
iNuc-PhysChem: A Sequence-Based Predictor for
Identifying Nucleosomes via Physicochemical Properties
Wei Chen1,5*., Hao Lin2*., Peng-Mian Feng3, Chen Ding2, Yong-Chun Zuo4, Kuo-Chen Chou5*

1 Department of Physics, School of Sciences, Center for Genomics and Computational Biology, Hebei United University, Tangshan, China, 2 Key Laboratory for Neuro-

Information of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu,

China, 3 School of Public Health, Hebei United University, Tangshan, China, 4 The National Research Center for Animal Transgenic Biotechnology, Inner Mongolia

University, Hohhot, China, 5 Gordon Life Science Institute, San Diego, California, United States of America

Abstract

Nucleosome positioning has important roles in key cellular processes. Although intensive efforts have been made in this
area, the rules defining nucleosome positioning is still elusive and debated. In this study, we carried out a systematic
comparison among the profiles of twelve DNA physicochemical features between the nucleosomal and linker sequences in
the Saccharomyces cerevisiae genome. We found that nucleosomal sequences have some position-specific physicochemical
features, which can be used for in-depth studying nucleosomes. Meanwhile, a new predictor, called iNuc-PhysChem, was
developed for identification of nucleosomal sequences by incorporating these physicochemical properties into a 1788-D
(dimensional) feature vector, which was further reduced to a 884-D vector via the IFS (incremental feature selection)
procedure to optimize the feature set. It was observed by a cross-validation test on a benchmark dataset that the overall
success rate achieved by iNuc-PhysChem was over 96% in identifying nucleosomal or linker sequences. As a web-server,
iNuc-PhysChem is freely accessible to the public at http://lin.uestc.edu.cn/server/iNuc-PhysChem. For the convenience of
the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to get the
desired results without the need to follow the complicated mathematics that were presented just for the integrity in
developing the predictor. Meanwhile, for those who prefer to run predictions in their own computers, the predictor’s code
can be easily downloaded from the web-server. It is anticipated that iNuc-PhysChem may become a useful high throughput
tool for both basic research and drug design.
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Introduction

In eukaryotic cells, genomic DNA is highly compacted into

several levels of chromatin structures that ultimately make up the

chromosomes. At the lowest level of compaction, a ,147 bp DNA

sequence is tightly wrapped around the histone-octamer core

(Fig. 1) into the elementary structural unit of chromatin, known as

nucleosome [1]. The packaging of DNA around the histone-

octamer modulates the accessibility of genomic regions to

regulatory proteins. There are close relationships between

nucleosome positioning and key cellular processes, as demonstrat-

ed in mRNA splicing, DNA replication, and DNA repair [2,3,4].

Consequently, revealing the mechanism involved in controlling

nucleosome positioning is fundamentally important for in-depth

understanding the subsequent steps of gene expression.

High-resolution genome-wide nucleosome maps are now

available for several model organisms, such as Saccharomyces

cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo

sapiens [5,6,7,8,9]. These high-resolution data provide unprece-

dented opportunities for further investigating the roles of

nucleosome positioning in gene regulation. However, experimen-

tal approach is expensive to perform genome-wide analysis of

nucleosome distribution. In this regard, computational methods

can be applied to the entire genome without this kind of

disadvantage. Since the report of the nucleosome positioning code

(,10 bp repeating pattern of dinucleotides AA-TT-TA/GC) in

yeast [8], lots of theoretical works have been done attempting to

elucidate nucleosome occupancy signals that determine the

preference of a particular region in binding to histones and

forming a nucleosome [10,11,12]. Although of great interest and

value, sequence-based predictions of nucleosome positioning have

been limited in their accuracy and resolution, and to which extent

nucleosome positioning in vivo is really dictated by the DNA

sequence [10] is still an issue of controversy [13].

It was reported by Miele et al. [7] that DNA physical-chemical

properties may determine nucleosome occupancy. Moreover, the

recent study by Nozaki et al. [14] also suggested the existence of a

highly bendable, fragile structure for nucleosomal DNA, implying

that nucleosomal sequences indeed have distinct structural

properties when compared with linker sequences.

PLOS ONE | www.plosone.org 1 October 2012 | Volume 7 | Issue 10 | e47843



In view of this, the present study was initiated in an attempt to

develop a new method for predicting nucleosomal sequences based

on the physicochemical properties of DNA.

According to a recent review [15], to establish a really useful

statistical predictor for a biological system, we need to consider the

following procedures: (1) construct or select a valid benchmark

dataset to train and test the predictor; (2) formulate the biological

samples with an effective mathematical expression that can truly

reflect their intrinsic correlation with the target to be predicted; (3)

introduce or develop a powerful algorithm (or engine) to operate

the prediction; (4) properly perform cross-validation tests to

objectively evaluate the anticipated accuracy of the predictor; (5)

establish a user-friendly web-server for the predictor that is

accessible to the public. Below, let us describe how to deal with

these steps.

Materials and Methods

1. Benchmark Dataset: Nucleosomal and Linker
Sequences

The reference genome sequence of Saccharomyces cerevisiae was

obtained from the Saccharomyces Genome Database (http://

www.yeastgenome.org/). The nucleosome positions of Saccharomy-

ces cerevisiae were derived from the published data obtained by Lee

et al. [16], where each of the 1,206,683 DNA fragments in the

dataset constructed by these authors was assigned a nucleosome

formation score using a lasso model, with the high or low score to

reflect its high or low propensity in forming nucleosome,

respectively. The low score can also be interpreted as the

propensity to inhibit the formation of nucleosome. To prepare a

high quality benchmark dataset, 5,000 fragments of 150 bp with

the highest scores were selected as the nucleosome-forming

sequence samples to construct the positive set S
z

, and 5,000

fragments of 150 bp with the lowest scores were selected as the

nucleosome-inhibiting (or linker) sequence samples to construct

the negative set S
{

; i.e., the benchmark dataset S in this study

can be formulated as

S~Sz|S{ ð1Þ

where | represents the symbol for ‘‘union’’ in the set theory, and

Sz contains 5,000 nucleosome-forming samples

S
{ contains 5,000 nucleosome-inhibiting samples

(
ð2Þ

For the convenience of readers, the 5,000 sequences in S
z

and

5,000 sequences in S{ are given in the Information S1.

2. Feature Vectors based on DNA Physicochemical
Properties

Owing to their important roles in various different biological

processes, the intrinsic physicochemical properties of DNA

sequences have been intensively studied by many investigators

[17,18,19,20,21]. In the present study, the following twelve DNA

physicochemical properties are to be considered: (1) A-philicity

[22], (2) base stacking [23], (3) B-DNA twist [24], (4) bendability

[25], (5) DNA bending stiffness [26], (6) DNA denaturation [27],

(7) duplex disrupt energy [28], (8) duplex free energy [29], (9)

propeller twist [30], (10) protein deformation [31], (11) protein-

DNA twist [31], and (12) Z-DNA [32].

In order to quantitatively analyze the physical and chemical

properties of the DNA sequence samples, we firstly converted the

retrieved nucleosomal and linker sequences into numerical profiles

according to the following schemes as validated by Florquin et al.

[18]. The detailed procedures are as following steps.

Step 1. For any 2 base pair (bp) piece of DNA, there is a

corresponding numerical value associated with any one of the

aforementioned 12 physicochemical properties. Since the values of

the 12 properties were at different levels, to make them easier to be

handled, we normalized them into the range ½{1,z1� by means

of the following equation

xij~2|
x0

ij{minj x0
ij

� �
maxj x0

ij

� �
{minj x0

ij

� �{0:5

2
4

3
5 ð3Þ

where x0
ij is the original value of the i-th DNA physicochemical

property (i = 1, 2, …, 12) for the j-th (j = AA, AC, AG, AT, CA,

CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT) dinucleotide

(see Information S2); while xij the corresponding normalized value

(see Table 1).

Step 2. By means of a sliding window [33,34] approach with a

window size of 2 bp and a step size of 1 bp, a DNA sequence was

replaced by the corresponding normalized physicochemical values.

Thus, each of the sequences in S was translated into a numerical

vector consisting of (150{1)~149 components, i.e., a 149-D

(dimensional) numerical vector.

Step 3. After going through the above step with all the 12

physicochemical properties, each of the sequences in S was

translated to 12 different 149-D vectors corresponding to the 12

physicochemical features. By combining the 12 vectors, we obtain

an integrated vector containing (149|12)~1,788 components;

i.e., each of the nucleosomal sequences in S can be formulated as

a 1788-D vector

Z~ f1 � � � f149 f150 � � � f298 � � � f1640 � � � f1788½ �T ð4Þ

where the first 149 components were derived from the property

‘‘A-philicity’’ or P(1), the second 149 components from the

property ‘‘base stacking’’ or P(2), the last 149 components from the

property ‘‘Z-DNA’’ or P(12) (cf. Table 1), and T the transposing

operator.

3. Covariant or Quadratic Discriminant Function
The covariant discriminant (CD) or quadratic discriminant

(QD) function has been widely used in the realm of bioinformatics,

such as protein structural class prediction [35,36,37], protein

Figure 1. A schematic illustration to show the basic architec-
ture of nucleosome. Nucleosomes form the fundamental repeating
units of eukaryotic chromatin (upper panel), each of them consists of
approximately 147 base pairs of DNA wrapped in 1.67 left-handed
superhelical turns around a histone octamer consisting of 2 copies each
of the core histones H2A, H2B, H3, and H4 (lower panel).
doi:10.1371/journal.pone.0047843.g001
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coding region identification [38], protein subcellular location

prediction [39,40], splice site prediction [41], membrane protein

type and location prediction [42], out membrane protein

prediction [43], enzyme family class prediction [44], antimicrobial

peptide classification [45], and prediction of protein cellular

attributes [46].

Its formulation can be briefly described as follows. Suppose the

standard feature vectors for the DNA sequences in S
z

and S
{

are, respectively, expressed by

�ZZz~ �ffz
1

�ffz
2 � � � �ffz

u � � � �ffz
1788

� �T
(for Sz)

�ZZ{~ �ff{
1

�ff{
2 � � � �ff{

u � � � �ff{
1788

� �T
(for S{)

(
ð5Þ

where

�ffz
u ~

1

Nz

XNz

k~1

fz
u,k,

�ff{
u ~

1

N{

XN{

k~1

f{
u,k,

(u~1, 2, L , V)

8>>>>><
>>>>>:

ð6Þ

where fz
u,k is the u-th component of the feature vector for the k-th

sequence in the positive dataset Sz, f{
u,k that for the k-th sequence

in the negative dataset S{, Nz the total number of DNA

sequences in S
z

, N{ that in S
{

, and V the total number of

components in a feature vector. For the current case, we have

Nz~N{~5,000 (cf. Information S1) and V~1,788 (cf. Eq.4).

Thus, whether a query DNA sequence belongs to the

nucleosome-forming subset Sz or nucleosome-inhibiting subset

S{ will be judged by

Sgn(d)~arg mind F Z,�ZZd
� �� 	

, d~z,{ð Þ ð7Þ

where Sgn(d) is the argument of d that minimizes F(Z,Zd), which

is defined by

F(Z,�ZZd)~D2
Mah(Z,�ZZd)zlnDCdD, (d~z,{) ð8Þ

where

D2
Mah(Z,�ZZd)~(Z{�ZZd)TC{1

d (Z{�ZZd) ð9Þ

is the squared Mahalanobis distance [47,48,49] between Z and �ZZd,

Cd~

cd
1,1 cd

1,2 � � � cd
1,V

cd
2,1 cd

2,2 � � � cd
2,o

..

. ..
.

P
..
.

cd
V,1 cd

V,2 � � � cd
V,V

2
666664

3
777775, (V~1788) ð10Þ

is the covariance matrix [50] for the subset S
d (d~z,{), the

V|V elements in Cd are given by

cd
i,j~

1

Nd{1

XNd

u~1

fu
d,i{

�ffd,i

� �
fu

d,j{
�ffd,j

� �
, (i,j~1, 2, . . . , V) ð11Þ

C{1
d is the inverse matrix of Cd, and DCdD is the determinant of the

matrix Cd. Therefore, the covariance discriminant function is also

Table 1. The normalized values for the 12 physicochemical properties of dinucleotide.

Dinuc-
leotide Physicochemical propertiesa

P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10) P(11) P(12)

AA 0.85 0.85 20.22 20.96 20.73 20.62 20.09 0.68 21.00 1.00 0.36 0.23

AC 21.00 21.00 20.60 20.45 20.27 0.37 20.64 0.37 0.05 0.56 20.48 0.50

AG 20.56 20.56 21.00 0.45 20.27 20.18 20.36 0.37 20.12 20.10 20.39 0.04

AT 20.01 20.01 1.00 21.00 21.00 20.48 21.00 1.00 20.31 20.90 21.00 1.00

CA 1.00 1.00 0.13 1.00 20.27 20.65 20.09 0.16 0.75 20.14 0.88 20.77

CC 20.87 20.87 20.25 0.81 1.00 0.15 1.00 20.47 1.00 20.75 20.15 20.35

CG 20.14 20.14 20.89 0.80 0.18 20.10 1.45 21.00 0.64 20.45 0.60 21.00

CT 20.56 20.56 21.00 20.29 20.27 20.18 20.36 0.37 20.12 21.00 20.39 0.04

GA 0.87 0.87 0.43 1.24 20.27 20.30 20.36 0.37 20.02 20.87 0.65 0.04

GC 0.32 0.32 0.24 1.17 0.18 1.00 1.00 20.47 0.44 20.54 0.01 0.27

GG 20.87 20.87 20.25 0.63 1.00 0.15 1.00 20.47 1.00 20.14 20.15 20.35

GT 21.00 21.00 20.60 20.29 20.27 0.37 20.64 0.37 0.05 20.90 20.48 0.50

AA 0.32 0.32 20.84 2.37 21.00 21.00 20.45 1.00 0.29 20.87 1.00 20.31

AC 0.87 0.87 0.43 0.24 20.27 20.30 20.36 0.37 20.02 20.45 0.65 0.04

AG 1.00 1.00 0.13 2.02 20.27 20.65 20.09 0.16 0.75 0.56 0.88 20.77

AT 0.85 0.85 20.22 21.00 20.73 20.62 20.09 0.68 21.00 20.77 0.36 0.23

aIn this table, the following symbols were used to represent the 12 physicochemical properties of DNA: P(1) for ‘‘A-philicity’’ [22], P(2) for ‘‘base stacking’’ [23], P(3) for ‘‘B-
DNA twist’’ [24], P(4) for ‘‘bendability’’ [25], P(5) for ‘‘DNA bending stiffness’’ [26], P(6) for ‘‘DNA denaturation’’ [27], P(7) for ‘‘duplex disrupt energy’’ [28], P(8) for ‘‘duplex
free energy’’ [29], P(9) for ‘‘propeller twist’’ [30], P(10) for ‘‘protein deformation’’ [31], P(11) for ‘‘protein-DNA twist’’ [31], and P(12) for ‘‘Z-DNA’’ [32].
doi:10.1371/journal.pone.0047843.t001
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called the modified Mahalanobis discriminant function [51,52].

More description about the covariance discriminant function and

its application in biology can be found in a review [50].

4. Performance Evaluation
In statistical prediction, the following three cross-validation

methods are often used to examine a predictor for its effectiveness

in practical application: independent dataset test, subsampling (K-

fold cross-validation) test, and jackknife test. However, as

elaborated in ref. [53] and demonstrated by Eqs.28–32 of [15],

among the three cross-validation methods, the jackknife test is

deemed the least arbitrary that can always yield a unique result for

a given benchmark dataset, and hence has been increasingly used

and widely recognized by investigators to examine the accuracy of

various predictors (see, e.g., [54,55,56,57,58,59,60]). However,

since the current study would involve feature selection as described

below, to reduce the computational time, the 5-fold cross-

validation test would be adopted as done by many investigators

using SVM (Support Vector Machine) as the prediction engine.

Also, to use a more intuitive and easier-to-understand method to

measure the prediction quality, according to the definition [33,61],

the rates of correct predictions for the nucleosome-forming dataset

S
z

and the nucleosome-inhibiting dataset S
{

are respectively

defined by

Lz~
Nz{mz

Nz
, for nucleosome-forming sequences

L{~
N{{m{

N{
, for nucleosome-inhibiting sequences

8>><
>>: ð12Þ

where Nz is the total number of nucleosome-forming sequences

concerned and mz the number of nucleosome-forming sequences

missed in prediction; N{ the total number of nucleosome-

inhibiting sequences concerned and m{ the number of nucleo-

some-inhibiting sequences missed in prediction. The overall

success prediction rate is given by

L~
LzNzzL{N{

NzzN{
~1{

mzzm{

NzzN{
ð13Þ

It is clear from Eqs.12–13 that, if and only if none of nucleosome-

forming sequences and nucleosome-inhibiting sequences are

mispredicted, i.e., mz~m{~0 and Lz~L{~1, we have the

overall success rate L~1. Otherwise, the overall success rate

would be smaller than 1.

5. Feature Selection
Inclusion of redundant and noisy information would cause poor

prediction results and increase computational time. To improve

the prediction quality and gain deeper insights into the physico-

chemical properties of nucleosomal sequences, we performed

feature selection using the wrapper-type feature selection algo-

rithm called ‘‘fselect.py’’, which can be downloaded at http://

www.csie.ntu.edu.tw/,cjlin/libsvmtools. The basic idea of this

algorithm is to rank each of the features involved according to a

score as elaborated by Chen and Lin [62]. The ranked feature

with a higher score indicates that it is a more highly relevant one

for the target to be predicted. Based on the ranked features, we

used the Incremental Feature Selection (IFS) [63] to determine the

optimal number of features. During the IFS procedure, features in

the ranked feature set were added one by one from higher to lower

rank. A new feature set was composed when one feature had been

added. Thus, the N feature sets thus formed would be composed of

N ranked features. The t-th feature set can be formulated as

St~ f1, f2, � � � , ftf g (1ƒtƒN) ð14Þ

For each of the N feature sets, a CD prediction model (cf. Eq.7)

was constructed and examined with the 5-fold cross-validation on

the benchmark dataset. By doing so, we obtained an IFS curve in a

2D Cartesian coordinate system with index t as its abscissa (or X-

coordinate) and the overall success rate L as its ordinate (or Y-

coordinate). The optimal feature set is defined by

SH~ f1, f2, � � � , fHf g ð15Þ

with which the IFS curve reaches its peak. In other words, in the

2D coordinate system, when X~H the value of L is the

maximum. Thus, we can use the H features in Eq.15 to build the

final predictor.

The predictor established by going through all the above

procedures is called iNuc-PhysChem. Meanwhile, a user-

friendly web-server for the predictor was also established as will

be describe at the end of the paper.

Results and Discussion

1. Graphic Profiles of Nucleosome and Non-nucleosome
Sequences

Different from the previous methods [10,11,12] that were

mostly based on the sequence compositional features, we carried

out a graphic profile comparison between nucleosomal and linker

(non-nucleosomal) sequences in order to explore the specific

features possessed by nucleosomal sequences. Using graphic

approaches to study biological problems can provide an intuitive

picture or useful insights for revealing complicated relations in

these systems, as demonstrated by many previous studies on a

series of important biological topics, such as enzyme-catalyzed

reactions [64,65,66,67], inhibition of HIV-1 reverse transcriptase

[68,69], protein folding kinetics [70], drug metabolism systems

[71], and using wenxiang diagram or graph [72] to study protein-

protein interactions [73,74,75]. To introduce graphic approach for

the current study, let us use the conversion scheme [18] to

transform the nucleosome and non-nucleosome sequences into the

numerical vectors (cf. Eq.4). To intuitively show the difference

between these two different types of sequences, a graphic

expression of the standard feature vector (cf. Eq.5) for the

nucleosomal sequences and that for the non-nucleosomal

sequences are given in Fig. 2, which consists of 12 panels

corresponding to 12 physicochemical properties of DNA sequenc-

es (cf. Section 2 of Materials and Method). The curves in the ‘‘A-

philicity’’ panel reflect the first 149 components in the two

standard feature vectors, those in the ‘‘base stacking’’ panel reflect

the second 149 components, and so forth. It is interesting to note

that, except for the ‘‘B-DNA twist’’ panel and ‘‘Protein-DNA

twist’’ panel, the differences between the nucleosomal and non-

nucleosomal sequences are quite remarkable in all the other 10

panels. These findings suggest that the two physicochemical

properties might play a less role in distinguishing nucleosomal and

non-nucleosomal sequences than the other 10 properties.

2. Comparison of the 12 Properties in Classification
Performance

In order to compare the 12 physicochemical properties for the

classification performance, the feature vector Eq.4, standard

vector Eq.5, and classifier Eq.7 were reduced from the original

Nucleosome Identification
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1788-D working space to twelve 149-D sub-working spaces. Each

of the sub-working spaces corresponds to one of the 12

physicochemical properties. Shown in Fig. 3 are their success

rates in the classification performance when examined by the 5-

fold cross-validation on the benchmark dataset S. As can be seen

from Fig. 3, the success rates obtained by using the ‘‘B-DNA

twist’’ and ‘‘protein-DNA twist’’ properties are indeed remarkably

lower than those by most of the other properties, quite consistent

with the graphic profile analysis of last section.

3. Selection of Position Specific DNA Features
To identify the key features for nucleosomal sequence predic-

tion, we used the wrapper-type feature selection algorithm and IFS

approach as described in Section 5 of Materials and Method.

Figure 2. Graphic profiles to show the difference between nucleosomal (red) and linker (blue) sequences. It contains 12 panels drawn
according to their standard feature vectors (cf. Eq.5), with each to reflect one of the 12 physicochemical features as marked at the bottom of each
panel.
doi:10.1371/journal.pone.0047843.g002
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By adding the ranked features one by one according to the

scores calculated by fselect.py, we built 1,788 individual CD

predictors for the 1,788 sub-feature sets. We then tested the

prediction performance for each of the 1,788 predictors and

plotted the IFS curve as shown in Fig. 4, from which we can see

that, when the top ranked 884 features were used, the overall

success rate reached its peak, i.e., L~96:70% (cf. Eq.13), with

Lz~99:60% for the nucleosome-forming sequences and

L{~93:86% for the nucleosome-inhibiting sequences (cf. Eq.12).

In other words, we have H~884 (cf. Eq.15) and the optimal

feature set for the current biological system should be

S884~ f1, f2, � � � , f884f g ð16Þ

To provide an overall view, a distribution of the 12 physicochem-

ical features and their roles for the prediction model is given in

Fig. 5, where the green boxes indicate the features that were not

contained in the optimal feature set S884. The red and purple

boxes indicate the features that were included in the optimal

feature set S884: features in red boxes were positively correlated

with nucleosomal sequences, while those in purple boxes were

negatively correlated with nucleosomal sequences.

4. Comparison with Existing Methods
Based on the 2-mer absolute frequency of nucleotides, Zhang et

al. [76] proposed a model to distinguish nucleosomal and linker

sequences. When tested by the 5-fold cross-validation on the

benchmark dataset, their method achieved an overall success rate

of 95.70%, which is lower than that by the present method.

Furthermore, our model trained on the yeast data was also

applied to the human genome. According to the human reference

genome (hg 18), we randomly extracted 1000 nucleosomal and

1000 linker sequences from the high-resolution experimental data

of human CD 4+ T cell [9]. Our model achieved an overall success

rate of 98.5% for classifying the experimentally confirmed

nucleosomal and linker sequences in the human genome. This

result is higher than 93.8% obtained by using the model proposed

by Peckham et al. [10], which has also been applied to predict

human nucleosomal sequences by Gupta et al. [12]. All these

results indicate that it is a quite promising approach by

incorporating the DNA physicochemical features for predicting

the nucleosomal sequences, and also suggest a conserved

mechanism of nucleosome positioning across genomes.

Different with most current nucleosome positioning prediction

methods that were solely relied on local sequence compositional

information, in this study we developed a new method by

incorporating the physicochemical features of DNA sequences.

Our rationale to do so is that, different from the other nucleotide

information, the physicochemical properties might affect DNA

binding of regulatory proteins, either directly by hampering or

favoring complex formation, or indirectly through the modulation

of the chromatin structure and hence the DNA accessibility [77].

Therefore, the current method may become a useful vehicle for in-

depth studying nucleosomes.

5. Web-Server Guide
For the convenience of the vast majority of experimental

scientists, below let us give a step-by-step guide on how to use the

iNuc-PhysChem web-server to get their desired results without

the need to follow the complicated mathematic equations that

were presented just for the integrity in developing the predictor.

Step 1. Open the web server at http://lin.uestc.edu.cn/

server/iNuc-PhysChem and you will see the top page of iNuc-
PhysChem on your computer screen, as shown in Fig. 6. Click

on the Read Me button to see a brief introduction about the

predictor and the caveat when using it.

Step 2. Either type or copy and paste the query DNA

sequence into the input box at the center of Fig. 6. The input

sequence should be in the FASTA format. A sequence in FASTA

Figure 3. Comparison of success rates based on different
physicochemical properties. The orange column shows Lz, the
rate of correct prediction for the nucleosome-forming dataset (cf.
Eq.10); the blue column shows L{, the rate of correct predictions for
the nucleosome-inhibiting dataset; the purple column shows L, the
overall success rate (cf. Eq.11).
doi:10.1371/journal.pone.0047843.g003

Figure 4. A plot to show the IFS procedure. When the top 884 of
the 1,788 features were used to perform prediction, the overall success
rate L reached its peak of 0.967.
doi:10.1371/journal.pone.0047843.g004
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format consists of a single initial line beginning with a greater-than

symbol (‘‘.’’) in the first column, followed by lines of sequence

data. The words right after the ‘‘.’’ symbol in the single initial line

are optional and only used for the purpose of identification and

description. All lines should be no longer than 120 characters and

usually do not exceed 80 characters. The sequence ends if another

line starting with a ‘‘.’’ appears; this indicates the start of another

sequence. Example sequences in FASTA format can be seen by

clicking on the Example button right above the input box.

Step 3. Click on the Submit button to see the predicted result.

For example, if you use the three query DNA sequences in the

Example window as the input, after clicking the Submit button,

you will see the following shown on the screen of your computer:

the outcome for the 1st query sample (with 150 bp long) is

‘‘nucleosome’’; the outcome for the 2nd query sample (with

150 bp long) is ‘‘linker’’; the outcome for the 3rd query sample

(with 502 bp long) contains (502{150z1)~353 sub-results, in

which the outcomes for the segments from #1 to #61 are of

Figure 5. A distribution overall view for the 12 physicochemical features. The features that were included in the optimal feature set S884 are
shown in the red and purple boxes: the former was positively correlated with nucleosomal sequences, while the latter negatively correlated with
nucleosomal sequences. Those features that were not in the optimal feature set S884 are shown in the green boxes.
doi:10.1371/journal.pone.0047843.g005

Figure 6. A screenshot to show the top page of the iNuc-PhysChem web-server. Its website address is at http://lin.uestc.edu.cn/server/
iNuc-PhysChem.
doi:10.1371/journal.pone.0047843.g006
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‘‘linker’’, those for the segments from #62 to #198 are of

‘‘nucleosome’’, and those from #199 to #353 are of ‘‘linker’’. All

these results are fully consistent with the experimental observations

as summarized in the Information S1. It takes about few seconds

for the above computation before the predicted result appears on

your computer screen; the more number of query sequences and

longer of each sequence, the more time it is usually needed.
Step 4. Click on the Citation button to find the relevant

papers that document the detailed development and algorithm of

iNuc-PhysChem.
Step 5. Click on the Data button to download the benchmark

datasets used to train and test the iNuc-PhysChem predictor.
Step 6. The program is also available by clicking the button

download on the lower panel of Fig. 6.

6. Some Remarks
In this study although iNuc-PhysChem was trained by the

dataset derived from Saccharomyces cerevisiae, it can be successfully

used to identify nucleosome positioning for an independent DNA

segment extracted from the Saccharomyces cerevisiae genome, as

demonstrated by the 3rd sequence in the Example window of the

iNuc-PhysChem web-server. Particularly, it can be also

successfully used to classify nucleosomal and linker sequences in

the human genome, as elaborated in Section 4 of Results and

Discussion. Therefore, it is anticipated that iNuc-PhysChem can

be successfully used to identify nucleosome in the whole genome as

well.

The current study was focused on the demonstration that the

physicochemical properties of DNA are important for nucleosome

positioning prediction. Since the physicochemical properties of

DNA can be used to describe the interaction between DNA and

chromatin remodeling complexes in vivo, here we just used the in

vivo data for the current study. However, it is instructive to point

out that although in vivo and in vitro nucleosome maps are

similar, promoters and DNA replication regions, where nucleoso-

mal sequences are depleted in vivo, are strongly affected by

nucleosome remodeling [78,79]. In view of this, we shall consider

in our future work to use in vitro nucleosome maps [78] and the

raw data from [80] to train the prediction model. Also, it is

intriguing to analyze the impacts of different conformations (such

as B- and Z-form) of DNA to nucleosome positioning, and will be

investigated in our future studies as well.

Based on the results as reported in Section 4 of the Results and

Discussion, we believe that the user-friendly web-server iNuc-
PhysChem as proposed in this paper may serve as a useful tool

for studying nucleosome positioning. Or at the very least, it can

play a complimentary role to the existing methods in this area.

Meanwhile, we also sincerely hope to hear any feedbacks (either

positive or negative) from the users in using iNuc-PhysChem to

generate their desired data. Their feedbacks will be very useful for

us to improve the performance of iNuc-PhysChem.

Supporting Information

Information S1 The benchmark dataset S consists of a

positive dataset Sz and a negative dataset S{. The

positive dataset contains 5,000 nucleosome-forming DNA seg-

ments, while the negative dataset contains 5,000 nucleosome-

inhibiting DNA segments. Each of these segments is 150-bp long.

(PDF)

Information S2 The original numerical values for the 12
physicochemical properties of dinucleotide, where the
physicochemical property ‘‘A-philicity’’ [22] is denoted
by P(1); ‘‘base stacking’’ [23] by P(2); ‘‘B-DNA twist’’
[24] by P(3); ‘‘bendability’’ [25] by P(4); ‘‘DNA bending
stiffness’’ [26] by P(5); ‘‘DNA denaturation’’ [27] by P(6);
‘‘duplex disrupt energy’’ [28] by P(7); ‘‘duplex free
energy’’ [29] by P(8); ‘‘propeller twist’’ [30] by P(9);
‘‘protein deformation’’ [31] by P(10); ‘‘protein-DNA
twist’’ [31] by P(11); and ‘‘Z-DNA’’ [32] by P(12). Their

values were taken from the papers cited above, respectively.

(PDF)
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