). We also found that

although the numbers of pDCs were similar between Rag2+/+ and

Rag22/2 mice (Fig. S1), Rag22/2 pDCs expressed a higher level

of Ly6C than Rag2+/+ pDCs (Fig. 3A and 3B, comparing the red

gates), with the phenomenon especially evident in the spleen

(Fig. 3B), suggesting phenotypic variation of pDCs according to

Rag2 expression.

Because Ly6C is also expressed on CD11b+ monocytes/

macrophages [28], we excluded CD11b+ cells by gating on

CD11c+CD11b2 cells (Fig. 3C). These cells were expanded by

Flt3 ligand, a cytokine known to promote pDC development

and proliferation [29–31], regardless of Rag2 expression

(Fig. 3C). However, under both untreated and Flt3 ligand-

treated conditions, Ly6C expression was higher in

CD11c+CD11b2 cells lacking Rag2 than their wildtype or

Rag12/2 counterparts (Fig. 3C and Fig. S2). These results

suggest that Rag2 may be important for certain function(s) of

pDCs that are related to Ly6C expression, such as the

production of IFNa [16,26,27].

Figure 2. Preferential expression of Rag2 in pDCs. A. Rag1 and Rag2 expression in B cells, pDCs, and other cells in the mouse bone
marrow. Bone marrow (BM) cells were isolated from wildtype mice and sorted for B cell, pDCs, and other cells. Total RNA was isolated from
different subpopulations of cells and RT-qPCR was performed. Rag1 and Rag2 mRNA levels were normalized to L32 and the expression levels in
non-B/non-pDC cells were defined as 1. The difference in Rag2 expression between B cells and pDCs was significant (n = 3, p,.05). B.
Morphologic difference between bone marrow-derived Rag2+/+ and Rag22/2 pDCs. Bone marrow cells were isolated from Rag2+/+ and Rag22/2

mice and pDCs were sorted. Single cell suspensions were cytospinned onto slides, air-dried, stained, and examined on an Olympus BX-51
microscope (406 objective lens) and photographed using a Spot Digital Camera. Two representative images for each type of mice are shown.
Bar represents 5 mm.
doi:10.1371/journal.pone.0047952.g002
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Rag22/2 pDC Defective at IFNa Production upon TLR9
Stimulation
PDCs express and secrete IFNa in response to viral infection

[32,33] or TLR ligation [1,34]. To determine the effect of Rag2 on

this primary function of pDCs, we stimulated wildtype, Rag12/2, or

Rag22/2 bone marrow cells with CpG in vitro. Our result showed

that while wildtype (Rag2+/+) and Rag12/2 bone marrow cells

produced a large amount of IFNa in response to CpG, the induction

of IFNa was significantly lower in Rag22/2 bone marrow cells

(Fig. 4A, left panel, p,.05; and Fig. S3), suggesting that Rag2may be

required for TLR9-mediated production of IFNa in the bone

marrow.NeitherRag2+/+norRag22/2 cells derived from the spleen

produced a significant level of IFNa upon CpG stimulation (Fig. 4A,

right panel), consistent with previous reports [35,36]. Therefore, we

focused on bone marrow cells in the following experiments.

Different subpopulations of pDCs in the mouse bone marrow

have been found with differential IFNa-producing capacity

[16,25–27,36]. With regard to Ly6C expression, both Ly6Chi

pDCs [16,25] and Ly6Clow pDCs [26,27] have been shown to

produce IFNa. We found that isolated bone marrow cells that

expressed a high level of Ly6C, which might include both pDCs

and monocytes/macrophages, were poor producers of IFNa in

response to CpG stimulation (Fig. 4B, left panel). The Ly6C2/low

population of Rag2+/+ bone marrow cells, on the other hand,

Figure 3. Rag2+/+ and Rag22/2 pDCs different in Ly6C expression. A. Analysis of bone marrow cells isolated from Rag2+/+ and Rag22/2 mice.
B220hiLy6C2 cells were gated with a black gate and are shown as black lines in the CD11c and PDCA-1 histograms. B220hiLy6C+/low cells were gated
with a red gate and are shown as red lines in the CD11c and PDCA-1 histograms. Representative plots of 3 independent experiments are shown. B.
Analysis of splenocytes isolated from Rag2+/+ and Rag22/2 mice. B220+Ly6C2 and B220+Ly6C+/low cells were gated and analyzed as described in A.
Note that in both bone marrow and spleen, the expression level of Ly6C in the Rag22/2 red gate was higher than that in the Rag2+/+ red gate. C. Ly6C
expression during Flt3 ligand-mediated expansion of CD11b2CD11c+ cells. Total bone marrow cells were either untreated or treated with Flt3 ligand
for 5 days. CD11b2CD11c+ cells were gated and analyzed for Ly6C expression. Representative plots of 3 independent experiments are shown.
doi:10.1371/journal.pone.0047952.g003

Rag2 Regulates IFNa6 Production in pDCs

PLOS ONE | www.plosone.org 5 October 2012 | Volume 7 | Issue 10 | e47952



Figure 4. Rag22/2 pDCs defective at IFNa production upon CpG stimulation. A. CpG-induced IFNa production in bone marrow cells but not
in splenocytes. Bone marrow cells (left panel) and splenocytes (right panel) were isolated from Rag2+/+ and Rag22/2 mice. Cells were either not

Rag2 Regulates IFNa6 Production in pDCs
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responded well to CpG and produced a large amount of IFNa
(Fig. 4B, right panel), suggesting that the production of IFNa may

correlate with a lower expression level of Ly6C. However, the

Ly6C2/low fraction of Rag22/2 bone marrow cells produced

a significant lower amount of IFNa than their Rag2+/+ counter-

parts in response to CpG stimulation (Fig. 4B, right panel; p,.05),

likely because there were fewer Ly6Clow pDCs in Rag22/2 bone

marrow cells (Fig. 3A and 3C). In addition, we found that isolated

PDCA-1+ Rag22/2 pDCs produced a significantly lower level of

IFNa than isolated PDCA-1+ Rag2+/+ pDCs upon CpG

stimulation (Fig. 4C; p,.05). These results suggest that Rag22/2

pDCs, expressing a high level of Ly6C, are defective at producing

IFNa upon TLR9 ligation in vitro. We also tested the effect of

TLR7/8 ligand Gardiquimod on bone marrow-derived pDCs and

did not find any difference in IFNa production with or without

Rag2 (data not shown), suggesting that the defect in Rag22/2

pDCs may be restricted to TLR9-mediated induction of IFNa.
We next examined the effect of Rag2 on IFNa production in

vivo. The basal concentrations of IFNa in the mouse plasma were

similar in Rag2+/+ and Rag22/2 mice (Fig. 4D). However, the

CpG-induced level of IFNa appeared to be different between the

two types of mice (Fig. 4E). To increase CpG uptake by pDCs in

vivo, we used a cationic lipid DOTAP that helps the localization of

negatively charged CpG oligonucleotide in the early endosomes

[37,38] and injected the CpG/DOTAP complex intravenously to

target pDCs in the peripheral blood and bone marrow. Our result

showed that IFNa was rapidly induced upon CpG stimulation in

Rag2+/+ mice (Fig. 4E). The IFNa-producing cells became

refractory to a secondary stimulation, consistent with the reported

kinetics of IFNa response in pDCs [39]. In contrast, Rag22/2

mice did not have any change in IFNa levels in response to either

primary or secondary CpG stimulation (Fig. 4E), suggesting that

Rag2 may be required for TLR9-mediated IFNa production in

vivo. Lastly, we confirmed that the defect of IFNa production in

Rag22/2 pDCs was not due to a decrease in TLR9 expression

(Fig. 4F).

Rag22/2 pDC Normal in other Functions
TLR ligation in pDCs not only triggers IFNa production but

also induces the expression of pDC functional markers, such as

CCR7, CD40, and CD86 [33]. CCR7 mediates the migration of

pDCs to lymph nodes [40,41]. CD40L can activate pDCs through

CD40 [42] and CD40L-activated pDCs can regulate adaptive

immunity by inducing T helper 1 polarization in T cells [43,44].

The co-stimulatory molecule CD86, on the other hand, has been

shown to be upregulated in pDCs upon TLR ligation [44]. We

found that all 3 functional markers were induced in bone marrow-

derived PDCA-1+ cells by CpG stimulation regardless of Rag2

expression (Fig. 5), indicating that Rag2 may not be required for

the induction of these markers.

PDCs link innate and adaptive immunity by producing type I

interferons and other cytokines [1]. One important function of

pDCs in the regulation of adaptive immunity is to promote plasma

cell formation and antibody class switching in B cells through

producing IFNa and IL-6 [45,46]. Because Rag22/2 pDC are

defective at producing IFNa (Fig. 4), we asked whether the lack of

Rag2 would block the function of pDCs in antibody class

switching and plasma cell formation. To examine this, CD11c-

depleted wildtype splenocytes were co-cultured, or cultured in

a transwell system, with bone marrow-derived Rag2+/+ or Rag22/

2 pDCs. As anticipated, Rag2+/+ pDCs significantly promoted

antibody class switching (Fig. 6A–B, from IgM to IgG) and plasma

cell formation (Fig. 6C) under the co-culture condition, suggesting

that close proximity between pDCs and B cells may be required.

Importantly, Rag22/2 pDCs were also able to promote antibody

class switching and plasma cell formation (Fig. 6A–C), suggesting

that the lack of Rag2 may not block the function of pDCs in

supporting B cells. We next asked whether IL-6 mediated the

effect of Rag22/2 pDCs on antibody class switching from IgM to

stimulated (NS) or stimulated with ODN1585 (CpG) in vitro for 5 days. Production of IFNa in the medium was measured by using ELISA. The asterisk
represents significant difference (n = 4, p,.05) between the CpG-induced IFNa levels in Rag2+/+ versus Rag22/2 bone marrow cells. B. CpG-induced
IFNa production in Ly6C2/low bone marrow cells. Bone marrow cells were isolated from Rag2+/+ and Rag22/2 mice and separated according to Ly6C
expression. The left panel shows the Ly6Chi population whereas the right panel shows the Ly6C2/low population. Cells were either not stimulated (NS)
or stimulated with ODN1585 (CpG) in vitro for 2 days. Production of IFNa in the medium was measured by using ELISA. The asterisk shows that,
within the Ly6C2/low population, there was significant difference (n = 4, p,.05) between the CpG-induced IFNa levels in Rag2+/+ versus Rag22/2 cells.
C. Rag22/2 PDCA-1+ pDCs defective at CpG-induced IFNa production. Bone marrow cells were isolated from Rag2+/+ and Rag22/2 mice and PDCA-1+

pDCs were sorted. Cells were either not stimulated (NS) or stimulated with ODN1585 (CpG) in vitro for 5 days. Production of IFNa in the medium was
measured and the asterisk represents significant difference (n = 3, p,.05) between the CpG-induced IFNa levels in Rag2+/+ versus Rag22/2 pDCs. D.
Plasma levels of IFNa in Rag2+/+ and Rag22/2 mice. The two groups are not significantly different (n = 8; p..05). E. In vivo response to CpG. Rag2+/+

and Rag22/2 mice (n = 3 per group) were treated with ODN1585/DOTAP complex (CpG) intravenously at 0 and 24 h. Mice were tail-bled every 2 h
for up to 8 h after each CpG injection. Plasma levels of IFNa were measured by using ELISA. The asterisks represent significant differences (p,.05)
between plasma IFNa levels in Rag2+/+ versus Rag22/2 mice at 6, 8, and 32 h. F. TLR9 expression. Bone marrow cells were isolated from Rag2+/+ and
Rag22/2 mice and stained for surface PDCA-1 and intracellular TLR9 expression. The histogram shown is a representation of 3 independent
experiments and has been pre-gated on PDCA-1+ cells. The shaded peak represents isotype control and the dashed and solid lines represent Rag2+/+

and Rag22/2 pDCs, respectively.
doi:10.1371/journal.pone.0047952.g004

Figure 5. CCR7, CD40 and CD86 induction with CpG in PDCA-1+

cells regardless of Rag2 expression. Bone marrow cells were
isolated from Rag2+/+ and Rag22/2 mice and stimulated with ODN1585
in vitro for 4 days. The expression levels of CCR7, CD40, and CD86 in
untreated (shaded peaks) and CpG-stimulated (solid lines) bone marrow
cells are shown. The histograms shown are a representation of 3
independent experiments and have been pre-gated on PDCA-1+ cells.
doi:10.1371/journal.pone.0047952.g005
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IgG. We found that both Rag2+/+ and Rag22/2 pDCs naturally

secreted IL-6 (Fig. 6D) and that a blocking antibody against IL-6

was able to abolish the effects of both types of pDCs on antibody

class switching (Fig. 6E–F), suggesting that although Rag22/2

pDCs are defective at producing IFNa, they are able to support

antibody class switching through producing IL-6.

Altogether, these results suggest that in pDCs, Rag2 specifically

regulates CpG-mediated induction of IFNa, whereas other

functions of pDCs may be intact in the absence of Rag2.

Dysregulation of IRF8 in Rag22/2 pDCs
To elucidate the mechanism by which Rag2 regulates CpG-

mediated induction of IFNa in pDCs, we examined the expression

level of IRF8, a transcription factor important for both pDC

development [47] and IFNa production [48]. We found that

during the expansion of pDCs by Flt3 ligand, IRF8 mRNA was

dramatically upregulated in bone marrow-derived wildtype and

Rag12/2 pDCs (Fig. 7A and Fig. S4). Rag22/2 pDCs, however,

expressed IRF8 at a significantly lower level upon the stimulation

(Fig. 7A, p,.05). This suggests that pDCs may be developmentally

impaired in the absence of Rag2. In addition, we examined the

change of IRF8 mRNA levels over time after CpG stimulation.

We found that IRF8 mRNA was slightly upregulated in Rag2+/+

but not Rag22/2 pDCs (Fig. 7B). The levels of IRF8 mRNA was

significantly lower in Rag22/2 pDCs at 3 h and 5 h after CpG

stimulation (Fig. 7B, p,.05), which might have led to a significant

difference in the magnitude of IFNa production observed between

Rag2+/+ and Rag22/2 pDCs (Fig. 7C, p,.05). These results

suggest that IRF8 expression is dysregulated in Rag22/2 pDCs,

which might be one reason why CpG-mediated IFNa production

is defective in pDCs lacking Rag2.

Discussion

Using Rag22/2 mice, we have found that pDCs as main

producers of IFNa require Rag2 for normal development. This is

a novel function for Rag2, whose classical role is to initiate B and

T cell development. Our results showed that, although the

Figure 6. PDCs capable of supporting antibody class switching and plasma cell formation regardless of Rag2 expression. A-C. CD11c-
depleted wildtype splenocytes (56105 cells per well) were either co-cultured, or culture in a transwell system, with medium (No pDC) or bone
marrow-derived, MACS-sorted Rag2+/+ or Rag22/2 pDCs (2.56105 sorted cells per well) for 5 days. IgM (A) and IgG (B) production was measured by
using ELISAs. The percentages of CD138+ plasma cells at the end of the cultures are shown in C. The asterisks show significant differences (n = 4,
p,.05) compared to the No pDC control under the co-culture condition. D. IL-6 production by Rag2+/+ and Rag22/2 pDCs. CD11c-depleted wildtype
splenocytes were either co-cultured, or culture in a transwell system, with medium (No pDC) or sorted Rag2+/+ or Rag22/2 pDCs for 5 days. IL-6
production was measured by using ELISA. The asterisks show significant differences (n = 3, p,.05) compared to the No pDC control under the co-
culture condition. E-F. Antibody class switching dependent on IL-6. CD11c-depleted wildtype splenocytes were co-cultured with medium (No pDC) or
sorted Rag2+/+ or Rag22/2 pDCs for 5 days in the presence of either isotype control or an anti-IL-6 blocking antibody. IgM (E) and IgG (F) production
was measured by using ELISAs.
doi:10.1371/journal.pone.0047952.g006
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numbers of pDCs were similar between Rag2+/+ and Rag22/2

mice, Rag22/2 pDCs produced a significantly lower level of IFNa
in vitro and in vivo in response to CpG, a ligand for TLR9. Flt3

ligand, a known stimulator of pDC proliferation, could expand

Rag22/2 pDCs in vitro; however, the expanded cells expressed

a high level of Ly6C. These Ly6Chi pDCs were defective at

producing IFNa in response to CpG. In contrast, Rag22/2 pDCs

retained the function to induce CCR7, CD40, and CD86 with

CpG. They were also able to promote antibody class switching

and plasma cell formation through producing IL-6. These results

suggest Rag2 as a novel regulator of IFNa production in pDCs.

During B and T cell development, Rag2 couples with Rag1 to

regulate V(D)J recombination. Although Rag2 is generally thought

to function by pairing with Rag1, recent evidence has shown that

only Rag2 is essential for maintaining genomic stability since

knockout of this protein, but not knockout of Rag1, on p532/2

background leads to rapid formation of thymic lymphomas [49].

This suggests that Rag2 may have unique functions that are not

shared by Rag1. We show here that Rag22/2 pDCs expressed

a high level of Ly6C but Rag12/2 pDCs expressed a similar

amount of Ly6C as wildtype pDCs (Fig. 3C and Fig. S2). In

addition, Rag22/2 bone marrow cells had a defect in CpG-

mediated IFNa induction but Rag12/2 bone marrow cells did not

(Fig. 4A, left panel and Fig. S3). Moreover, while IRF8 mRNA was

dramatically upregulated by Flt3 ligand in both wildtype and

Rag12/2 pDCs, the increase of IRF8 was much lower in pDCs

lacking Rag2 (Fig. 7A and Fig. S4). The lack of such defects in

Rag12/2 pDCs suggests that maturing pDCs may not need the

presence of lymphocytes to become fully competent. These

observations also suggest that Rag2 may be able to function

separately from Rag1.

PDCs as main producer of IFNa function as fine tuners of

immune responses. An inadequate amount of IFNa due to the lack

of functional pDCs can lead to uncontrolled viral infection and/or

cancer [1]. Too much of IFNa, on the other hand, can cause

autoimmune disorders [50]. Therefore, the function of pDCs to

produce IFNa must be tightly controlled. This function of pDCs

parallels the production of IFNa by conventional dendritic cells,

which is mediated by retinoic acid-inducible gene I (RIG-I)-

dependent signaling [51]. The production of IFNa by pDCs,

however, is triggered through TLR7 and TLR9 ligation [34]. The

TLR-mediated signaling cascade involves myeloid differentiation

primary response gene 88 (MyD88)/tumor necrosis factor re-

ceptor-associated factor 6 (TRAF6)/interleukin 1 receptor-associ-

ated kinase 1 (IRAK1) pathway and subsequent phosphorylation

of IRF7. It has also been shown that TLR-mediated induction of

IFNa in pDCs requires phosphatidylinositol-3-OH kinase (PI3K)/

Akt/mammalian target of rapamycin (mTOR) signaling pathway

[52] and nuclear factor-kB (NF-kB) and p38 mitogen-activated

protein kinase (MAPK) signaling pathways [53]. Recently, an

antiviral protein that is induced by interferon signaling has been

shown to promote TLR-mediated IFNa production in pDCs,

suggesting a positive feedback loop that controls the primary

function of pDCs to produce IFNa [54]. We show here that Rag2

also regulates IFNa production in pDCs. In addition, we have

found that Rag2 regulates IFNa production without affecting

other functions of pDCs–which include the expression of surface

functional markers and the support of antibody class switching–

suggesting that Rag2 may specifically regulate the signaling events

leading to IFNa induction.

We focused on IRF8 to elucidate the role of Rag2 in IFNa
induction because this transcription factor is involved in not only

IFNa induction, but also pDC development. IFNa is induced in

two phases upon viral infection [48]. The second amplifying

phase, which produces more IFNa than the first phase, requires

IRF8. IRF8 is also required for the pDC maturation [47], a process

that is facilitated by Flt3 ligand and inhibited by granulocyte

macrophage colony-stimulating factor (GM-CSF) [55]. In order

for GM-CSF to block pDC formation, it uses signal transducers

and activators of transcription-5 (STAT5) to directly suppress the

expression of IRF8 [56]. In this study, we determined IRF8

expression in Rag22/2 versus Rag2+/+ pDCs upon Flt3 ligand or

Figure 7. Dysregulation of IRF8 expression in Rag22/2 pDCs. A. Induction of IRF8 mRNA expression in pDCs with Flt3 ligand. PDCA-1+ pDCs
were sorted and either untreated (NS) or treated with Flt3 ligand (Flt3L) for 5 days. Total RNA was isolated and RT-qPCR was performed. IRF8 mRNA
levels were normalized to L32 and the expression level in Rag2+/+ pDC without stimulation was defined as 1. The difference in Flt3L-induced IRF8
expression between Rag2+/+ and Rag22/2 pDCs was significant (n = 3, p,.05). B. Time course of IRF8 mRNA expression in pDCs upon CpG
stimulation. Rag2+/+ and Rag22/2 PDCA-1+ pDCs were sorted and treated with ODN1585 (CpG) for 1, 3, 5, or 7 h. Total RNA was isolated and RT-qPCR
was performed. IRF8 mRNA levels were normalized to L32 and the expression level in Rag2+/+ pDC without stimulation was defined as 1. The asterisks
represent significant differences (n = 3, p,.05) between IRF8 levels in Rag2+/+ versus Rag22/2 pDCs at 3 and 5 h. C. Time course of IFNa production
in pDCs upon CpG stimulation. Rag2+/+ and Rag22/2 PDCA-1+ pDCs were sorted and treated with ODN1585 (CpG) for 1, 3, 5, or 7 h. IFNa production
were measured by using ELISA. The asterisks represent significant differences (n = 3, p,.05) between IFNa levels in Rag2+/+ versus Rag22/2 pDCs at 5
and 7 h.
doi:10.1371/journal.pone.0047952.g007
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CpG stimulation, and found that IRF8 mRNA was dysregulated

in pDCs lacking Rag2 (Fig. 7). How Rag2 is involved in the

dysregulation of IRF8 and whether additional pDC-specific

transcription factor such as E2-2 [57,58] are altered in Rag22/2

pDCs require further investigation. In addition, it has been

recently reported that CCR92MHC-IIlow pDCs produce more

IFNa than CCR9+MHC-II+ pDCs [22]. We did not observe any

difference in MHC-II expression between Rag2+/+ and Rag2/2

pDCs (data not shown), but we have not analyzed CCR9 and will

be interested in investigating whether Rag2 regulates CCR9

expression in future studies. We are also interested in knowing

whether pDCs isolated from Rag22/2 mice would differ in the

expression of Rag1 and other B-lineage associated genes.

Furthermore, we will try other TLR stimulations and compare

the response to those triggered by TLR9 ligands. TLR7/8 and

TLR9 ligands have been shown to trigger different inflammatory

responses [59] and it will be also interesting to find out why CpG-

mediated, but not TLR7/8 ligand-mediated production of IFNa,
is affected by Rag2 expression.

Overall, our results have shown that Rag2, an essential protein

for B and T cell development, may be also important for the

development of the primary function of pDCs as professional

interferon-producing cells. This suggests a common early de-

velopmental path for B/T cells and pDCs. This also suggests Rag2

as a novel therapeutic target for the treatment of excessive

interferons such as those in autoimmune disorders.

Supporting Information

Figure S1 Numbers of pDCs in the mouse bone
marrow. Bone marrow cells from wildtype (WT), Rag12/2,

and Rag22/2 mice (n = 4 in each group) were isolated, counted,

and analyzed by using flow cytometry. The percentages of PDCA-

1+ pDCs were determined and used to calculate the numbers of

pDCs.

(TIF)

Figure S2 Ly6C expression during Flt3 ligand-mediated
expansion of Rag12/2 CD11b2CD11c+ cells. Rag12/2

total bone marrow cells were either untreated or treated with Flt3

ligand for 5 days. CD11b2CD11c+ cells were gated and analyzed

for Ly6C expression. Representative plots of 3 independent

experiments are shown.

(TIF)

Figure S3 Rag12/2 pDCs normal at IFNa production
upon CpG stimuation. Bone marrow cells were isolated from

wildtype (WT) and Rag12/2 mice (n = 4 in each group). Cells

were either not stimulated (NS) or stimulated with ODN1585

(CpG) in vitro for 5 days. Production of IFNa in the medium was

measured by using ELISA.

(TIF)

Figure S4 IRF8 mRNA expression in pDCs upon Flt3
ligand stimulation. Wildtype (WT) or Rag12/2 PDCA-1+

pDCs (n = 3 in each group) were sorted and either untreated (NS)

or treated with Flt3 ligand (Flt3L) for 5 days. Total RNA was

isolated and RT-qPCR was performed. IRF8 mRNA levels were

normalized to L32 and the expression level in WT pDC without

stimulation was defined as 1.

(TIF)
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