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Abstract

Copy Number Alterations (CNAs) such as deletions and duplications; compose a larger percentage of genetic variations than
single nucleotide polymorphisms or other structural variations in cancer genomes that undergo major chromosomal re-
arrangements. It is, therefore, imperative to identify cancer-specific somatic copy number alterations (SCNAs), with respect
to matched normal tissue, in order to understand their association with the disease. We have devised an accurate, sensitive,
and easy-to-use tool, COPS, COpy number using Paired Samples, for detecting SCNAs. We rigorously tested the performance
of COPS using short sequence simulated reads at various sizes and coverage of SCNAs, read depths, read lengths and also
with real tumor:normal paired samples. We found COPS to perform better in comparison to other known SCNA detection
tools for all evaluated parameters, namely, sensitivity (detection of true positives), specificity (detection of false positives)
and size accuracy. COPS performed well for sequencing reads of all lengths when used with most upstream read alignment
tools. Additionally, by incorporating a downstream boundary segmentation detection tool, the accuracy of SCNA
boundaries was further improved. Here, we report an accurate, sensitive and easy to use tool in detecting cancer-specific
SCNAs using short-read sequence data. In addition to cancer, COPS can be used for any disease as long as sequence reads
from both disease and normal samples from the same individual are available. An added boundary segmentation detection
module makes COPS detected SCNA boundaries more specific for the samples studied. COPS is available at ftp://115.119.
160.213 with username ‘‘cops’’ and password ‘‘cops’’.
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Introduction

Copy number alterations (CNAs) represent an important

category of structural aberrations in human cancers [1–3], where

the genome undergoes amplifications and/or deletions on a very

large-scale [4,5]. As against single nucleotide polymorphisms

(SNPs), which impact the chromosome (chr) at a single nucleotide

level, CNAs range from one kilo base (kb) to several mega bases

(mb) [6] and therefore, may span across several genes [7],

including oncogenes and tumor-suppressor genes [8–11]. In some

diseases other than cancer, copy number variations (CNVs)

severely impact cellular function, for e.g. in the case of

DiGeorge/velocardiofacial syndrome [12], the autosomal domi-

nant Prader-Willi syndrome [13], the Williams-Beuren syndrome

[14] and the Smith-Magenis syndrome [15]. In addition to

cancer/disease genomes, genomes of normal individuals also show

copy number variations (CNVs) [16,17]. In cancer, CNAs usually

refer to somatic variations present in tumor genomes compared to

normal genomes from the same individual (matched normal).

Hence, it is important to identify the cancer-specific somatic CNAs

(SCNAs) and distinguish them from those inherited or present in

matched normal samples (germ line CNVs). Further more, given

the heterogeneity in CNVs in the normal population, [18] it is

imperative to distinguish CNAs or SCNAs (detected using

matched control samples) from CNVs (detected using a single

sample) in a given disease/cancer genome.

High throughput DNA microarray and next generation

sequencing (NGS) based approaches have been used in the past

in detecting structural variations in human genomes [19–30]. The

NGS-based methods provide an unbiased and comprehensive

view of all types of variations in the genome, such as SNPs, short

indels, translocations and CNVs [31,32] where finding the

alterations does not depend on indirect measurements of probe

intensities as in the case of DNA microarrays [19]. Often, data

from high-resolution array comparative genome hybridization

(array-CGH) [21] is combined with whole genome sequencing to

obtain a comprehensive map of CNVs existing in a population

[31].

A number of open-source/freely-available algorithms have been

reported in the literature for CNV detection using data from next-

generation sequencers [29,33–37]. However, most CNV detection
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tools are optimized to detect amplifications and deletions of a

selected size range in a single sample (either cancer or normal) and

results from various tools are often not comparable to each other.

Similarly, the available pair-wise tools do not provide good

sensitivity of detection and ease of use. Hence, there is a need to

develop an easy-to-use, sensitive, accurate tool to detect SCNAs

using paired samples.

Here, we report an accurate, sensitive, and easy-to-use SCNA

detection tool, COPS, (COpy number using Paired Samples) and

a downstream boundary segmentation detection module. We have

evaluated sensitivity (detection of true positives), specificity

(detection of false positives), size-deviation (variation from the

actual SCNA size) and processing times (time taken to use the tool)

of COPS using both simulated and real tumor:normal datasets.

We tested COPS using simulated sequencing data with different

read lengths and coverage, in combination with different

alignment tools to optimize its working over a wide-range of

conditions. We find COPS to perform well in comparison with

commonly used tools for detection of CNA for all evaluated

parameters at a maximum resolution of 500 nucleotides. Precise

SCNA boundaries were further fine-tuned using an additional

boundary segmentation module.

Results

COPS Workflow
The schematic of COPS and boundary segmentation workflow

is presented in Figure 1 that consists of the following steps:

Binning of reads. The mapped reads from the aligned test

and the ref SAM files (details of the SAM file generation is

provided in the Methods section) are processed using SAMtools

[38] Pileup (http://samtools.sourceforge.net/) to yield read depth

at every nucleotide position. These are binned into windows of size

50 nucleotides (nts) according to their mapped coordinates in the

chr. The bin sizes of 50 and 60 nts are benchmarked using

simulated data for all read lengths where the 50 nts bin size

yielded better results using simulated data (Table S1).

Calculation of pair-wise log2ratios. The binned read

depths for the test and the ref samples are further processed to

calculate test-to-ref log2ratios. A stretch of negative log2ratio values

is typically representative of copy number deletion, while a positive

trend denotes a copy number amplification. The bins for which

the read depth was zero in either the test or the ref samples or in

both was marked as Udef-Deletion, Udef-Amplification and Udef-

Neutral events respectively, where the tag ‘Udef’ denotes

‘Undefined’. If an amplification or a deletion event was

neighboring to a similar event with a Udef tag, the log2ratio for

that Udef event was taken to be the same value as the neighboring

similar event.

Smoothing of read depth. The log2ratios were further

averaged over every four consecutive bins. For each bin b:

alrb~

Pb~iz3

b~i

lrb

4

alr is the average log2ratio, lr is the log2ratio and i is the bin index.

This step smoothens the data, by filtering out noise and improves

the signal-to-noise ratio. The threshold of 4 for sliding average

proved to be the most accurate for CNA detection, as tested with

simulated data (Table S1). This sliding average method of

smoothing data (rectangular or un-weighted sliding-average

smoothing) is the simplest form of smoothing and in our case

provided with the best results (Table S1). The log2ratios of ten

contiguous bins are summed up starting from every bin, in order

to provide a cumulative log2ratio score (clr) for the merged bin.

P-value based merging. The log2ratios of ten contiguous

bins are summed up in order to provide a cumulative log2ratio

score (clr) for the merged bin. We observe the read depths for the

test and ref samples to be Poisson distributed (Figure S1), in

agreement with earlier findings using read counts ([39] [33,40].

We also observe the log2ratio between read depths of test and ref

samples, and the absolute value of the corresponding clr to follow a

Poissonian distribution (Figure S1). We consider only the

magnitude of clr while calculating the test statistic and ignore its

sign, since we use the statistical framework only to merge bins with

a significant clr. We observe the clr to be Poisson distributed, and

its square root to be approximately normally distributed with

variance of about J, per sample.

Accordingly, the normal [0,1] statistic to assess significance of clr

for the merged bin is therefore calculated assuming its square root

to be approximately normally distributed with a small variance of

about J, per sample, as follows:

ffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The merged bins are retained for significant clrs (P,0.001) as

assessed by a normal [0,1] distribution. Contiguous merged bins

are further fused into single CNA events. The maximum

resolution of COPS is therefore 500 nt, i.e. it can detect CNAs

as small as 500 nt long.

SCNA boundary segmentation module. The detection of

SCNA boundaries is an independent module provided along with

COPS, the result of which is fed into COPS to result more

accurate SCNA boundaries. This module classifies the anomalous

reads from the aligned test and the ref (SAM) files into deletion

and amplification categories, mapping with greater and lower than

expected insert sizes, respectively. Details on this module are

provided in the Methods section.

Correction of COPS detected SCNA boundaries. Once

the segmentation module detects the boundaries, the COPS

SCNA boundaries are further corrected using the results obtained

with the added module.

Pre-requisites, Installation, and Execution of COPS
Pre-requisites:

Operating System: Linux 64 bit.

RAM: 4 GB.

Samtools-0.1.12a or advanced versions.

R programming language version 2.12.1.

Perl module: Distribution.pm.

Installation. Decompress the COPS version1.1.zip file to a

suitable location. Avoid placing any other files into the extracted

folder.

Execution. Locate the following files within the Scripts

subdirectory, List_test.name & List_ref.name. These files should

have all the name of chromosomes in your input sam/bam files

(one per line) as per the third field of your input sam/bam file.

E.g. chr1, c1.fa, chr1.fa, c1.

Only the chromosomes specified in the above files will be

processed.

Ensure that both files have the same chromosome names and

the same number of chromosomes, in the same order. Once the

files have been populated appropriately, the main script can be

executed as follows.

A Sensitive & Accurate Copy Number Alteration Tool
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% bash COPS.sh ,input file-type. ,test file-name. ,ref file-

name.

input file-type: 0 for ‘‘.bam’’ file and 1 for ‘‘.sam’’

test file-name: File name of test/cancer sample (with full path)

ref file-name: File name of reference/normal sample (with full

path)

The arguments must be provided in the same order. One must

avoid processing multiple sample pairs simultaneously within the

same folder. Upon successful execution, an output folder/

Figure 1. COPS and the boundary segmentation module workflow. Steps involved in the COPS workflow for tumor:normal (paired) samples
along with the steps involved in the SCNA boundary segmentation module.
doi:10.1371/journal.pone.0047812.g001
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COPS_output is generated within the/COPSversion1.1 directory.

This folder contains the detected SCNA files (Con.*). The final

output file carries the following columns: Chromosome name,

SCNA start, SCNA end, cumulative log2ratio, t-statistic and P-

value. The provided sample data contains test.bam and ref.bam.

Performance of COPS using Simulated Data
We simulated CNAs in the hg18 ref chr1 sequence to create a

test sequence with cumulative size of CNAs equal to 1.5% of the

size of chr1. The CNAs were simulated at various sizes (1–10 kb,

10–50 kb, 50 kb–1 mb). We ran available pair-wise CNA

detection tools, CNV-Seq [33] and SVDetect [34], along with

COPS with all combinations of simulated test:ref paired samples.

As depicted in Figure 2, COPS largely outperformed CNV-Seq

and SVDetect in terms of sensitivity, specificity and accuracy of

CNA size. CNV-Seq is implemented for longer reads (Sanger and

454 derived reads of minimum 250 bp) [33] and did not function

for smaller read lengths of 36 and 50 in our comparison study. We

used CNV-Seq for read lengths 76, 100 and 150 where it provided

only ,25% of true positive CNAs (Figure 2). Among the small

number of calls that CNV-Seq made, most were true positive calls.

SVDetect [34], unlike CNV-Seq [33], detected more numbers of

SCNAs but with larger fraction of false positive calls (Figure 2).

Among the true positive SCNA calls that SVDetect made, the

boundaries of SCNAs were far from the true break points, giving

rise to more size-deviant SCNAs. The sensitivity of CNA detection

goes up with increasing SCNA sizes for all tools (Figure 2). The

specificity of CNA detection did not show any such trend. In the

case of SVDetect, the specificity dropped to an all time low for

read length of 76. Furthermore, the size deviation decreased with

increasing SCNA size for COPS, and also for SVDetect for read

lengths 76, 100 and 150. However, for CNV-Seq the minimum

size deviation is observed for detecting SCNAs in the 10–50 kb

size range.

We then focused on a few regions where there was discordance

among the tools in calling SCNAs, with an aim to understand the

reason underlying this discordance. In a region of chr1, where

COPS correctly detected amplification and deletion, CNV-Seq

detected the amplification intact, but not the deletion. Instead, it

detected the deleted region as two distinct SCNAs, hence giving

rise to a fragmented SCNA (Figure 3). Like CNV-Seq, SVDetect

detected the amplification intact but not the deletion. However,

the deleted SCNA was further fragmented into multiple calls

(Figure 3). SVDetect also detected several false positive SCNAs

around the amplification and deletion.

Finally, we tested the tools on a single desktop computer to

profile the time taken to complete the CNA detection. For paired-

sample analyses, CNV-Seq gave the best time profile (1790499),

followed closely by SVDetect (2291899) and COPS (3193099).

In addition to simulations covering 1.5% of chr1, we also

evaluated the performance for various SCNA detection tools for

simulated SCNAs covering 0.05%, 0.1%, and 3% of chr1 at

various read lengths. Like our earlier observation with SCNAs

simulated to cover 1.5% of chr1, COPS outperformed CNV-Seq

and SVDetect for all SCNA sizes and applicable read lengths

when 0.05%, 0.1% and 3% of chr1 simulated SCNAs (Figure S2).

Like the CNA detection tools, the CNV detection tools with

individual samples and then employing a subtractive approach

also corroborated the earlier results with SCNAs covering 1.5% of

chr1 (Figure S3).

Since the number of SCNA detection tools is limited, we

explored the possibility of using individual sample-based CNV

callers to detect CNVs in both test and ref sample separately and

then employ a subtractive method to detect SCNAs in test sample

(details of the subtractive approach is provided in the Methods

section). We used the popular CNV calling tools CNVNator [35],

RDXplorer [29] and Freec [36] to detect CNVs first and then

detect SCNAs by employing the above approach (Figure 4). We

used the same set of simulated data described above for these

subtractive analyses. COPS and RDXplorer performed best

among all tools in detecting SCNAs even when compared with

the results from the subtractive approach with CNV detection

tools (Figure 4). The size accuracy of COPS was markedly better

than that of RDXplorer for the 50 kb–1 mb size range of the

simulated SCNAs. CNVNator ranked next in performance

comparison. The true positive detection capability of CNVNator

did not vary across the SCNA size ranges. The true positive calls

made by Freec at all read lengths tested were low except for the

50 kb–1 mb size range of SCNAs (Figure 4). Freec, like SVDetect,

detected CNAs larger than the actual size, hence giving rise to

more size-deviant SCNAs.

In the same region of chr1 described above, where COPS

correctly detected the amplification and deletion in comparison to

CNV-Seq and SVDetect, RDXplorer also picked up the

amplification and deletion in the test sample CNV detection

analyses (Figure 5). CNVNator detected the deletion alone and not

the amplification event and Freec detected the amplification alone

and not the deletion event.

When tested for the time profiling, CNVNator, Freec and

RDXplorer, took 2291899, 2091299 and 469 respectively, to

complete the CNV detection in individual samples.

For all the data simulating SCNAs in chr1 (with different

coverage and size), we generated paired-end 76 nts long reads with

varying coverage, starting from 1.5X up to 30X, and tested the

performance of COPS under these conditions at two bin sizes, 50

and 60 nts (Figure 6A & &B respectively). At bin size 50, the

minimum coverage at which COPS performed best was 5X with

minimum number of false positives (high specificity) and maxi-

mum number of true positives (high sensitivity) for most SCNA

size ranges except 0.1% (10–50 kb) range (Figure 6A). We found

that the results for 5X coverage data at 0.1% CNV (10–50 kb) are

reproducible, although the reasons for a discontinuous perfor-

mance (Figure 6A) are unclear. The minimum coverage extended

to 7.5X, when we considered the size deviation aspect as well

(Figure 6A). We found no significant difference in sensitivity by

increasing the coverage beyond 5X. For read coverage of 2.5X,

the size deviation increased further crossing 24% along with

concomitant compromise in the sensitivity and specificity of the

detected SCNAs. Upon increasing the bin size to 60 nts, we

observed a marginal enhancement in sensitivity of COPS for the

lowest size range of SCNAs, 0.05% (1–10 kb), but not in specificity

or accuracy of size (Figure 6B). COPS did not result in enhanced

performance by using other size ranges of simulated CNAs and

upon increasing the bin size to 60 nts, including the data using

reads generated at low coverage (, = 10X; Figure 6B), in

disagreement with the observations highlighted for CNVNator

[35].

Effect of Alignment on SCNA Detection
In order to understand if the process of read alignment plays

a role in detecting CNAs, we aligned reads, generated at

different lengths with various coverages of chr1 and sizes, using

various open source/freely available aligners like Bfast [41],

BWA [38], Novoalign [42] (freely available non-MPI version),

Smalt [43] and Stampy [44]. Subsequently, we used the aligned

files to call CNAs with all tools including COPS. We first

visualized the performance of COPS in comparison to other

CNA (Figure 7A) and CNV (Figure 7B) callers. For size ranges

A Sensitive & Accurate Copy Number Alteration Tool
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of 1–10 kb, 10–50 kb and 50 kb–1 mb, COPS did not show

any aligner-dependence on its sensitivity, specificity or size-

deviation of SCNA detection. CNV-Seq also did not show any

aligner-dependence in sensitivity and specificity of SCNA

detection, but did in size-deviation. SVDetect was the most

aligner-dependent tool that resulted in lowered sensitivity and

elevated size deviation with Smalt (for .10 kb SCNA size

ranges), and lowered specificity with Stampy (for most size

ranges). Among the CNV detection tools, RDXplorer and

CNVNator showed marginal aligner-dependence in the ,10 kb

SCNA detection sensitivity. Freec showed the highest aligner-

dependence: poorer sensitivity and size deviation for Novo,

Bfast and Stampy (in that order, for most size ranges) and

poorer specificity for Bfast (for .10 kb size ranges).

Figure 2. Performance comparison across SCNA detection tools. The percentage of true positive SCNAs (y axes) are plotted against the
percentage of false positive SCNAs (x axes) for available SCNA detection tools including COPS. Simulated CNVs at three size ranges: 1–10 kb (A), 10–
50 kb (B) and 50 kb–1 mb (C) were used. Paired-end reads of lengths 36, 50, 76, 100 and 150, were generated for each dataset. The size of the data
points is representative of the deviation in size of the detected SCNA.
doi:10.1371/journal.pone.0047812.g002
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We subsequently extended our aligner comparison study and

observed that our conclusions on aligner-dependent performance

of SCNA/CNV detection tools held true for combinations of all

other simulated SCNA sizes and read lengths (Figure S4).

We then focused on a chromosomal region encompassing a

simulated sample-specific deletion detected as fragments by COPS

using all aligners (Figure 8). The fragmentation was minimal for

aligners like Novoalign and BWA (2 fragments), but excessive for

others like Smalt (4 fragments), and intermediate for aligners like

Bfast and Stampy (3 fragments). Incorrect mapping of reads also

led to the inaccuracy in SCNA breakpoints (Figure S5) and

detection of false positive events, such as the two amplifications

detected using COPS with Bfast-aligned reads (Figure S6).

Performance of COPS with Real Tumor:normal Paired
Samples and Validation of SCNAs with Whole Genome
SNP Microarray

We further tested COPS on real tumor:normal paired samples.

We performed whole genome sequencing experiment (5 kb long-

insert mate pair library using Illumina Solexa instrument) for a

tumor and its matched normal sample and used the data to test

COPS in finding SCNAs. We validated the CNAs found by COPS

by performing the whole genome DNA microarray (Illumina

Omni 2.5 million SNP microarray) on the same sample pair. In

order to compare the sequencing data with that from the

microarray, we took only those regions with reads where there

were at least 5 probes tiled on the microarray. The concordance

between CNAs obtained using COPS and DNA microarray was

80% when regions with . = 1.5X coverage were considered that

increased considerably to 97.9% with regions with . = 15X

coverage (Figure 9 and Table S2) consistent with our finding in

simulated data (Figure 6). We visualized a region of chromosome

11 harboring major amplifications by juxtaposing a screen-shot

from Illumina GenomeStudio loaded with the real tumor:normal

B allele frequency (BAF) ratios and the CNV Analysis bookmarks,

against a plot of log2ratios from COPS using sequencing reads

validated contiguous regions of amplification type SCNA events

within the chromosome 11 (Figure 10). The boundaries of the 1

and 1.5 copy amplification events, detected independently across

different platforms, coincided perfectly thus further validating the

performance of COPS.

Identification of Precise SCNA Boundaries
In order to detect precise SCNA boundaries using short reads;

we used a module as outlined in Figure 1. This is an independent

module, the results of which are fed into COPS to fine tune the

SCNA boundaries. We used the difference in density of anomalous

reads near COPS detected CNA start and end boundaries as a

measure to improve their precision. Anomalous reads, defined as

paired-reads mapped with deviant insert sizes, result due to

structural variations, mainly copy number variations and translo-

cations. An amplification or deletion event results in anomalously

mapped paired-reads with a lesser or greater than expected insert

size respectively. Details on the binning of anomalous reads,

calculating ratios between binned anomalous read counts of

neighboring bins, and detecting copy number aberration bound-

aries are provided in Methods section. The CNV boundaries

detected in the test (tumor) sample are compared with those

detected in the ref (normal) sample and filtered using the

subtractive approach in order to arrive at precise boundaries. In

order to detect sensitivity and specificity of boundary detection

using the module, we have compared the boundaries resulting

from both the sequencing reads with that from the Illumina whole

genome SNP genotyping microarray that use the CNVPartition

algorithm [45] to detect boundaries. COPS detected 66.1% of the

boundaries found by the whole genome SNP microarray. For

individual breakpoints, we analyzed a region of chromosome 11

with COPS detected SCNAs validated with DNA microarray and

found that the boundaries detected with sequencing reads match

with the ones detected by the microarray (Figure S7).

In order to understand the discordance between sequencing and

microarray-derived boundaries, we explored the presence/ab-

sence of sequencing reads and presence/absence of probes in the

whole genome SNP microarray. SCNA breakpoints found using

Figure 3. IGV snapshot of performance comparison across SCNA detection tools in the region of chr1.
doi:10.1371/journal.pone.0047812.g003
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microarray and not with sequencing reads were due to the

presence of lower read coverage. The average and maximum

depth of coverage per nt per CNA in the region of concordance

between microarray and sequencing were 0.55 and 0.84 respec-

tively and in the region of discordance were 0.3 and 0.5

respectively. We then investigated the SCNA boundaries detected

Figure 4. Performance comparison across CNV detection tools. The percentage of true positive SCNAs (y axes) detected using the subtractive
approach, are plotted against the percentage of false positive SCNAs (x axes) for available CNV detection tools including COPS. Simulated CNVs at
three size ranges: 1–10 kb (A), 10–50 kb (B) and 50 kb–1 mb (C) were used. Paired-end reads of lengths 36, 50, 76, 100 and 150, were generated for
each dataset. The size of the data points is representative of the deviation in size of the detected SCNA.
doi:10.1371/journal.pone.0047812.g004
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using sequencing reads but not with the microarray and found that

99.91% of the discordant breakpoints were due to the absence of

probes in the microarray that correspond to the region of SCNA

detected using sequencing reads.

Discussion

Structural variations play an important role in diseases like

cancer. Despite the presence of many tools described earlier in

detecting copy number variations, there is a need for studies in

detecting acquired structural variants in tumor (or diseased)

samples using improved methods of detection. This report

describes an approach, COPS, to discover SCNAs, i.e. sample-

specific regions of copy number alterations between paired

(normal and tumor) samples. We used trial data and comparisons

to other methods to judge the performance of COPS. COPS fine-

tunes common, if not universal, approaches (binning, ratios,

smoothing, etc.) based on read depth, and incorporates an

internal, robust and non-heuristic statistical method to judge the

probability that a called CNA is truly deviant. Despite this

simplistic approach, the method and results obtained are useful to

the biology community where a simple approach to find pair-wise

and tumor (disease)-specific copy number alterations is desired that

can run on a desktop computer with very little knowledge and

know-how on sophisticated bioinformatics tools.

Most CNV detection tools are optimized to perform well for a

single sample (and not paired samples) and for a particular size

range of amplifications and deletions [35] and since different

complementary approaches discover ,30–60% of CNVs, the

results obtained using these tools cannot directly be compared to

each other [35]. On the other hand, COPS performed well over a

wide size range of SCNAs and for different read lengths. Any

sequencing errors and/or experimental anomalies introduced

during imaging and/or sequencing library preparation do not

account for any possible bias in our analysis as both test and ref

samples are equally subjected to those biases, hence giving rise to

real tumor (disease)-specific alterations. COPS scales up well in

detecting larger SCNAs (.10 kb), in terms of sensitivity, specificity

and size deviation. The improved performance of COPS

compared to other tools at a higher size range works to its

advantage in detecting cancer-specific SCNAs. We tested the

performance of COPS repeatedly on simulated and real data, and

find the results obtained using COPS to be reproducible for a

given dataset, as expected for a non-heuristic approach. Some

CNV detection tools like RDXplorer [29] adopts a method of

filtering out reads of low mapping quality (,Q30). Such a filter is

not necessary in a pair-wise approach like COPS. Another pair-

wise CNA detection tool, CNASeg [46], also uses the depth of

coverage information to calculate CNAs in tumor samples.

However, we could not include CNASeg in our performance

comparisons due to lack of availability of a compatible (working)

version of the software that works in our computing environment

(personal communication with Sergei Ivakhno). The post-process-

ing errors in filtering false positives and merging are lowered when

the paired log2ratios are significantly different from 0, therefore,

making COPS perform well in detecting larger CNAs. CNV-Seq

[33] and SVDetect [34] use paired log2ratios to calculate CNAs

but perform poorly in our comparative study. This is most likely

because they lack any pre- or post-processing steps, such as

defining undefined log2ratios (caused due to lack of reads in either

test or ref or both samples) based on their neighboring bins,

smoothing of the data, filtering false positives and merging

SCNAs.

Additionally, bin size is one of the important factors in

determining the accuracy of SCNA identification and varies

according to read length, sequencing coverage (Table S1) and data

quality [35]. However, since our approach is based on depth of

coverage at each nucleotide position, we used a fixed bin size that

renders its performance invariant across read lengths. The current

tools for CNV detection do not detect all the true positive CNAs

across the genome for a wide-range of read lengths. Abyzov et al.

[35] discuss the need of alternative approaches for detecting CNVs

with sequencing data of larger read lengths. However, we find that

COPS scales up in its performance for reads with length upto 150

base pairs for most CNA size ranges, partially corroborating the

finding of Abyzov et al [35].

Figure 5. IGV snapshot of performance comparison across CNV detection tools in the region of chr1.
doi:10.1371/journal.pone.0047812.g005
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Alignment of raw sequence reads to a reference genome is the

first step in NGS data analysis. Read lengths, sequencing errors,

repeat regions of the genome and presence of SNPs and/or indels

affect the efficiency of alignment of reads to the reference genome.

Data from our lab [47] have shown that post-alignment base

calibration and not the alignment per se has a huge impact on

finding true positive single nucleotide variants from the sequencing

data and increases the sensitivity of detection of variants. Although

the effect is minimal, it was not surprising that the some of the

most sensitive aligners performed better, although marginally over

others, when tested with COPS for the detection of CNAs. COPS

does not contain any module for correction of GC bias during

sequencing. In an approach based on inter-sample ratios, we

believe GC correction is not necessary, because the bias within a

bin is inherently corrected for during calculation of the ratio.

COPS, being a paired ratio-based approach, allows analysis of

reads to repeated gene clusters and segmental duplications such as

the beta-defensin gene [25]. Tumor heterogeneity is a major issue

that may complicate the downstream sequencing analysis with

cancer samples. International Cancer Genome Consortium

requires researchers to use samples with at least 80% tumor cells

on histological assessment and less than 20% necrotic/normal cells

[48]. Presently most researchers focusing on cancer genome

sequencing use samples with very high degree of tumor cells in

their samples. However, in order to cover a wide variety of cancer

samples, both sequencing technology and analytical tools need to

be developed that can take into account high degree of cellular

heterogeneity. COPS is not designed to be used for samples that

has high degree of heterogeneity and assumes a very high

percentage of tumor cells in samples. Additionally, as COPS relies

on a paired approach, it assumes uniform sequencing coverage for

both the ref and test samples. In case, the samples are sequenced at

Figure 6. Performance comparisons of COPS at different sequencing read coverage. The performance of COPS using two bin sizes, 50 nt
(A) and 60 nt (B), on 76 nt reads,against test:ref pairs simulating SCNAs covering 1.5% of chr1 in the 1–10 kb, 10–50 kb and 50 kb–1 mb size ranges is
plotted as true positive calls (y axes), false positives (x axes) and size deviation (size of the data point).
doi:10.1371/journal.pone.0047812.g006
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different read coverage, the ratio of the coverage can be factored

in to accordingly determine what ratio of read-depth can be

termed as baseline neutral.

Once we validated SCNAs detected by COPS with high-

density whole genome SNP microarray using real tumor:normal

sample pair (Figure 9), we wanted to test the impact of read

coverage on the sensitivity of SNCA detection. We found that

the required resolution in binned read depths to call pair-wise

CNAs dropped for reads with coverage , = 5X, particularly

when the binned read depths for one or both the samples was

too low. This was confirmed by our observation of lower

concordance between CNAs detected using COPS on low

coverage (,5X) tumor:normal complete genome sequencing

data, and subtractive CNVs detected for the same samples using

the whole genome SNP microarrays (Figure 9). By increasing

the threshold further in the CNA regions detected in the

Figure 7. Performance comparisons across short read aligners. Shown are the performances of SCNA (A) and CNV (B) detection tools using
76 nt reads againsttest:ref pairs simulating 1–10 kb, 10–50 kb and 50 kb–1 mb long SCNAs covering 1.50% of chr1, using five aligners. Each plot
graphs the false positives (x axes) against the true positives (y axes). The size of the data point indicates the deviation in size of the detected SCNA
from the simulated SCNA, the shape indicates the upstream aligner (Text S2) and the color indicates the SCNA/CNV detection tool used in the
respective analyses.
doi:10.1371/journal.pone.0047812.g007
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microarray data (by filtering out the low coverage bins with

read depths of , = 7.5X), the concordance of finding CNAs

between sequencing and array data increased to 95.9%,

validating the dynamic range drop off at ,7.5X with the

simulated data (Figure 6). SCNAs detected across individual

chromosomes also indicates a dynamic range drop off of ,7.5X

for a majority of the chromosomes (Table S2).

Boundary mapping is an important step for any CNA

detection. There are reports that use soft-clipped reads to detect

breakpoints [49]. However, soft-clipped read mapping gave rise

to a higher percentage of false positive breakpoints in our

sample. Instead, the approach of using anomalous read

mapping and difference in density between anomalous reads

proved to be a better approach in detecting precise boundaries.

This is demonstrated by the higher percent of breakpoint

concordance between SNP microarrays and sequencing reads.

The exact boundaries of CNVs, hence exact breakpoints,

depend on the upstream aligner used to map short sequencing

reads to the reference genome. Introducing boundary correction

based on differential densities in anomalous reads is aligner-

dependent as different aligners use different parameters to map

anomalous reads. COPS (when used without the boundary

segmentation module) reported only those SCNAs, which fall

within a 10% margin of variability in the CNA breakpoints, as

found in simulated data. The tagging of simulated SCNA

boundaries with anomalously paired reads was best demonstrat-

ed with the aligner Novoalign. This is not surprising given that

Novoalign is one of the most sensitive aligners known [47]. The

breakpoint estimation algorithm used by Illumina’s plugin

cnvPartition uses a systematic sliding window approach over

4, 8, 16 and 32 probes to detect consistent departure in

preliminarily inferred copy number states from the neutral copy

number state of 2, and thus identify maximally different

segments [45]. Breakpoints are then called at the boundaries

of these maximally different segments and visualized by the

Illumina software GenomeStudio. We found that most of the

breakpoints that are found in arrays and not in the sequencing-

based approach were due to the lack of reads in the sequencing

data and those found with sequencing reads but not with the

array-based approach were due to lack of any probes for those

regions in the array. Unlike COPS, the boundary segmentation

module relies on anomalous read mapping in individual

samples, and hence, does not require equal read coverage of

the test and the ref samples.

Conclusion
We have developed a pair-wise, easy to use, biologist-friendly,

somatic copy number alteration (SCNA) detection tool, COPS, for

Figure 8. The IGV snapshot of various short read aligners and its effect on SCNA detection. 10–50 kb long SCNAs covering 1.5% of chr1
was used.
doi:10.1371/journal.pone.0047812.g008
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short-read NGS data, specifically designed to identifying somatic

CNAs in cancer/disease samples over a wide-range of read

lengths. Also, we reported an independent boundary segmentation

module, the results from which can be fed into COPS to fine tune

the SCNA boundaries. Although COPS is not designed to detect

CNVs between two different individuals but between paired

samples from the same individual, its ability to find subtractive

copy number alterations allows it to be applicable to different

individuals, sequenced under the same conditions. Ratio-based

approaches, using paired-sample approach, have been used in the

past for CNA detection using sequencing and microarray data. We

found that the challenge in discovering true CNAs using

sequencing data (short-insert single/paired-end or long-insert

mate pair) primarily lies in the choice of taking read depth and

not read count along with the processing of data prior to and post

calculation of ratios such as choosing the correct bin size, filtering

background noise, merging bins and filtering false positives. COPS

incorporates all these pre- and post-processing steps to allow for a

smooth and progressively improving work flow for SCNA

detection. By using a database of known CNVs discovered in

normal population and other disease/cancer samples, one can find

CNAs that might play specific role(s) in disease progression.

Although the cost of performing sequencing for longer reads is

going down, we have shown that to detect most true positive

CNAs in cancer sample, one doesn’t need longer reads but decent

coverage. We recognize that the ability to detect all the disease

causing CNVs in a sample does not merely depend on the

sequencing coverage but also on the ability of a particular

technology/chemistry to reproducibly sequence the difficult/low

complexity regions of the genome and hence the completeness of

sequencing.

Methods

Data Simulations, Whole Genome Sequencing of
Tumor:normal Paired Sample, Use of Short-read
Sequence Alignment

We simulated wide size-range and numbers of SCNAs with a

fixed coverage for chr1 of the human reference genome (ref)

hg18 (downloaded from UCSC) and used dwgsim [http://

sourceforge.net/apps/mediawiki/dnaa/index.

php?title = Whole_Genome_Simulation] to generate reads using

a downstream read generator. A mean insert size of 250 bp

with a standard deviation of 50 was used to generate simulated

reads for both sample (test) and the ref samples to form a

test:ref pair. The percentages of chr1 used and sizes of CNVs

simulated are: 0.05% (1–10 kb), 0.1% (10–50 kb), 1.5% (1–

10 kb, 10–50 kb and 50 kb–1 mb) and 3% (1–5 mb) for

coverage, 1.5X, 2.5X, 5X, 7.5X, 10X, 15X and 30X (where

1X means reads covering the entire length of chr1) for paired-

end reads.

Human samples were obtained after ethics committee

approval from Mazumdar Shaw Cancer Centre, Narayana

Hrudayalaya, Bangalore, India and after obtaining written

informed consent from the participants involved in this.

Illumina GAIIx was used to sequence the tumor:normal paired

sample for oral tumors following Illumina long-insert (5 kbp)

mate pair protocol with 3–5X coverage. Raw sequence reads

from the simulated test:ref and tumor:normal pairs were aligned

using Novoalign (version 2.07.05), with parameters set to

maximize alignment accuracy (http://www.novocraft.com). No-

voalign was used with the default option that keeps the best-

aligned read at each location. In order to test the effect of

alignment on CNA detection, in addition to Novoalign [42], we

used other open-source aligners widely used by the sequencing

Figure 9. Validation of SCNAs detected using sequencing reads with whole genome SNP microarray. SCNAs detected by COPS using
reads from tumor:normal paired samples were overlapped with SCNAs detected by cnvPartition2.4.4 Illumina plugin in GenomeStudio with Omni 2.5
whole genome SNP microarray.
doi:10.1371/journal.pone.0047812.g009
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research community, like BWA [38], Bfast [41], Smalt [43] and

Stampy [44]. All aligners were used with default options.

Aligned data were generated in SAM format, converted to

BAM, sorted according to the mapped read coordinate position

by using SAMtools (http://samtools.sourceforge.net/) and re-

converted to the SAM format before further processing.

Benchmarking COPS
Various combinations of simulated data, described above, were

used to benchmark COPS against other commonly used open

source pair-wise CNA detection tools like CNV-Seq [33]and SV

Detect [34] and single sample CNV detection tools like

CNVNator [35], RDXplorer [29] and Freec [36]. We ran

CNVNator, RDXplorer and Freec, being individual sample based

CNV detection tools that do not rely on a matched sample, on test

and ref samples separately, and then subtracted the CNV outputs

of the ref from test in order to give us a pair-wise CNA output

comparable to COPS. The output of pair-wise CNA algorithms

such as CNV-Seq and SV Detect were used directly for

comparison with COPS. All tools were run with default options.

Details of commands and configuration files are provided in Text

S1.

We used four parameters to benchmark COPS against other

tools. They are sensitivity (% of true positives), 100 - specificity

(% of false positives), % size-deviation (size of the detected

SCNA – size of the simulated SCNA/size of the simulated

SCNA6100), and time taken to run each of the tools. In order

to translate the % of true and false positives into actual

numbers of SCNAs detected and undetected, we have provided

the numbers of simulated SCNAs (deletions and amplifications)

in Table S3. We ran the time profiler for all tools on a single

3.2 GHz Intel I3 processor with 2TB SATA hard disk, 4GB

DDR3 RAM loaded with Linux Ubuntu 10.10 64 bit operating

system on the dataset with 1.5% of simulated SCNA in chr1 in

10–50 kb size range.

Figure 10. Overlapping of SCNAs detected using COPS and cnvPartition2.4.4 in a region of chr11. The log2ratios estimated by COPS
using paired tumor:normal reads are plotted before (blue dots) and after (red dots) applying the smoothening function (see zoomed inset), for a
section of chromosome 11 harboring SCNAs. A snap-shot of this chromosome section from GenomeStudio is juxtaposed to reveal SCNAs (two major
amplifications with different copy numbers) in the same region.
doi:10.1371/journal.pone.0047812.g010
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Validation of CNAs Found by COPS in Tumor:normal
Paired Samples

We performed whole genome SNP microarray experiment with

the same tumor:normal paired samples. Genomic DNA was

hybridized onto whole-genome OMNI SNP arrays from Illumina

following manufacturer’s specifications. Array CNVs from indi-

vidual samples were found by using the plug-in cnvPartition 2.4.4

present in Illumina Genome Studio software. The arrays had 2.5

million SNPs selected from the whole human genome tiled onto

them. CNAs detected with COPS using the tumor:normal paired

samples were validated against the CNVs found by whole genome

microarray by subtracting (test MINUS ref) CNVs detected for the

same sample pair. Concordance was estimated as the fraction of

overlapping loci between CNAs detected across the sequencing

and array platforms for the sample pairs being studied, out of the

total loci involved in CNA events from the two platforms. Only

those COPS detected SCNAs were considered for overlap which

had at least 5 array probes tiled in that region, and only those

array SCNAs were considered for overlap which had the necessary

coverage of sequencing reads in both samples, especially while

testing coverage thresholds as part of failure analyses for any

discordance.

Identification of Precise SCNA Boundaries
COPS boundary segmentation module takes the anomalous

reads from the aligned test and the ref (SAM) files into deletion

and amplification categories, mapping with greater and lower than

expected insert sizes, respectively. The anomalous reads from both

categories were subsequently binned into bins of size 5000 nts.

The anomalous read count ratios are then computed between

adjacent bins. and SCNA boundary segmentation is determined

between adjacent bins, where the ratios were 060.1 and 0.560.1

for the deletion category and 1.560.1, 260.1, 2.560.1, 360.1, …

for the amplification category. These ratios correspond to distinct

copy number states of 0 (full deletion), 1 (mono-allelic deletion), 3

(mono-allelic amplification), 4 (amplification of both alleles) etc.

assuming uniform sequencing coverage across the genome. Once

such boundaries were detected in both tumor and normal samples,

the boundaries detected in the normal sample are filtered from

that of tumor (within 6100 nt) for SCNA boundaries. The results

from COPS SCNAs were further corrected using the precise

boundaries detected by the additional module.

Details on the scripts and options used during alignment are

given in Text S2.

Supporting Information

Figure S1 Poissonian fits to read depths, log2ratios and
clr. Frequency histograms were plotted for log2ratios, cumulative

log2ratios (clr) summed over 10 consecutive bins, binned read

depths of test and ref samples. Fits to Poisson distribution are

further plotted (shown in red) for each histogram.

(PDF)

Figure S2 Performance comparison across SCNA de-
tection tools. The percentage of true positive SCNAs (y axes) are

plotted against the percentage of false positive SCNAs (x axes) for

available SCNA detection tools including COPS, using data

simulating SCNAs covering 0.05%, 0.10% and 3% of chr1 at

three size ranges, respectively: 1–10 kb (A), 10–50 kb (B) and

1 mb–5 mb (C). Paired-end reads of lengths 36, 50, 76, 100 and

150, were generated for each dataset. The size of the data points is

representative of the deviation in size of the detected SCNA.

(PDF)

Figure S3 Performance comparison across CNV detec-
tion tools. The percentage of true positive SCNAs (y axes)

detected using the subtractive approach, are plotted against the

percentage of false positive SCNAs (x axes) for available CNV

detection tools including COPS, using data simulating SCNAs

covering 0.05%, 0.10% and 3% of chr1 at three size ranges,

respectively: 1–10 kb (A), 10–50 kb (B) and 1 mb–5 mb (C).

Paired-end reads of lengths 36, 50, 76, 100 and 150, were

generated for each dataset. The size of the data points is

representative of the deviation in size of the detected SCNA.

(PDF)

Figure S4 Performance comparisons across aligners.
Shown are the performances of six SCNA/CNV detection tools

using reads generated at five lengths (36, A; 50, B; 76, C; 100, D;

150, E) against test:ref pairs simulating six SCNA sizes and

mapped to the chr1 reference sequence using five aligners. Each

plot graphs the false positives (x axes) against the true positives (y

axes). The size of the data point indicates the deviation in size of

the detected SCNA from the simulated SCNA, the shape indicates

the upstream aligner (Text S2).

(PDF)

Figure S5 Performance comparison of COPS using
different aligners. An IGV snapshot captures variation in

SCNA boundaries detected by COPS using reads mapped by

different upstream aligners.

(PDF)

Figure S6 Performance comparison of COPS using
different aligners. An IGV snapshot captures detection of

false positive amplification-type SCNA events using COPS with

Bfast-aligned reads.

(PDF)

Figure S7 A differential density of anomalous reads
near SCNA boundaries. The insert sizes of anomalously

mapped paired reads below the expected insert size of 5000 nts

including a standard deviation of 500 nts are plotted for a region

of chromosome 11 harboring two amplification-type SCNAs,

individually for the tumor and the normal sample.

(PDF)

Table S1 Performance of COPS at varying bin sizes for
binning read depths and step sizes for smoothening the
log2ratios.

(PDF)

Table S2 Chromosome-wise validation of SCNAs de-
tected by COPS using whole genome SNP microarray.

(PDF)

Table S3 Number of SCNAs in each simulated dataset.

(PDF)

Text S1 Commands used to run various CNA/CNV
detection tools for performance comparison with COPS.

(PDF)

Text S2 The R codes and a sample input file used to
generate Figure 7 and Figure S3.

(PDF)
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