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Abstract

To gain deeper insights into principles of cell biology, it is essential to understand how cells reorganize their genomes by
chromatin remodeling. We analyzed chromatin remodeling on next generation sequencing data from resting and activated
T cells to determine a whole-genome chromatin remodeling landscape. We consider chromatin remodeling in terms of
nucleosome repositioning which can be observed most robustly in long nucleosome-free regions (LNFRs) that are occupied
by nucleosomes in another cell state. We found that LNFR sequences are either AT-rich or GC-rich, where nucleosome
repositioning was observed much more prominently in GC-rich LNFRs — a considerable proportion of them outside
promoter regions. Using support vector machines with string kernels, we identified a GC-rich DNA sequence pattern
indicating loci of nucleosome repositioning in resting T cells. This pattern appears to be also typical for CpG islands. We
found out that nucleosome repositioning in GC-rich LNFRs is indeed associated with CpG islands and with binding sites of
the CpG-island-binding ZF-CXXC proteins KDM2A and CFP1. That this association occurs prominently inside and also
prominently outside of promoter regions hints at a mechanism governing nucleosome repositioning that acts on a whole-
genome scale.
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Introduction

A major goal of biological research is to understand the

dynamics of genome organization by chromatin remodeling which

controls the access of proteins to DNA and thereby transcription

[1–9]. Chromatin remodeling was observed in the context of

immune response inducing a change of gene expression patterns

[10]. For example, chromatin remodeling by repositioning of

nucleosomes has been reported for gene promoter regions of

interleukin 2 (IL2) [11] and colony stimulating factor 2 (CSF2 aka

GMCSF) [12]. Nucleosomes are 147 base pairs long DNA

sequences wrapped around octamers of histone proteins [13].

They are usually separated by 10–50 bp linker sequences [14],

cover 70–95% of the DNA, and are regularly spaced along

chromosomes except for some, relatively rare, linkers that are

much longer than 50 bp [7,15]. In the following study, we

consider linkers with a length of at least 100 bp and will refer to

them as long nucleosome-free regions (LNFRs). We focus on these

LNFRs because they allow for a reliable detection of chromatin

remodeling in terms of nucleosome repositioning, which comes

down to detecting nucleosomes in regions that were nucleosome-

free or to detecting LNFRs at positions which were occupied by

nucleosomes in another cell state.

It can be assumed that chromatin remodeling is governed by the

DNA sequence patterns, as nucleosome positions are also largely

determined by them [16,17]. Nucleosome positioning patterns are

well studied. It was found that the most indicative pattern for

nucleosomes are dinucleotides occurring in a 10-bp periodicity

where AA/AT/TT alternates with GC [9,15,16,18–22]. This

dinucleotide pattern favors sharp bending of the DNA helical

repeat every 10 bp, where the DNA sugar-phosphate backbone

alternatingly faces towards the histones and away from them.

Beside this periodic pattern, also local patterns, i.e. motifs, have

been identified which can be sub-divided into nucleosome-

favoring and nucleosome-repelling patterns. Examples of the

former are the 3-mer CCA [23], 4-mers like CTAG, TAGA,

TCTA [19], and the 5-mer CGCGC [7]. Nucleosome-repelling

patterns specifically indicate LNFRs which are our basis for

detecting chromatin remodeling in terms of nucleosome reposi-

tioning. Kaplan et al. found AAAAA and ATATA as most

prominent LNFR patterns, and, more generally, identified

poly(dA-dT) as LNFR indicators [24], which is in accordance

with the findings of others [3,7,15,21,22,25–27]. Field et al.

extracted 5-mer LNFR patterns like ATATA, TAAAA [7], while

Peckham et al. reported the 3-mers ATA, TAA, and AAA and the

4-mers AATA, ATAA, and AAAA [23]. In summary, the most

indicative LNFR patterns are AT-rich and especially contain long

A and T tracts.

We go beyond the detection of nucleosome positioning patterns

and aim at identifying nucleosome re-positioning patterns. We

focus on LNFRs to robustly find chromatin remodeling regions

across the whole genome to gain insight in cellular genome re-

organization dynamics in response to extracellular signals. Schones

et al. [28] compared nucleosome positions in resting and activated

T cells based on data from next generation sequencing (NGS). We
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perform a whole-genome re-analysis of these data to identify

sequence patterns that govern nucleosome repositioning.

Results

Reliable Identification of LNFRs from NGS Data
Our read mapping resulted in 53.97% mapped reads

(137,077,836 of 254,003,438) for resting T cells and 50.97%

mapped reads (126,519,785 of 248,219,348) for activated T cells

(further details about the mapping results are provided in Table

S1). For both resting and activated T cells, we computed whole-

genome nucleosome coverage profiles upon correction for multiple

matches.

To assess the quality of the nucleosome coverage profiles, we

investigated them at 59 and 39 ends of known transcripts (for

details, see Text S1, Section 2). Figure S3 shows that the well-

known +1 nucleosome and the 39 NFR are clearly visible

[7,15,21,22,29]. Moreover, we observed a high correlation of

nucleosome coverage with H3 and H2A.Z occupancy (see Text

S1, Section 3.2). All these results suggest a high quality of our

nucleosome coverage profiles.

We obtained 47,270 and 79,092 LNFRs for activated and

resting T cells, respectively (Table S2 shows how these LNFRs

distribute over chromosomes 1–22). The average lengths of

LNFRs are 154 bp for resting and 150 bp for activated T cells.

Although FDR computations reveal that there might be a small

proportion of false LNFRs (Text S1, Section 3.1), statistical

analyses of LNFRs suggest a high quality of our LNFR sets (Text

S1, Section 3.2). In particular, we analyzed overlaps of resting and

activated LNFRs and overlaps of our LNFRs with LNFRs

identified from an independent high-coverage nucleosome data

set by Valouev et al. [9] (see Figure S6 for these LNFRs’ length

and GC content distributions). ChIP-seq data and conservation

analysis provided further confirmation (Text S1, Section 3.2).

LNFRs are Either AT-rich or GC-rich
As mentioned in the introduction, motifs indicative for

nucleosome-disfavoring sequences, and therefore also for LNFRs,

were found to be mainly AT-rich, correspondingly, GC-poor.

Surprisingly, the LNFRs we detected are divided into two clearly

separable groups. The majority of LNFRs are AT-rich, whereas

we also found a non-negligible proportion of GC-rich LNFRs.

Interestingly, only few LNFRs have an average genomic GC

content (about 41% in the human genome). Figure shows the GC

content distributions for LNFRs in resting T cells (Figure 1A) and

activated T cells (Figure 1B) in comparison to the GC content

distribution of fragments drawn randomly from the human

genome (Figure 1C). The GC content characteristics of LNFRs

contrast strongly to those of the average genome, while the GC

content distributions of LNFRs in resting and activated T cells

appear to be similar, yet with some differences. In resting T cells,

the two groups are very clearly separated by a GC content

threshold at about 60%. The AT-rich group contains about 93%

of the LNFRs and has an average GC content of 27%, whereas the

GC-rich group (correspondingly, 7% or 5,403 sequences) has an

average GC content of 76%. In activated T cells, the two groups

are not as clearly separated, while there is still a clear trough at a

GC content of around 50%. If we adopt a 50% threshold, the AT-

rich group amounts to 92% of the sequences and has an average

GC content of 27%, where the GC-rich group (8% or 3,922

sequences) has an average GC content of 60%.

Our observation of GC-rich LNFRs is not the result of

biotechnological biases, even the opposite is the case: (1) The

well-known GC bias of the Illumina Solexa technology that the

read coverage is elevated in GC-rich intervals [30], even fortifies

our finding of GC-rich LNFRs: since GC-rich fragments tend to

be overrepresented in the set of short reads, it is likely to

overestimate nucleosome occupancy in GC-rich regions, thus, to

underestimate the occurrence of GC-rich nucleosome-free regions.

(2) Enzymatic biases do not explain the unexpectedly prominent

occurrence of GC-rich LNFRs either: Fan et al. reported the

MNase cleavage site to be biased most strongly toward the

dinucleotide TA [31], with AT, AA and TT being preferred sites

too [31]. Hence, AT-rich nucleosome-free regions are slightly

more likely to be digested by the enzyme than GC-rich ones (see

Text S1, Section 1.3, and Figure S2). Correspondingly, GC-rich

nucleosome free regions (LNFRs) are slightly more likely to remain

undetected than AT-rich ones.

LNFRs Outside Promoters Facilitate Genome-wide
Analysis of Chromatin Remodeling

Previous analyses were mainly focused on nucleosomes and

nucleosome-free regions in gene promoters [7,15,21,22,29]. Our

LNFR extraction was done without any restriction to promoter

regions and the majority of the LNFRs we extracted do not appear

inside promoter regions (see Figure S7 and Tables S3 and S4 for

details). In resting T cells, only 12.7% of the LNFRs (10,063 of

79,092) overlap with promoter regions. In activated T cells, this

percentage amounts to 11.7% (5,535 of 47,270). However, LNFRs

are still enriched in promoter regions (see Text S1, Section 3.3,

and Tables S3 and S4).

In summary, the majority of LNFRs appear outside of promoter

regions. Thus, our LNFR data facilitate a genome-wide analysis of

chromatin remodeling.

GC-rich LNFRs Exhibit a Stronger Remodeling Tendency
We found remodeling to occur in 75% of the LNFRs in resting

T cells. If we consider AT-rich and GC-rich LNFRs separately, an

interesting difference is uncovered in resting T cells: 92% of GC-

rich LNFRs, but only 74% of the AT-rich LNFRs, show

remodeling. This observation is not as prominent in activated T

cells: 63% of all, 62% of AT-rich, and 82% of GC-rich LNFRs

exhibit remodeling. So, in both cell states, GC-rich LNFRs possess

a stronger remodeling tendency than AT-rich LNFRs. Figure 2

shows the distributions of maximum nucleosome coverages in

LNFRs measured on the respective other cell state. It is obvious

that, for both cell states, AT-rich LNFRs generally have a lower

nucleosome coverage in the respective other cell state than GC-

rich LNFRs. Thus, GC-rich LNFRs show a stronger remodeling

tendency than AT-rich LNFRs, regardless of the detection

threshold.

We compared gene expression measurements of the two cell

lines to investigate possible changes by nucleosome remodeling.

To this end, we analyzed the gene expression data released by

Schones et al. [28]. It turned out that genes have significantly

lower expression levels in activated cells if their promoter regions

contain an LNFR in resting T cells that is occupied by a

nucleosome in activated T cells (see Text S1, Section 4.1, and

Table S5). This confirms that the positioning of a nucleosome in

an otherwise nucleosome-free region of a gene’s promoter region

tends to down-regulate this gene.

The high quality of our detection of remodeled LNFRs can be

validated by ChIP-seq data for the CCCTC-binding factor

(CTCF), a protein that is known to bind next to well-positioned

nucleosomes [32]: the proportion of GC-rich LNFRs of resting T

cells that overlap with a CTCF binding site is approximately two

times as large for non-remodeled LNFRs (7%) as for remodeled

LNFRs (3.6%). If all GC-rich LNFRs are considered, this

Genome-Wide Chromatin Remodeling at GC-Rich LNFRs
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difference is significant (p~0:016 according to Fisher’s exact test).

If only non-promoter LNFRs are considered, the two-fold

enrichment persists (2.9% vs. 6.2%), but, due to small sample

numbers, it is no longer significant (p~0:077 according to Fisher’s

exact test). In any case, it appears plausible that a protein that is

associated with well-positioned nucleosomes favors LNFRs in

which no nucleosome remodeling takes place.

Remodeling Tendency is Associated With DNA Sequence
Patterns

In order to extract nucleotide patterns that are specific to DNA

loci where chromatin is remodeled via nucleosome repositioning,

we used support vector machines (SVMs) in combination with the

spectrum kernel. We applied SVMs to the following four data sets

of remodeling LNFRs outside promoter regions: we split these

LNFRs according to the cell state they stem from and,

simultaneously, according to whether they are AT- or GC-rich.

Each of the four sets of remodeled LNFRs was complemented by a

set of negative sequences in order to derive SVM classifiers that

can distinguish between sequences that are involved in nucleosome

repositioning and other sequences (see Text S1, Section 5.1).

Table 1 shows the classification accuracies for different choices of

the spectrum kernel’s sub-sequence length parameter K .

We found that LNFRs associated with remodeling can be

distinguished from randomly selected non-LNFR nucleotide

sequences with high accuracy on the basis of their nucleotide

patterns only. This result indicates that nucleosome repositioning

is associated with DNA sequence patterns. Since we have equated

the two classes in terms of their GC content, the classifiers rely on

Figure 1. GC content distributions of LNFRs versus random fragments from the human genome. GC content distributions of LNFRs in
resting T cells (A) and activated T cells (B) compared to the GC content distribution of fragments drawn randomly from the human genome (C). For
both resting and activated T cells, the LNFRs are divided into two groups, an AT-rich and a GC-rich one. For resting T cells, the two groups are very
clearly separated by a GC content threshold of about 60%, while this threshold is at 50% for activated T cells.
doi:10.1371/journal.pone.0047924.g001

Figure 2. Maximum nucleosome occupancy scores over masked LNFRs. Panel A shows a histogram of maximum nucleosome occupancy
scores in activated T cells over masked (i.e. without the first and the last 25 bp) LNFRs in resting state. Panel B shows a histogram of maximum
nucleosome occupancy scores in resting T cells over masked LNFRs in activated state. AT-rich LNFRs generally exhibit lower nucleosome coverage
than GC-rich LNFRs, which indicates that GC-rich LNFRs show a stronger remodeling tendency than AT-rich LNFRs.
doi:10.1371/journal.pone.0047924.g002
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the appearance of certain non-trivial DNA sequence patterns that

are not related to mere GC content.

Remodeling Patterns are More Specific and More
Prominent in Resting Than in Activated T Cells

The results in Table 1, in particular, show that the accuracy in

classifying GC-rich remodeling LNFRs versus randomly selected

DNA sequences is significantly higher than in classifying AT-rich

remodeling LNFRs (p~8|10{4 according to a one-sided

Kolmogorov-Smirnov test). In resting T cells, both GC-rich and

AT-rich remodeled LNFRs can be better distinguished from

randomly selected DNA sequences than in activated T cells.

Figure 3 shows a plot of accuracies versus the sub-sequence length

parameter K of the spectrum kernel. The plot reveals that

remodeled GC-rich remodeled LNFRs can be identified from

their DNA sequences with higher accuracy for resting T cells than

for activated T cells. Moreover, the drop of accuracies with

increasing K is more severe for activated than for resting T cells.

This suggests that the sequence patterns characterizing GC-rich

remodeled LNFRs of resting T cells are more specific and more

prominent than for activated T cells.

That GC-rich remodeled LNFRs of T cells can be characterized

best by an SVM with K~5 does not mean that the patterns that

are most typical for remodeled GC-rich LNFRs of resting T cells

are actually 5 bases long. The sub-sequence length of K~5 just

balances underfitting and overfitting in the best way by exploiting

overlaps of indicative patterns. However, the decrease of

accuracies for Kw5 is moderate if we take into account that the

dimensionality of the feature space grows exponentially with K . So

it is plausible that the patterns that are most typical for remodeled

LNFRs are actually longer. In order to identify those indicative

patterns independently of the choice of K , we implemented a

procedure that computes prediction profiles for all remodeled

LNFRs (see Figure S8 for an example), then extracts regions of

interest, and finally uses a motif finder to identify motifs commonly

occurring in these regions of interest (see Materials and
Methods below and Text S1, Section 5). That this procedure

generalizes to previously unseen data has been verified as well (see

Table S6 and Text S1, Section 5.3).

For the best choice in terms of cross validation accuracy, K~5,

we identified 166 regions of interest for the entire set of remodeled

GC-rich LNFRs of resting T cells. The motif finder software

MEME [33,34] found exactly one pattern to be typical for those

regions of interest, the sequence logos of which are shown in

Figure 4. According to MEME, the regular expressions describing

this pattern are GGGG[CT]GGGG and CCCC[GA]CCCC,

respectively. Figure S9 shows regular expressions and sequence

logos of the patterns identified to be typical for the regions of

interest determined from the support vector machines trained with

K~6, . . . ,9. These patterns are slightly longer, but they are

similar to the pattern GGGG[CT]GGGG/CCCC[GA]CCCC in

the sense that they all contain a single C or T position that occurs

in a longer G tract.

The pattern GGGG[CT]GGGG/CCCC[GA]CCCC occurs in

36.7% of positive sequences (GC-rich remodeled resting LNFRs

outside promoters) and in 16.7% of negative sequences (random

non-LNFR sequences with same length and GC content

distribution). So the pattern is indeed enriched in positive

sequences (p~2:7|10{29 according to Fisher’s exact test). The

pattern GGGG[CT]GGGG/CCCC[GA]CCCC occurs in 23.7%

of GC-rich non-remodeled resting LNFRs outside promoters

(compare with Table 2). This is a significantly lower percentage

than in remodeled LNFRs (p~6:0|10{3 according to Fisher’s

exact test, see also Table 2). If we compare remodeled vs. non-

remodeled GC-rich resting LNFRs regardless of whether they are

inside or outside promoters, the enrichment of the pattern

GGGG[CT]GGGG/CCCC[GA]CCCC in remodeled sequences

is also significant (p~0:011 according to Fisher’s exact test; see

Table 2 for exact details). The significant enrichment in remodeled

versus non-remodeled LNFRs makes clear that the pattern

GGGG[CT]GGGG/CCCC[GA]CCCC is not only indicative

for LNFRs, but indeed indicative for nucleosome remodeling in resting T

cells.

The pattern GGGG[CT]GGGG/CCCC[GA]CCCC actually

consists of two mutually exclusive pattern variants,

Table 1. Classification performance.

resting activated

K AT-rich GC-rich AT-rich GC-rich

1 56.1% 59.6% 50.3% 56.0%

2 59.7% 66.3% 58.8% 61.8%

3 60.3% 66.6% 59.9% 65.1%

4 60.8% 66.5% 60.4% 66.6%

5 61.7% 68.6% 60.7% 66.6%

6 61.8% 67.3% 60.9% 66.8%

7 61.6% 66.7% 60.3% 64.5%

8 61.3% 67.1% 60.0% 64.0%

9 61.4% 66.9% 59.7% 64.0%

The percentages are two-fold cross validation accuracies for the classification of
LNFRs showing remodeling versus randomly selected non-LNFR DNA
sequences from the human genome. Altogether four sets of remodeled LNFRs
were considered: GC-rich and AT-rich remodeled LNFRs, both for resting and
activated T cells. Each row corresponds to one choice of K~1,:::,9, the sub-
sequence length parameter of the spectrum kernel. GC-rich remodeling LNFRs
(third and fifth column) can be classified with higher accuracy than AT-rich
remodeling LNFRs (second and fourth column). The highest accuracy for GC-
rich remodeling LNFRs in resting T cells is 68.6% and is achieved for K~5.
doi:10.1371/journal.pone.0047924.t001

Figure 3. Classification performance versus sub-sequence
length. Two-fold cross validation accuracies for the classification of
GC-rich LNFRs showing remodeling versus randomly selected non-LNFR
sequences for different choices of K~1, . . . ,9, the sub-sequence length
parameter of the spectrum kernel. For resting T cells, the accuracy
peaks at K~5, while K ’s between 4 and 6 are best for classifying GC-
rich remodeling LNFRs in activated T cells.
doi:10.1371/journal.pone.0047924.g003
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GGGGCGGGG/CCCCGCCCC and GGGGTGGGG/

CCCCACCCC. Studying them separately provides an even

clearer picture: GGGGCGGGG/CCCCGCCCC occurs in

25.5% of positive sequences (GC-rich remodeled resting LNFRs

outside promoters) and in 12% of negative sequences (random

non-LNFR sequences with same length and GC content

distribution) — which is significant with p~5:4|10{18 according

to Fisher’s exact test. The pattern GGGGTGGGG/

CCCCACCCC occurs in 16.8% of positive sequences and in

6.4% of negative sequences — which is also significant with

p~6:9|10{16 according to Fisher’s exact test. This confirms that

both patterns are typical for GC-rich remodeled resting LNFRs

outside promoters, as opposed to the corresponding negative set of

non-LNFR sequences. The more interesting question is whether

both are actually remodeling patterns. As shown in Table 2,

GGGGCGGGG/CCCCGCCCC occurs significantly more often

in remodeled LNFRs than in non-remodeled LNFRs

(p~7:9|10{3 and p~5:5|10{3, respectively). The pattern

GGGGTGGGG/CCCCACCCC also occurs more often in

remodeled than in non-remodeled LNFRs, but this difference is

not significant. This suggests that GGGGTGGGG/

CCCCACCCC is rather a general LNFR pattern than a

remodeling pattern, whereas GGGGCGGGG/CCCCGCCCC

is indeed a nucleosome remodeling pattern. Figure 5 plots the average

prediction profiles around all occurrences of this pattern in GC-

rich remodeled LNFRs of resting T cells. This plot confirms that

all SVMs with different choices of the sub-sequence length

parameter K agree that the pattern is indicative for the positive

class (GC-rich remodeled resting LNFRs outside promoters).

CpG Islands are Associated with Nucleosome
Remodeling Via CpG-island-binding Proteins

To attribute biological functions to the nucleotide patterns that

are most characteristic for nucleosome repositioning in GC-rich

LNFRs, we searched the JASPAR database of transcription factor

binding profiles [35] for matches with the pattern

GGGGCGGGG/CCCCGCCCC. The only reasonable match

among proteins of higher organisms was the Sp1 transcription

factor (Specificity Protein 1) which has already been verified to be

involved in chromatin remodeling in the promoter region of the

GMCSF gene [36]. However, the analysis of Sp1 ChIP-seq data

from the ENCODE project [37] has not shown any enrichment of

Sp1 binding sites in remodeled sequences; even the opposite is

true: Sp1 binding sites occur more frequently in non-remodeled

sequences (though not significantly; see Table 3 for details). The

Sp1 ChIP-seq data have been obtained from a different cell type

(see Text S1, Section 3.2, for details), so we cannot definitely rule

out the involvement of Sp1 in genome-wide chromatin remodel-

ing, but these data do not supply any evidence in favor of this

assumption either. Most other matches obtained from the

JASPAR database were zinc-finger proteins, but all of them were

proteins of very distant organisms, such as, yeast.

The pattern GGGGCGGGG/CCCCGCCCC contains a CpG

site and we have further found out that this pattern or similar

patterns (e.g. G tracts interrupted by a C, resp. C tracts

interrupted by a G) usually occur multiple times in remodeled

GC-rich LNFRs (see Figure S8 for a not necessarily representative,

but illustrative, example). This fact particularly hints at CpG

Figure 4. Sequence logo of remodeling pattern for both DNA strands. The pattern was identified by applying MEME to the regions of
interest obtained from the prediction profiles computed by the SVM with the spectrum kernel with K~5.
doi:10.1371/journal.pone.0047924.g004

Table 2. Occurrences of certain patterns in remodeled vs. non-remodeled GC-rich LNFRs of resting T cells.

outside promoters inside and outside promoters

remodeled non-rem. p-value remodeled non-rem. p-value

(total: 1212) (total: 97) (Fisher t.) (total: 4949) (total: 199) (Fisher t.)

GGGG[CT]GGGG 36.7% 23.7% 6:0|10{3 39.9% 31.7% 0.011

CCCC[GA]CCCC

GGGGCGGGG 25.5% 14.4% 7:9|10{3 31.7% 23.1% 5:5|10{3

CCCCGCCCC

GGGGTGGGG 16.8% 11.3% 0.10 13.2% 11.6% 0.28

CCCCACCCC

G-quadruplex pattern 33.8% 15.5% 7:1|10{5 36.4% 16.6% 1:1|10{9

Columns 2 and 3 provide the percentages of GC-rich resting LNFRs outside promoters in which the patterns occur. Column 4 provides the p-value of Fisher’s exact test
for enrichment of the patterns in remodeled LNFRs. Columns 5–7 are analogous to columns 2–4, but the percentages and p-values are computed for all GC-rich resting
LNFRs, both inside and outside promoters. The percentages in the first row are not the exact sums of percentages in rows 2 and 3 because there are LNFR sequences
that contain both patterns GGGGCGGGG/CCCCGCCCC and GGGGTGGGG/CCCCACCCC.
doi:10.1371/journal.pone.0047924.t002
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islands, that is, GC-rich regions with an elevated frequency of

usually unmethylated CpG sites [38]. As expected, CpG islands

are 41 times enriched of the pattern GGGGCGGGG/

CCCCGCCCC: of 47,773 occurrences of this pattern in

chromosomes 1–22 of hg18, 14,770 are inside annotated CpG

islands. If the patterns and CpG islands were independent (the null

hypothesis of the test), the expected number of patterns in CpG

islands would be 361. This difference is, of course, highly

significant (pv5|10{324 according to a binomial test). However,

this could partly or entirely be caused by the fact that pattern

frequencies and overlaps with CpG islands are both strongly

related to the GC content. The more interesting question is

whether any significant difference can be observed between

remodeled and non-remodeled GC-rich LNFRs. The first row of

Table 3 shows that there are significantly more overlaps of CpG

islands with remodeled LNFRs than with non-remodeled LNFRs

of resting T cells. There is approximately a two-fold enrichment in

remodeled LNFRs, both if we restrict to GC-rich non-promoter

LNFRs and if we consider all GC-rich LNFRs. As expected, the

overall ratios of overlaps with CpG islands are much larger if we

include promoter LNFRs. We also analyzed overlaps of remodeled

and non-remodeled LNFRs with CpG islands for different levels of

GC content in order to find out whether the observed differences

are a mere effect of GC content. The plot in Figure 6A rules out

that this is only a GC content effect: for almost every GC content

level, the proportion of overlaps of non-remodeled LNFRs with

CpG islands is considerably below the proportion of overlaps of

remodeled LNFRs with CpG islands. Figure 6B demonstrates that

the proportions of overlaps of LNFRs of activated T cells with

CpG islands are generally lower and no clear difference between

remodeled and non-remodeled LNFRs can be seen. All these

findings fit to the results obtained for methylation data (see Figure

S10 and Text S1, Section 6).

Now that we have identified a strong association with CpG

islands, the question is how CpG islands are related to nucleosome

remodeling. It is known that proteins with ZF-CXXC domains

bind to unmethylated CpG sites in CpG islands [39] (note that our

search in the JASPAR database already hinted at zinc finger

proteins). CXXC Finger Protein 1 (CFP1) and Lysine-specific

demethylase 2A (KDM2A) are two ZF-CXXC proteins and have

previously been reported to participate in chromatin remodeling

by binding to nucleosome-free CpG sites in CpG islands [40–44].

In order to study the association between CFP1 and KDM2A

binding sites and nucleosome remodeling, we analyzed CFP1 and

KDM2A ChIP-seq data. Since human data are not available for

these two proteins, we resorted to mouse data and mapped the

results to the human genome. We found KDM2A binding site

peaks to overlap with 45.7% of remodeled GC-rich non-promoter

LNFRs of resting T cells, but only with 11.3% of non-remodeled

GC-rich non-promoter LNFRs or resting T cells, which is a highly

significant difference (p~1:9|10{12 according to Fisher’s exact

test; see also Table 3). If we also consider promoter LNFRs, the

difference is even more significant: 72.8% of all remodeled GC-

rich LNFRs of resting T cells overlap with KDM2A binding site

peaks, as opposed to 28.6% of all non-remodeled GC-rich LNFRs

of resting T cells (p~1:4|10{36 according to Fisher’s exact test).

For CFP1 binding site peaks, a similar picture is obtained: the

differences are less pronounced, but still highly significant (see

Table 3).

Blackledge and Klose [45] have described pathways in which

CFP1 and KDM2A participate together with RNA polymerase II

(Pol II) in regulatory functions by modifying chromatin in CpG

islands. In order to verify or falsify whether this mechanism is a

major cause or our findings, we analyzed two Pol II ChIP-seq data

sets [28,46]. First, in all cases but one, no significant difference of

overlaps with Pol II binding site peaks occurs between remodeled

and non-remodeled LNFRs. Secondly, the rates of overlaps with

Pol II binding site peaks are generally much lower than for

KDM2A or CFP1 (see Table 3). This difference is particularly

high if we restrict to non-promoter LNFRs, in which, as expected,

the occurrences of Pol II binding site peaks are quite sparse. We

conclude that the mechanisms underlying the role of KDM2A and

CFP1 in nucleosome remodeling of resting T cells, in particular,

outside promoter regions, are not or only remotely related to Pol

II.

Discussion

We studied chromatin remodeling in terms of nucleosome

repositioning by comparing nucleosome occupancy in resting and

activated human T cells. Nucleosome repositioning was detected

in long nucleosome-free regions (LNFRs) that were occupied by

nucleosomes in the respective other cell state. An interesting

observation was the fact that 67% more LNFRs were obtained for

resting than for activated T cells (79,092 LNFRs in resting versus

47,270 LNFRs in activated T cells). Our explaination is that the

chromatin structure of resting T cells is more deterministic to

enable a fast activation. The discrepancy in LNFR numbers

Figure 5. Average prediction profiles around occurrences of the pattern GGGGCGGGG/CCCCGCCCC. Each curve corresponds to the
average prediction profiles around the occurrences of the pattern in GC-rich remodeled LNFRs of resting T cells. The different curves correspond to
different choices of K~5, . . . ,9.
doi:10.1371/journal.pone.0047924.g005
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cannot be explained by different lengths, since the lengths of

LNFRs are similarly distributed for the two cell states (see above

and Figure S5).

Regardless of the cell state, we observed that GC-rich LNFRs

are more likely to be subject to nucleosome repositioning than AT-

rich LNFRs. That AT-rich LNFRs are less often remodeled fits

well to previous findings that AT-rich patterns largely disfavor

nucleosome occupancy. The pattern we identified to be charac-

teristic for nucleosome repositioning does not have any resem-

blance with the patterns known to favor nucleosomes either. This

indicates that nucleosome repositioning is indeed governed by

highly specific sequence characteristics that are complementary to

the nucleosome positioning code consisting of well-known

nucleosome-favoring and -repelling patterns.

Remodeling is not restricted to promoter regions, since we

found a considerable proportion of remodeled LNFRs outside

promoter regions. Thus remodeling is supposed to serve for further

purposes besides regulation of transcription by nucleosome shifts

in the promoter region, especially around the transcription start

site. We suggest that chromatin remodeling is involved in a whole

3D structure conformation change of chromatin which brings

DNA regions to physical proximity that are distant with respect to

linear genomic locations. Such structural changes could have

dramatic effects on the cell’s regulatory and transcriptomic

dynamics, as there is clear evidence of a relationship between

the genes’ physical arrangement and gene activation [47,48].

Our results indicate a genome-wide role of CpG islands in

nucleosome remodeling, governed by proteins that favor binding

to unmethylated CpG sites in CpG islands. Two representatives of

this class, KDM2A and CFP1, were found to bind significantly

more often to remodeled LNFRs of resting T cells than to non-

remodeled LNFRs. This result, however, was obtained from ChIP-

seq data of mouse cells, so the uncertainty remains whether the

same results would actually be obtained for human T cells. We are

strongly convinced that our results are far too significant to be the

result of pure chance. Pairwise global alignments of human and

mouse versions of the two proteins showed that their amino acid

sequences are highly similar (see Text S1, Section 7, and Figures

S11 and S12), which makes it plausible that both KDM2A and

CFP1 occur structurally similarly in humans and mice and that

they will bind to the same sequence patterns in human cells and in

mouse cells.

An alternative explanation for GC-rich remodeled LNFRs in

resting T cells might be that those sequences are involved in the

formation of G-quadruplexes [49,50]. They consist of a square

arrangement of guanines that is stabilized by hydrogen bonds and

a cation in the center of the square structure. The DNA pattern for

a G-quadruplex is d(G3zN1{7G3zN1{7G3zN1{7G3z), which

means that four tracts of 3 or more guanines are separated by 1–7

arbitrary nucleotides, where the length of the G tracts is the same

for all four tracts. G-quadruplexes have been found in vivo, occur

in nucleosome-free regions, and are supposed to play regulatory

roles [51]. We found an enrichment of potential G-quadruplex

forming sequence patterns in GC-rich remodeled LNFRs com-

pared to GC-rich non-remodeled LNFRs: 33.8% versus 15.5% if

we restrict to non-promoter LNFRs; 36.4% versus 16.6% if we

consider all GC-rich LNFRs, which is even more significant than

the pattern GGGGCGGGG/CCCCGCCCC (see Table 2 for

detailed figures). However, the difference in overlaps of CFP1 and

KDM2A binding sites is still much more significant. Moreover, it

is considered likely that G-quadruplexes are only formed at a small

proportion of occurrence of G-quadruplex patterns [50].

Summarizing all results and discussions from above, we suggest

a genome-wide role of CpG-islands in chromatin remodeling via

ZF-CXXC proteins.

Figure 6. Proportion of LNFRs overlapping with CpG islands plotted versus the LNFRs’ GC content. Each curve plots the proportion of
LNFRs overlapping with CpG islands in relation to the GC content of the considered LNFRs. The plot in panel A shows data for LNFRs of resting T cells,
while the plot in panel B shows data for LNFRs of activated T cells. For resting T cells, a clear difference between remodeled and non-remodeled
LNFRs is visible, both if we consider all LNFRs and if we restrict to non-promoter LNFRs. The proportions of overlaps of LNFRs of activated T cells with
CpG islands are generally lower and no clear difference is visible between remodeled and non-remodeled LNFRs.
doi:10.1371/journal.pone.0047924.g006
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Materials and Methods

NGS Data and Read Mapping
Our study is based on the next generation sequencing data

provided by Schones et al. [28]. The data set consists of short

reads of ends of nucleosomal DNA to determine nucleosome

positions in resting and activated human CD4+ T cells. Details

about the data set are provided in Text S1, Section 1,

complemented by Figures S1 and S2 which show the reads’ GC

content distribution and the nucleotide distributions at each

position, respectively. The reads were mapped to hg18 (NCBI

Build 36.1) using SOAP [52]. In contrast to the original mapping,

we used a more liberal read mapping strategy and allowed for one

mismatch or one gap. Most importantly, we did not restrict the

mapping to uniquely mappable reads, but mapped each read to all

its best matching positions. For detailed mapping results, see Table

S1 and Text S1, Section 1. With this mapping strategy, we

deliberately accept that we might detect nucleosomes wrongly in

order to ensure that our detection of LNFRs is highly specific.

Nucleosome Coverage Profiles
We computed nucleosome coverage profiles for both cell states.

For each position in the genome, the coverage value corresponds

to the number of reads that indicate a nucleosome at this position.

Every uniquely matched read contributes a value of 1 to the

coverage profile at each nucleotide it matches. Since every read

only covers the first 24 bases of a nucleosome, we also incremented

the coverage profile at all 126 bases downstream of the match (i.e.,

we extend the read to 150 bases in total; see Figures S4A and S4B

for an illustration). If the read was matched via its reverse

complement, this extension is done in the opposite direction. Non-

unique matches are taken into account too, but the contribution of

a non-unique match is chosen relative to its number of matches,

e.g. a read that matches 4 positions on the genome contributes

0.25 to the coverage profile at all nucleotides it matches.

Extraction of LNFRs
We identified LNFRs as contiguous DNA sequences with zero

nucleosome coverage that are at least 100 bp long (see Figure S4C

for an illustrative example).

Database of Transcripts
We use the table ‘‘UCSC Known Genes’’ [53,54] as reference

data source of transcripts in the human genome. We used the

version of September 29, 2011, as included in the R/Bioconductor

package TxDb.Hsapiens.UCSC.hg19.knownGene and mapped its

hg19 locations to the hg18 genome using the LiftOver tool [55].

This data set contains the genomic locations of 77,614 coding and

non-coding transcripts, of which 70,663 are transcribed from

chromosomes 1–22, where the total number of distinct transcrip-

tion start sites that could be mapped to hg18 is 42,499.

Identification of Chromatin Remodeling
We define an LNFR in one condition (resting or activated) to

exhibit remodeling if we detect nucleosome occupancy in this

region in the respective other condition (activated or resting). We

do not consider the first 25 and the last 25 bases of each LNFR in

order to avoid that minor shifts of nucleosomes are detected as

remodeling. This masking is necessary because the biotechnology

does not ensure precise positions of nucleosome ends. We consider

an LNFR to be a remodeling locus if there is at least one base

(excluding the first 25 and the last 25) that has nucleosome

coverage of at least 2, i.e. at least two reads must indicate a

nucleosome (Text S1, Section 3). We chose this threshold to

account for possibly false nucleosome detections introduced by our

liberal mapping strategy.

Furthermore, we consider an LNFR not to be a remodeling

locus if no base (again excluding the first 25 and the last 25) has a

nucleosome coverage of more than 1, i.e. at most one read may

indicate a nucleosome in the respective other cell state.

Microarray Data Preprocessing
The microarray data provided by Schones et al. [28] were

processed using RMA [56]. Since the data set consists of only four

arrays, it is not meaningful to use standard methods, such as,

LIMMA [57] for determining differentially expressed genes.

Instead, we used simple difference scores to evaluate the difference

between expression levels in the two types of T cells (Text S1,

Section 4.1).

Table 3. Overlaps with CpG islands and binding site peaks of remodeled vs. non-remodeled GC-rich LNFRs of resting T cells.

outside promoters inside and outside promoters

remodeled non-rem. p-value remodeled non-rem. p-value

(total: 1212) (total: 97) (Fisher t.) (total: 4949) (total: 199) (Fisher t.)

CpG island 58.2% 25.8% 4:8|10{10 77.2% 40.2% 1:3|10{27

Sp1 peak 8.8% 10.3% 0.36 19.5% 21.1% 0.31

KDM2A peak 45.7% 11.3% 1:9|10{12 72.8% 28.6% 1:4|10{36

CFP1 peak 21.4% 6.2% 6:4|10{5 50.9% 25.6% 7:8|10{13

Pol II peak (A) 13.0% 8.3% 0.11 34.5% 22.6% 2:4|10{4

Pol II peak (B) 3.05% 3.09% 0.58 10.4% 12.6% 0.20

Columns 2 and 3 provide the percentages of GC-rich resting LNFRs outside promoters that overlap with CpG islands or the binding site peaks under consideration.
Column 4 provides the p-value of Fisher’s exact test for enrichment of overlaps in remodeled LNFRs, except for value typeset in italics, which correspond to p-values of
Fisher’s exact test for enrichment of overlaps in non-remodeled sequences. Columns 5–7 are analogous to columns 2–4, but the all percentages and p-values are
computed for all GC-rich LNFRs, no matter whether inside or outside promoters. The row ‘‘Pol II (A)’’ refers to the Pol II ChIP-seq data set published by Barski et al. [46],
while ‘‘Pol II (B)’’ refers to the Pol II ChIP-seq data published by Schones et al. [28].
doi:10.1371/journal.pone.0047924.t003
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Identification of Remodeling Patterns Using Support
Vector Machines (SVMs)

We choose SVMs [58,59] for identifying remodeling patterns

because they performed well in various biological classification

tasks, for instance, in promoter and splice site detection [60–62] or

protein fold and secondary structure prediction [63–65]. The

discriminative approach of SVMs has the advantage that it allows

for identifying sequence patterns that are specific to nucleosome

repositioning loci without mingling them with nucleotide patterns

that occur frequently throughout the genome. The discriminative

approach, however, necessitates the construction of a set of negative

(control) sequences, whereas the nucleotide sequences at nucleosome

repositioning loci are considered as positive samples. We draw

sequences randomly from the human genome excluding the

identified LNFRs. In order to avoid obscuring our results with

mere GC patterns, we further require the negative set to have the

same GC content distribution as the respective positive nucleo-

some repositioning set (Text S1, Section 5.1). Following this

procedure, we generated balanced data sets on which we applied

SVMs.

The application of SVMs to sequence data requires a kernel

that computes the similarity between two biological sequences. We

used the well-known spectrum kernel [63] which, roughly speaking,

computes the similarity of two sequences as the number of K-mers,

i.e. gap-less sub-sequences of length K, they have in common. For

each SVM that we trained using the spectrum kernel, we extracted

indicative sequence patterns following a strategy similar to [66,67]

(Text S1, Section 5.2). These pattern weights facilitate the

computation of prediction profiles [67] from which we can extract

regions of interest, i.e. sub-sequences the SVM considers

particularly typical of remodeled LNFRs (Text S1, Section 5.3).

Subsequently, we applied the MEME motif finder [33,34] to those

regions of interest.

Identification of Binding Site Patterns
We searched the JASPAR database [35] for matches between

nucleosome repositioning patterns and known transcription factor

binding sites. We computed the likelihood score that a pattern is a

representative of the binding sites for all 1,316 transcription

factors. The likelihood scores were optimized via gap-less

alignments between the pattern and the frequency matrix.

Analysis of CpG Island Data
We downloaded the UCSC Genome Browser track ‘‘cpgIsland-

sExt’’ (version as of Feb. 18, 2012) which contains 28,226 CpG

islands, 26,567 of which are on chromosomes 1–22. To test for the

enrichment of sequence patterns in CpG islands, we used a

binomial test. For analyzing overlaps with different types of

LNFRs, we used Fisher’s exact test.

Analysis of Human ChIP-seq Data
We mapped reads to hg18 (NCBI Build 36.1) using Bowtie [68].

We allowed for two mismatches and considered only unique

matches as recommended, e.g., by [69]. ChIP-seq peaks were

determined using the recent R/Bioconductor package BayesPeak

[70,71]. Tests for enrichment of peaks in genomic regions were

performed using a binomial test and tests for overlaps of peaks

with distinct groups of genomic regions (e.g., remodeled vs. non-

remodeled LNFRs) were performed using Fisher’s exact test.

Analysis of CFP1 and KDM2A ChIP-seq Data
We considered the CFP1 ChIP-seq data set of Thomson et al.

[40] (SRA Accession SRX017083) and the KDM2A ChIP-seq

data set of Blackledge et al. [41] (SRA Accession SRX017108).

Both data sets have been obtained from mouse cells, the former

from brain cells, the latter from embryonic stem cells. The two

data sets were processed with the same analysis pipeline as the

human ChIP-seq data sets, except that the mapping and the peak

analysis were performed on the mouse mm10 genome (Genome

Reference Consortium GRCm38). The final peaks were then

mapped from mm10 to hg19 (Genome Reference Consortium

GRCh37) and further to hg18 using the UCSC Genome Browser

LiftOver tool [55].

Supporting Information

Text S1 Additional analyses and further details on
methods and materials.

(PDF)

Figure S1 GC content of raw sequencing reads. The

average GC content of raw sequence reads is significantly higher

for activated (48%) than for resting T cells (44%).

(PDF)

Figure S2 Raw sequence reads are strongly biased to
adenine at the first position of the read. Panel A: the

average genomic content of nucleotides (dark blue bar labeled

‘‘hg18’’) is compared to the average content at positions 1–8 of the

sequencing reads (light blue bars labeled ‘‘pos1’’, ‘‘pos2’’, etc.).

Panel B: average genomic nucleotide content versus average

nucleotide content at positions 1–24 of reads obtained for resting

T cells; Panel B: anologous to panel B for activated T cells.

(PDF)

Figure S3 Average nucleosome coverage profiles
around the transcription start sites (TSS) and 39 ends
of transcripts. The well-known +1 nucleosome and the 39 NFR

are clearly visible.

(PDF)

Figure S4 Illustration of computation of nucleosome
coverage profiles and LNFR extraction.

(PDF)

Figure S5 Distributions of LNFR lengths for resting and
activated T cells. The length distributions are very similar.

Furthermore, no sequencing or biotechnology artifact is visible.

(PDF)

Figure S6 Characteristics of LNFRs extracted from
Valouev et al. ’s high-coverage data. Panel A shows the

distribution of lengths and panel B shows the GC content

distribution.

(PDF)

Figure S7 Proportions of LNFRs overlapping with
promoter regions [-10 kbp, +1 kbp] (red graphs) versus
their GC content. Panel A: data for LNFRs of resting T cells.

Panel B: data for LNFRs of activated T cells. The histograms

provide the numbers of LNFRs in dependence of GC content.

(PDF)

Figure S8 SVM prediction profiles for an exemplary
sub-region of an LNFR (pos. 131,892,094–131,892,186 of
chromosome 10 in hg18). The larger K , the smoother the

prediction profile. The five profiles agree on the fact that the

region marked by the gray background is typical for the positive

class (remodeled GC-rich LNFRs).

(PDF)
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Figure S9 Patterns indicative for remodeled LNFRs
obtained from SVM predictions profiles for K’s ranging
from 6 to 9. The pattern for K~5 is shown in Figure 4.

(PDF)

Figure S10 Proportion of LNFRs overlapping with
methylation sites plotted versus the LNFRs’ GC content.
Each curve plots the proportion of LNFRs overlapping with

methylation sites in relation to the GC content of the considered

LNFRs. For resting T cells (panel A), at a GC content of around

80%, the ratio of methylated non-remodeled LNFRs is indeed

much higher than the proportion of methylated remodeled

LNFRs. Exactly at this GC content, the largest difference in

overlaps with CpG islands occurs (compare with Figure 6). For

activated T cells (panel B), the differences are not so evident, but it

should be pointed out that, for a GC content up to 75%, the rates

of methylated LNFRs are generally lower than for resting T cells.

(PDF)

Figure S11 Global alignment of human and mouse
KDM2A sequences. There is one single-residue gap. Of the

aligned residues, 1,144 are similar (98.5%) and 1,129 are identical

(97.2%). The CXXC domain is free of any mismatches.

(PDF)

Figure S12 Global alignment of human and mouse CFP1
sequences. There is one four-residue indel. Of the aligned

residues, 638 are similar (96.7%) and 635 are even identical

(96.2%). The CXXC domain is free of any mismatches.

(PDF)

Table S1 Statistics of mapping short reads using SOAP
for resting and activated T cells.

(PDF)

Table S2 Numbers of extracted LNFRs in all autosomal
chromosomes in the human genome.
(PDF)

Table S3 Numbers of LNFRs overlapping with promot-
er regions [21 kbp, +1 kbp].
(PDF)

Table S4 Numbers of LNFRs overlapping with promot-
er regions [2100 bp, +100 bp].
(PDF)

Table S5 p-values of tests for differential expression of
remodeled genes versus non-remodeled genes. All four

tests indicate significance for all three scores (details to be found in

Text S1, Section 4.1).

(PDF)

Table S6 Results of cross validation analysis of pattern
extraction procedure. In the majority of cases, the motif

extraction procedure produces significant motifs and, in case they

are significantly enriched on the training set, they are also

significantly enriched on the test fold.

(PDF)
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70. Spyrou C, Stark R, Lynch AG, Tavaré S (2009) BayesPeak: Bayesian analysis of
ChIP-seq data. BMC Bioinformatics 10: 299.

71. Cairns J, Spyrou C, Stark R, Smith ML, Lynch AG, et al. (2011) BayesPeak—an
R package for analysing ChIP-seq data. Bioinformatics 27: 713–714.

Genome-Wide Chromatin Remodeling at GC-Rich LNFRs

PLOS ONE | www.plosone.org 11 November 2012 | Volume 7 | Issue 11 | e47924


