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Abstract

A simple, reproducible, animal-material free method for cultivating and characterizing cornea limbal epithelial stem cells
(LESCs) on human lens capsule (LC) was developed for future clinical transplantation. The limbal tissue explants
(26260.25 mm) were harvested from 77 cadavers and expanded ex vivo on either cell culture plates or LC in medium
containing human serum as the only growth supplement. Cell outgrowth at the edge of the explants was observed within
24 hours of cultivation and achieved viable outgrowth (.97% viability as measured by MTT assay and flow cytometry)
within two weeks. The outgrowing cells were examined by genome-wide microarray including markers of stemness (p63a,
ABCG2, CK19, Vimentin and Integrin a9), proliferation (Ki-67), limbal epithelial cells (CK 8/18 and 14) and differentiated
cornea epithelial cells (CK 3 and 12). Immunostaining revealed the non-hematopoietic, -endothelial and -mesenchymal stem
cell phenotype of the LESCs and the localization of specific markers in situ. Cell adhesion molecules, integrins and lectin-
based surface carbohydrate profiling showed a specific pattern on these cells, while colony-formation assay confirmed their
clonal potency. The LESCs expressed a specific surface marker fingerprint (CD117/c-kit, CXCR4, CD144/VE-Cadherin, CD146/
MCAM, CD166/ALCAM, and surface carbohydrates: WGA, ConA, RCA, PNA and AIL) which can be used for better localization
of the limbal stem cell niche. In summary, we report a novel method combining the use of a medium with human serum as
the only growth supplement with LC for cultivating, characterizing and expanding cornea LESCs from cadavers or
alternatively from autologous donors for possible treatment of LESC deficiency.
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Introduction

Cornea limbal epithelial stem cells (LESC) have been described

to exist within special niches located at the basal cell layer of the

limbal epithelium at the corneo-scleral junction [1–4]. The role of

the LESCs is in renewal of healthy [5,6] and regeneration of

injured [7,8] corneal epithelium. Besides infection and injury,

corneal diseases can also affect the LESCs and their renewal

potency resulting in serious visual problems. Any imbalance of the

wound-healing process can result in an increased corneal

vascularization and decreased transparency [5,9,10].

The recovery of the corneal epithelium arises mainly from the

LESCs continually giving rise to transient amplifying cells (TACs)

which migrate centripetally and superficially while becoming more

and more differentiated [3,11,12]. Some proofs of existence of

corneal epithelial stem cells centripetal to the limbus have also

been reported based on their colony-forming potential [13].

Due to lack of corneal donor tissue or decreased chance for graft

survival after penetrating keratoplasty, an autologous or homol-

ogous expansion of human LESCs has been proposed in cases of

limbal stem cell deficiency (LSCD) [10]. Many attempts have been

made for using human amniotic membrane (HAM) and other

bioscaffolds as carriers for transplanting LESCs [14–19]. The

HAM has some obvious biodegradable and immunosuppressive

properties during transplantation, although its thickness and

variable transparency have been used as a counter argument for

its use. In addition, using feeder cells or complex media containing

growth factors and animal materials has raised the safety issue of

transferring prion or yet unknown diseases [20,21]. The growth of

LESCs using animal-material free medium on HAM has only

recently been described for transplantation purposes [22].
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The use of human lens capsule (LC) as a bioscaffold for growing

limbal stem-like cells has been introduced earlier [14]. We

explored use of LC for ex vivo cultivation of LESCs in human

serum as the only growth supplement due to its high transparency

and small thickness, as well as low immune- or xenogenic factors

insulating ability [23]. Cornea LESCs grown under such

conditions were characterized by genome-wide microarray and

immunostaining for markers of stemness (tumor/transformation-

related protein 63 (p63/TP63), ATP-binding cassette sub-family G

member 2 (ABCG2), cytokeratin (CK/KRT) 19, Vimentin (Vim)

and Integrin (Itg/ITG) a9), proliferation- (Ki-67/MKI67), limbal

epithelial- (CK 8/18 and 14) and differentiated corneal epithelial-

(CK 3 and 12) markers [4,22,24]. Phenotyping covered the

exclusion of hematopoietic, endothelial and mesenchymal stem

cell markers [25] as well as surface Itgs, cell-adhesion molecules

(CAMs) and broad lectin-based surface carbohydrate marker

profiling [4,26]. We propose a simple, reproducible, animal-

material free method for ex vivo expansion and characterization of

cornea auto- or allografts of LESCs on LC for the treatment of

LSCD.

Results

Cultivation and Viability of Human Cornea LESCs
Human cornea limbal tissue explants were harvested from

cadavers within 12 hours from biologic death and cultured on

either cell culture plates or human LC. Cell culture-plated grafts

showed cell outgrowth with epithelial morphology and intact

cytoskeleton within 24 hours of cultivation (Figure 1 A1–2). Cell

proliferation was observed over another 2 weeks till it reached

confluence. Similarly, grafts grown on human LC showed cell

outgrowth (Figure 1 A3–4) and formed stratified epithelial layer

within 7 days of cultivation (Figure 1 B1–2). Under both growth

conditions and use of medium containing human serum as the

only growth supplement, the cell viability of the outgrowing

LESCs was .97% at the two checkpoints - 7 and 14 days of

cultivation, as measured by the 3-(4,5-Dimethylthiazol-2yl)-2,5-

diphenyltetrazolium bromide (MTT) assay (data not shown).

Accordingly, the percentage of early apoptotic (,2% annexin-

Fluorescein Isothiocyanate (FITC)+) and late apoptotic (,1%

annexin-FITC+/Propidium iodide+) cells remained low under

both growth conditions (Figure 1C) up to day 14.

Transcriptional Profiling in Human Cornea LESCs
Transcriptional profiling of the LESCs was carried out using a

microarray in three different donors. Intensity profiles of the log2

transformed signal values of the 28869 transcripts were obtained,

out of which 955 and 875 transcripts had a more than 2 fold

change (FC) increase and decrease in expression, respectively

(n = 3, p,0.01), between the cultured LESCs and differentiated

corneal epithelial cells. This indicates a relatively high transcrip-

tional difference between the two cell types. Figure 2, Table 1
and Table S1 show the heatmap and the functional clustering of

67 genes selected on the basis of their high or low FC or previously

documented relation to LESCs (n = 3, p,0.01). These genes were

mostly involved in ion-, nucleotide- or protein binding, as well as

receptor or enzyme activities. Among the general epithelial

markers, limbal epithelium recognizing markers (KRT8/KRT18

and KRT14) could be distinguished, along the ones specific for

differentiated corneal epithelium (KRT3/12). KRT8 and KRT14

showed similar or slightly higher expression levels in the limbal

tissue-derived cells as compared to the differentiated control

epithelium (FC: 4.0 and 1.9, respectively) indicating the commit-

ment of LESCs towards the corneal epithelium lineage. Mean-

while, the specific differentiated corneal epithelial markers KRT3

and KRT12 decreased expression (FC: 231.0 and 25.8,

respectively), probably due to an earlier differentiation state or

preserved multipotency of these cells (Table 1). Higher expression

of at least two orders of magnitude was found in the putative stem

cell markers of LESCs (KRT19 (FC: 6.0) and VIM (FC: 4.4)

compared to the differentiated control epithelial cells, strengthen-

ing their stem-like character. The high proliferation capacity of the

cultured LESCs was also confirmed by higher expression of the

proliferation-specific marker MKI67 (FC: 3.0) (Table 1).

Expression of Epithelial-, Stemness- and Proliferation
Specific Markers in LESCs Grown on Human LC Measured
by Immunofluorescence Staining

To validate the expression of previously identified genes at the

protein level, LESCs grown on human LC were stained by

fluorescent labelled specific antibodies (Figure 3). CK19 showed a

scattered cytoplasmic staining throughout the outgrowing cell

sheet, representing the corneal phenotype of the cultured cells.

The expression of ABCG2, a putative marker of stemness was also

observed in both the cell membrane and cytoplasm of LESCs.

Strong staining and co-localization of the proliferation marker Ki-

67 and CK8/18 was present in some cells (Figure 1A, insert),
further confirming the proliferating and differentiating potential of

these cells, respectively. The nuclear protein p63a and Vim, both

markers of stemness, showed co-localization and positivity in most

of the LESCs grown on human LCs.

Phenotyping of the Cell Surface Markers on LESCs
To define the phenotype of the outgrowing cells, a flow

cytometric analysis with well-known stem cell surface markers

corresponding to hematopoietic, endothelial and mesenchymal

lineageswas carried out on the LESCs grown on human LC

(summary of the results and flow cytometry histograms are shown

in Table 2 and Figure S1, respectively).

No common hematopoietic cell surface markers were detected

on the outgrowing cells: CD45, CD34, CD133 and human

leukocyte antigens (HLA)-DR. LESCs expressed slightly, but

significantly higher CD14 when compared to bone marrow

derived mesenchymal stem cells (bmMSCs) (p,0.05). A small

population of LESCs showed C-X-C chemokine receptor type 4

(CXCR4) and CD117/c-kit positivity characteristic for migrating

and early progenitor or pluripotent stem cells, respectively, which

is not characteristic for bmMSCs (p = 0.0059 and p = 0.0332).

High CD47 expression of cultivated LESCs was similar to that of

bmMSCs demonstrating the viability and immunocompetence of

both cell types.

Regarding the endothelial-related markers, no CD31/Platelet

endothelial cell adhesion molecule (PECAM) and vascular

endothelial growth factor receptor 2 (VEGFR2)/Kinase insert

domain receptor (KDR) could be detected, showing no endothe-

lial-related contamination of the cell culture. When compared to

bmMSCs, more cells in the LESC culture expressed CD144/

vascular endothelial (VE)-Cadherin (p = 0.0321) and CD104/Itg

b4 (p = 0.0458).

Significant differences were also found between LESCs and

bmMSCs in the most important MSC markers: a very small

population of LESCs expressed CD90/Thymocyte differentiation

antigen 1 (Thy-1) and less than half of them were CD105/

Endoglin positive, unlike bmMSCs (p = 0.000032 and p = 0.0006,

respectively). The expression of CD73, CD147/Neurothelin and

platelet-derived growth factor receptor b (PDGF-Rb) showed no

significant difference as compared to bmMSCs.

Cultivation of Cornea Limbal Epithelial Stem Cells
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Due to their importance in the attachment of the extracellular

matrix (ECM) and maintenance of growth supporting environ-

ment, next we tested the presence of CAMs and Itgs. Significant

differences were found in the expression pattern of Itgs on LESCs:

CD44/homing-associated cell adhesion molecule (H-CAM) was

expressed at lower (p = 0.00052), while CD49b/Itg a2 (p = 0.038)

and CD49f/Itg a6 (p = 0.008) at higher levels than on the surface

of bmMSCs. The expression of CD29/Itg b1, CD49a/Itg a1,

Figure 1. Cultivation and viability of LESCs. Limbal graft (*) cultured on cell culture plate (A) or human LC (B) showing outgrowth of cells with
epithelial morphology within 24 hrs of cultivation (image shown represents a 3 day cell outgrowth, A1 and A3 are bright field images, A2 and A4
are immunofluorescent images of actin cytoskeleton (red) and nucleus (blue)). Hematoxylin & Eosin staining of LESCs grown on LC (arrows) forming
stratified epithelial layer at day 7 (B1 and B2). Cell viability and death of the cultured LESCs (viable cells (striped bar), early apoptotic or annexin
V-FITC+ cells (light gray bar); late apoptotic or annexin V-FITC/propidium iodide+ cells (dark gray bar)) (C). Data shown are mean 6 S.D (n = 3, Scale
bars: 100 mm A1, 50 mm A2, 20 mm A3–4; 50 mm B1, 20 mm B2).
doi:10.1371/journal.pone.0047187.g001

Cultivation of Cornea Limbal Epithelial Stem Cells
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CD56/neural cell adhesion molecule (NCAM), CD146/melano-

ma cell adhesion molecule (MCAM) and CD166/activated

leukocyte cell adhesion molecule (ALCAM) were similar in LESCs

and bmMSCs.

To exclude a possible lens epithelium origin of some of the

significantly different markers found on LESCs, surface profiling

of lens epithelial cells (LECs) was carried out also. LECs similar to

LESCs were CD342 and CD452, expressed no CD144/VE-

Cadherin and showed higher CD44/H-CAM (50.43629.28%),

similar CD146/M-CAM (74.2262.23%) or lower expression of

CD166/ALCAM (74.19646.07%) compared to cultured LESCs

(n = 3). Immunostaining of human limbal sections further

confirmed the presence and localization of these LESC markers

in situ (Table 3 and Figure S2).

Profiling of the Carbohydrate Surface Markers on LESCs
The membrane of stem cells is characterized by typical

carbohydrate patterns which can change during differentiation

[26,27]. Lectin-based screening of the most common terminal

carbohydrates of cell surface glycolipids and glycoproteins was

carried on the outgrowing LESCs (Figure 4 and Table 4). The

surface of these cells contained high amounts of sialic acid stained

by Wheat germ agglutinin (WGA) (Median = 1423.1968.08). The

majority of the cells (51.5963.1%) showed very strong

Concavalin A (ConA, Fluorescence Intensity Median

(FImed) = 2125.02625.99) positivity due to the presence of

branched a-mannosidic structures. Ricinus communis agglutinin

(RCA), Jacalin (AIL) and Peanut agglutinin (PNA), which bind to

galactose and/or N-acetylgalactosamine, were all positive on

LESCs, although lower fluorescence intensity could be detected by

PNA (FImed = 185.7561.06) showing a small amount of T-antigen

present as opposed to RCA (FImed = 850.79614.96) and AIL

(FImed = 687.8567.61). Ulex europaeus agglutinin I (UEA)-lectin

exhibited moderate fluorescence intensity on 61.161.97% of the

cells, only indicating low levels of detectable fucose molecules on a

subset of LESCs.

Colony-forming Potential of LESCs
In order to test whether the expanded LESCs resemble the

pluripotency signature reflected by the gene and protein expres-

sion levels of putative stem cell markers, their colony forming

potential was tested. The LESCs were dissociated and cultivated at

clonal density (3000 cells/cm2) on Gelatin, Fibronectin and

MethoCult coated plates. All epithelial sheets tested (both cell

culture plates- and human LC-grown, n = 4) were capable of

forming epithelial holoclone-like colonies on Gelatin and Fibro-

Figure 2. Transcriptional profiling in LESCs. Heatmap of the transcripts and functional clustering of 67 genes selected on the basis of their high
or low FC or previously documented relation to LESCs (n = 3, p,0.01). Red and blue colors indicate high and low expression, respectively.
doi:10.1371/journal.pone.0047187.g002
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nectin as previously described [28,29] (Figure 5A). Large and

small colonies were visible within 7 days of culture and exhibited

active cytoskeleton and smooth-outline appearance on Gelatin and

Fibronectin surfaces, but not on MethoCult coated plates

(Figure 5B, C).

Discussion

An animal material-free method for ex vivo expansion of cornea

LESCs from cadavers or autologous donors would be a safe way

for tissue regeneration in cases of chemical, thermal or microbial

injuries of the cornea as well as diseases such as Steven-Johnson

syndrome. So far, most standard protocols for cultivating cornea

LESCs included animal materials such as fetal bovine serum (FBS)

and/or exogenous growth factors, hormones and cholera toxin in

the growth media [30,31]. Increasing concentrations of FBS (1–

20%) have been shown to stimulate cornea limbal progenitor cells

into clonal proliferation [32].

Different carriers have also been used for supporting the growth

of LESCs ranging from synthetic biopolymers to natural materials

such as HAM [15], anterior LC [14], fibrin matrix [17] and

temperature-responsive polymers [16]. Although HAM has the

advantage of containing growth, anti-angiogenic and anti-inflam-

matory factors that can prevent or decrease fibrosis in the healing

tissue [33] or it can be sized and used as a surface for cells and

biologic patch material [34], it is not transparent and thin enough.

Anterior human LC can be obtained most commonly from

uneventful capsulorrhexis during cataract surgery or alternatively,

from cadaver eyes at Cornea Banks. Although LC is of limited

size, its transparency and thinness are superior to other

biomaterials. It is the later properties upon which we decided to

cultivate LESCs on human LC [14]. In addition to the previously

reported use of human LC for expansion of limbal-like stem cells

Table 1. Transcripts and functional clustering of selected genes in LESCs compared to differentiated corneal epithelium with high
or low FC or previously documented relation to LESCs (n = 3, p,0.01).

Gene symbol Gene description Fold change Regulation Molecular function

KRT14 Keratin 14 2 Up Structural constituent of cytoskeleton

SERPINA3 Serpin peptidase inhibitor, clade A (alpha-1
antiproteinase), member 3

21 Up DNA binding

KRT19 Keratin 19 6 Up Structural constituent of cytoskeleton

ALCAM Activated leukocyte cell adhesion molecule 20 Up Receptor binding

KRT7 Keratin 7 31 Up Structural molecule activity

KLK6 Kallikrein-related peptidase 6 71 Up Serine-type endopeptidase activity

FMO2 Flavin containing monooxygenase 2 (non-functional) 75 Up Monooxygenase activity

SEMA3A Sema domain, immunoglobulin domain (Ig), short
basic domain, secreted, (semaphorin) 3A

40 Up Receptor activity

KLK10 Kallikrein-related peptidase 10 29 Up Serine-type endopeptidase activity

SERPINB7 Serpin peptidase inhibitor, clade B (ovalbumin),
member 7

29 Up Serine-type endopeptidase inhibitor activity

FN1 Fibronectin 1 75 Up Extracellular matrix structural constituent

KRT8 Keratin 8 4 Up Structural molecule activity

KLK7 Kallikrein-related peptidase 7 57 Up Serine-type endopeptidase activity

VIM Vimentin 4 Up Structural constituent of cytoskeleton

MKI67 Antigen identified by monoclonal antibody Ki-67 3 Up Nucleotide binding

KRT18 Keratin 18 1 Down Structural molecule activity

KRT12 Keratin 12 6 Down Structural molecule activity

ITGA9 Integrin, alpha 9 1 Down Receptor activity

TP63 Tumor protein p63 1 Down DNA binding

KRT3 Keratin 3 31 Down Structural molecule activity

NTRK2 Neurotrophic tyrosine kinase, receptor, type 2 30 Down Nucleotide binding

CRTAC1 Cartilage acidic protein 1 72 Down Calcium ion binding

DCDC5 Doublecortin domain containing 5 43 Down Tubulin binding

RASGRF1 Ras protein-specific guanine nucleotide-releasing
factor 1

20 Down Guanyl-nucleotide exchange factor activity

CPXM2 Carboxypeptidase X (M14 family), member 2 25 Down Metallocarboxypeptidase activity

ADH7 Alcohol dehydrogenase 7 (class IV), mu or sigma
polypeptide

64 Down Alcohol dehydrogenase (NAD) activity

ALDH3A1 Aldehyde dehydrogenase 3 family, member A1 30 Down Aldehyde dehydrogenase (NAD) activity

DAPL1 Death associated protein-like 1 33 Down Epithelial differentiation or apoptosis

CA6 Carbonic anhydrase VI 33 Down Carbonate dehydratase activity

doi:10.1371/journal.pone.0047187.t001
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[14], we combined the use of such bioscaffold with the use of

human serum as the only growth supplement for cultivating

LESCs.

Although there are no definitive markers for identifying adult

stem cells in general, or corneal stem cells in particular [35],

characterization by a consensus-based panel of expression markers

for LESCs [4], together with some additional, yet not described

putative stem cell markers were used here for the detailed

characterization of these cells.

Both cell culture plate- and LC-grown LESCs showed low death

rate (,3%) over the 2 weeks cultivation period, achieving stratified

epithelial-like cell growth. Presence of limbal epithelial markers

CK14 and CK8/CK18 confirmed the corneo-conjunctival- and,

in particular, the limbal epithelial- origin of the LESCs. CK8

being a differentiating/migrating marker also showed the transi-

tion potential of these cells towards differentiated corneal

epithelium [35–39]. Together with the low expression of

differentiated cornea epithelial markers - CK3/12 [2,40], and

the high proliferative potential of the LESCs (MKI67 expression),

Figure 3. Expression of epithelial-, stemness- and proliferation specific markers in LESCs grown on human LC measured by
immunoflourescence staining. Immunohistochemistry was performed to detect the (co)-expression of CK8/18/Ki-67, CK19, ABCG2, Vim/p63a in
the LESCs grown on human LC (Left column: bright field-; Center: immunofluorescent; Right column: merged image; Colors on the text correspond to
the color of the marker examined, while all nuclei are stained blue with DAPI; Insert: shows co-localization of CK8+18 and Ki-67 and (*) refers to the
different staining pattern in the region shown; Arrows: show expression of Vimentin in the basal cells; the images are representative of at least 3
independent experiments, scale bar: 50 mm).
doi:10.1371/journal.pone.0047187.g003

Cultivation of Cornea Limbal Epithelial Stem Cells
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it can be initially concluded that the outgrowing cells are

undifferentiated limbal epithelial cells.

The multipotency of the LESC was confirmed by the increased

expression of putative stem cell markers: p63a [41,42], ABCG2

[43,44], CK19 [4,45] and Vim [4,45,46]. These four markers

have been described as being expressed mainly in the basal limbal

epithelium [4], although Donisi et al. [47] and Sacchetti et al. [45]

described lack of CK19 expression in these cells. In addition, ITG

a9 has been described as being responsible for cell migration

during injury [46].

Genome-wide profiling of the LESCs provided a list of high and

low expressed genes that have already been demonstrated, genes

that are novel or possess yet unidentified function in LESCs [48].

Serine proteinase inhibitor 3A (SERPINA3) being overexpressed

in the LESCs in our gene array (FC: 21.1) has been investigated

previously for its anti-angiogenic and anti-inflammatory effects

during corneal injury [49]. Semaphorin 3A (SEMA3A) (FC: 40.2)

has been shown to be involved in the development of mouse

cornea and differentiation of cornea epithelial cells [50]. Fibro-

nectin 1 (FN1) (FC: 74.9) is involved in cell adhesion and

migration processes during wound healing [51].

Considering the fact that the slow-cycling stem cells in the

limbal region represent less than 10% of the limbal basal cells [52]

and the finding of stem- and proliferative/migratory cell markers

on our LESCs, very likely the outgrowing cells represent a mixture

of stem- and TACs rather than pure limbal stem cells.

The LESCs grown on human LC are of non-hematogenous

origin. They are viable cells (99% of them are CD47+), express

markers of early pluripotency (18% are CD117/c-kit+) and possess

migratory capacity (28% are CXCR4+) very much needed during

resolution of corneal injuries. In addition, the outgrowing cells

carry CD104/Itg b4+ (76%), a marker found in basal cells of

limbal and corneal epithelium [53], and also, CD144/VE-

Cadherin+ (82%), a yet not described basal limbal cell-marker.

Exclusion of the markers present on the surface of both LESCs

and LECs, further strengthened CD144/VE-Caderin as a new

putative LESC marker, while in situ immunostaining of human

limbal sections confirmed its presence and localization in the basal

cell layer of the limbus. In addition, yet uncharacterized putative

markers of LESCs could be localized in the limbal epithelium:

CD44/H-CAM in the apical layer, and CD146/MCAM and

CD166/ALCAM in the basal layer.

The presence of different plasma membrane Itgs tested here:

a1, a2, a6 and b1, resembles a previously reported positivity found

mainly in basal limbal, but also in basal corneal cells [4,53]. In

addition, previously undefined CAMs on the surface of LESCs

were detected and confirmed in situ as putative markers of LESCs:

CD44/H-CAM in the apical layer, and CD146/MCAM and

CD166/ALCAM in the basal layer of the limbus.

Since our LESCs had a generally lower expression of MSC-

surface markers (CD73, CD90/Thy-1, CD105/Endoglin, PDGF-

Rb) than in bmMSCs, and a distinct or significantly different

pattern of CD117/c-kit, CXCR4, Itgs a2, a6 and b4 expression

(Table 2), very likely these cells are pluripotent and capable of

migration.

Indeed, the presence of pluripotent cells in the cultured

LESCs could be confirmed by the formation of small and large

colonies of cells with intact cytoskeleton on Gelatin and

Fibronectin surfaces, and absence of colonies on MethoCult

surfaces, thus excluding the hematopoietic (myeloid or erythroid)

differentiation potential of these cells.

To assess and profile the carbohydrates present in glycolipids

and glycoproteins on the surface of LESCs, a comprehensive

lectin-based screening for 14 carbohydrate structures (1 sialic

acid, 5 N-acetylglucosamines, 1 mannose, 6 galactose and 1

fucose) was carried out. To our present knowledge, limbal

epithelial cells have been shown to express unsialylated galactose

Table 2. Expression of hematopoietic, endothelial, stemness
and adhesion molecules on LESCs.

LESC bmMSC

Hematopoietic CD14 12.1364.85 0.3860.1 *

Monocyte markers CD34 060 060

CD45 060 060

CD47 98.9860.10 96.9760.81

CD133 060 060

CD117/c-kit 17.9864.53 060 *

CXCR4 27.8164.41 060 **

HLA-DR 060 060

Endothelial markers CD31/PECAM 060 060

CD144/VE-Cadherine 81.9263.57 41.5569.57 *

VEGFR2/KDR 060 060

CD104/Integrin b4 75.8765.18 38.49610.31 *

MSC CD73 87.9161.24 90.5961.80

Fibroblast markers CD90/Thy-1 12.2564.29 90.1360.96 ***

CD105/Endoglin 42.0964.91 81.9061.96 ***

CD147/Neurothelin 97.1360.33 75.2167.81

PDGF Rb 54.9361.68 75.3667.80

Integrins and CAMs CD29/Integrin b1 97.0160.40 92.7761.65

CD44/H-CAM 16.5564.95 87.9062.48 ***

CD49a/Integrin a1 71.7366.09 71.4267.15

CD49b/Integrin a2 91.1661.27 60.5567.19 *

CD49f/Integrin a6 68.3868.18 060 ***

CD56/NCAM 2.1761.03 24.6867.57

CD146/MCAM 82.4063.11 87.2862.18

CD166/ALCAM 98.0260.20 86.5766.26

The expression of different groups of surface antigens on the LESCs was
compared to those found on bmMSCs. A small population of the LESCs
expressed higher CD14, CD117/c-kit, CXCR4 which are markers of special
progenitor cell types. Although the LESCs expressed most of the MSC-like
markers, just a minor population expressed CD90/Thy-1 and CD105 which
determine the MSC phenotype. BmMSCs lack CD49f/Itg a9 which is strongly
expressed on LESCs (the data represent percentage of positive cells within the
total LESC culture shown as mean 6 S.D., n = 7; p,0.05 *, p,0.01 **, p,0.001
***).
doi:10.1371/journal.pone.0047187.t002

Table 3. In situ immunohistochemical characteristics of the
basal (B) and apical cells (A), and the stroma (S) in human
cornea limbal sections.

Antibody specificity B A S

CD34 2 2 +

CD45 2 2 +

CD144/VE-Cadherine + 2 +

CD44/H-CAM 2 few cells +

CD146/MCAM few cells 2 +

CD166/ALCAM few cells 2 +

doi:10.1371/journal.pone.0047187.t003
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Figure 4. Expression of carbohydrate molecules on the surface of LESCs. Lectins-based staining of carbohydrate specific molecules on the
surface of LESCs. For abbreviations used see Table 2. (Data shown are mean 6 S.D. of the median of fluorescence intensity, n = 3).
doi:10.1371/journal.pone.0047187.g004

Table 4. Lectin-based staining of surface carbohydrate molecules on LESCs.

Lectin Cells (%) Median of FI Affinity

Sialic acid WGA 97.3760.33 1423.1968.08 GlcNAcb1–4GlcNAcb1–4GlcNAc. Neu5Ac (sialic acid)

N-acetylglucosamine binding lectins STL 97.6861.64 335.38635.63 GlcNAc oligomers

DSL 98.9460.23 190.0461.23 (b-1.4) linked N-acetylglucosamine oligomers

ECL 95.6462.79 59.4560.16 galactosyl (b -1.4) N-acetylglucosamine

LEL 83.39614.23 38.1564.22 N-acetylglucosamine oligomers

GSL II 82.5262.66 24.6360.27 alpha- or beta-linked N-acetylglucosamine

Mannose binding lectins ConA 51.5963.10 2125.02626.00 high-mannose type. hybrid type and biantennary
complex type N-Glycans

Galactose
N-acetylgalactosamine
binding lectins

RCA 98.2860.35 850.79614.96 Galb1–4GlcNAcb1-R

PNA 97.9260.51 185.7561.06 Galb1–3GalNAca1-Ser/Thr (T-Antigen)

AIL 98.9960.01 687.8567.61 (Sia)Galb1–3GalNAca1-Ser/Thr (T-Antigen)

VVA 94.4960.38 61.4965.32 alpha- or beta-linked terminal N-
acetylgalactosamine

DBA 89.9362.54 12.2460.10 N-acetylgalactosamine

SBA 97.1160.60 211.1161.32 a- or b-linked N-acetylgalactosamin

Fucose binding lectins UEA 61.1061.97 148.3965.91 Fuca1–2Gal-R

The LESCs surface contained high amount of sialic acid, N-acetylglucoseamine and galactose molecules. Just around half of the cells contained mannose and two thirds
contained fucose molecules, showing subpopulations within the LESC cell culture. These carbohydrate molecules determine the ECM-binding and immunological
properties of the cells. WGA: Wheat germ agglutinin (Triticum vulgaris), STL: Potatoe lectin (Solanum tuberosum), DSL: Datura stramonium lectin (Datura stramonium),
ECL: Erythrina cristagalli lectin (Erythrina cristagalli), LEL: Tomato lectin (Lycopersicon esculentum), GSL II: Griffonia (Bandeiraea) simplicifolia lectin II (Griffonia
simplicifolia), ConA: Concanavalin A (Canavalia ensiformis), RCA: Ricinus communis Agglutinin (Ricinus communis), PNA: Peanut agglutinin (Arachis hypogaea), AIL:
Jacalin (Artocarpus integrifolia), VVA: Hairy vetch agglutinin (Vicia villosa), DBA: Horse gram lectin (Dolichos biflorus), SBA: Soy bean agglutinin (Glycine max), UEA: Ulex
europaeus agglutinin (Ulex europaeus) (Data shown are mean6S.D., n = 3).
doi:10.1371/journal.pone.0047187.t004
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residues on their cell surface recognized by PNA and lack a-2,3-

bound sialic acid [54]. Our LESCs had a lower median

fluorescence intensity for PNA as compared to the median

values of binding detected for WGA, ConA, RCA and AIL

although 98% of the cells were positive for PNA.

The distinct surface marker fingerprint of the LESCs and the

5 surface carbohydrate markers (WGA, ConA, RCA, PNA and

AIL) distinguished on these cells, point out a mixed population

of slowly proliferating limbal stem cells and highly proliferating,

migrating and potentially differentiating TACs in the outgrowth

cultures. Sorting out these two cell populations and running a

differential gene expression screening (currently undertaken in

our lab) would probably give better insight and understanding

of the function of these cells. From transplantation point of

view, having a mixture of both stem-like- and undifferentiated/

TACs would be a highly desirable condition towards successful

corneal transplantation.

In conclusion, we hereby show that cornea LESCs can be

consistently expanded ex vivo on human LC using a medium

containing human serum as the only growth supplement. Cells

isolated and cultivated in such a way are viable; they preserve their

pluripotency as confirmed by their positivity for p63a, ABCG2,

CK19, Vim and Itg a9, and low expression of CK3/12. The

presence of differentiation properties of our cultured cells

(positivity for CK8/18 and CK14) shows the directional differen-

tiating potential into corneal epithelium in situ. Additional markers

of pluripotency in LESC have been described here that can be

added to the future recognition of these cells and as indicative

factors for positive clinical outcome after corneal transplantation.

Figure 5. Colony-forming potential of LESCs. The LESCs were cultured at clonal density of 3000 cells/cm2 and early epithelial holoclone-like
colony formation was recorded at day 7 of culture. LESCs formed colony forming units on Gelatin and Fibronectin coated plates as stained by crystal
violet (0.5% w/v) (A). The colony forming unit (CFU)-forming cells were stained for actin (phalloidin-FITC, green) and Hoechst 33342 (blue, nuclear).
The CFUs could be divided into two groups: large CFUs containing .50 cells, and small CFUs containing ,50 LSCs. No significant difference in the
CFU types on Gelatin and Fibronectin matrices was found, while MethoCult matrix-grown LESC formed no colonies at all (B). (Data shown are mean 6
S.D., n = 3).
doi:10.1371/journal.pone.0047187.g005
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Materials and Methods

Limbal Tissue Harvesting
All tissue collection complied with the Guidelines of the Helsinki

Declaration and was approved by the Regional and Institutional

Research Ethics Committee at the University of Debrecen,

Hungary (DE OEC: 3094–2010). Limbal tissue collection was

done from cadavers only and Hungary follows the EU Member

States’ Directive 2004/23/EC on presumed consent practice for

tissue collection [55]. Limbal tissue was harvested from 77

cadavers (44 males and 33 females, age 70.569.3 years) within

12 hours of biologic death. In brief, after a thorough povidone

iodide eye wash, the conjunctiva was incised and separated from

the limbal junction consequently, a 26260.25 mm rectangular

shape limbal graft was dissected away and towards the cornea,

respectively, at the 12 o’clock position. The depth of the graft was

kept superficial or within the epithelial layer; multiple grafts were

collected from a single eye. The graft dissection was performed by

lamellar knife placed tangential to the surface being cut.

Culture Medium and Cultivation Conditions
Corneal epithelial cell culture medium consisted of Dulbecco-

modified Eagle’s medium (DMEM, Sigma-Aldrich, St. Louis,

MO, USA) supplemented with 20% human AB serum (Human

serum Type AB, PAA, Pasching, Austria), 200 mM/mL L-

glutamine (Sigma-Aldrich), 10,000 U/mL penicillin- 10 mg/mL

streptomycin (Sigma-Aldrich). The orientation of the graft was

epithelial side up in 1,91 cm2 tissue culture plates. Limbal tissues

were proliferated in vitro on human lens capsules that were

obtained from uneventful capsulorrhexis during cataract surgery

and pretreated with 0,025% trypsin-EDTA (PAA, Pasching,

Austria) (20 minutes, 37uC). For grafting on LCs, a drop of

medium was used to smooth-out the capsule first and then the

limbal tissue was placed in the middle of the capsule. Following

adherence to the lens capsule and/or the culture plate, the graft

was cultivated in total of 1 mL medium. Feeding of the cells

occurred on every alternate day. The growth of the cells was

monitored under phase contrast microscope regularly. Only grafts

which had cell outgrowth within 24 hours were used further to

decrease the chance of fibroblast contamination.

Assay for Cell Death Analysis
Cell death was assessed by the Annexin-V-FITC Apoptosis

Detection Kit (MBL, Woburn, MA, USA) according to manufac-

turer’s recommendations; proportion of stained Annexin-V+ and

Annexin-V+/Propidium iodide+ cells was determined by fluores-

cence activated cell sorter (FACS) analysis on FACSCalibur flow

cytometer (BD Biosciences Immunocytometry Systems, San Jose,

CA, USA) and data were analyzed using WinMDI freeware

(Joseph Trotter, La Jolla, CA,USA).

Microarray and Data Analysis
Microarray analyses were performed using the Affymetrix

GeneChip Human Gene 1.0 ST Arrays (Affymetrix, Santa Clara,

CA) which contains more than 28,000 gene transcripts. 150 ng of

total RNA was subjected to Ambion WT Expression Kit (Ambion)

and GeneChip WT Terminal Labeling Kit (Affymetrix, Santa

Clara, CA, USA) following the manufacturers’ protocols for whole

genome gene expression analysis. The arrays were washed and

stained using FS-450 fluidics station (Affymetrix). Signal intensities

were detected by Hewlett Packard Gene Array Scanner 3000 7G

(Hewlett Packard, Palo Alto, CA, USA). The scanned images were

processed using GeneChip Command Console Software (AGCC)

(Affymetrix) and the CEL files were imported into Partek

Genomics Suite software (Partek, Inc. MO, USA). Robust

microarray analysis (RMA) was applied for normalization. Gene

transcripts with maximal signal values of less than 32 across all

arrays were removed to filter for low and non-expressed genes,

reducing the number of gene transcripts to 23190. Differentially

expressed genes between groups were identified using one-way

ANOVA analysis in Partek Genomics Suite Software. Clustering

analysis was made using the clustering analysis module in Partek

Genomics Suite Software.

Histological and Immunofluorescent Analysis
LESCs grown on the surface of cell culture-grade glass-cover

slips or human LCs, as well as full thickness cornea limbal grafts

were fixed in 4% paraformaldehyde for 20 min, room tempera-

ture. The LC-grown samples and full thickness limbal grafts were

dehydrated and embedded in paraffin after which 3 mm thick

longitudinal sections were obtained for staining with Hematoxylin

and Eosin (H&E) according to standard laboratory protocols.

Alternatively, immunofluorescent labelling with anti- p63alpha,

ABCG2, CK19, CK8/18, Vim and Ki-67 antibodies was used for

visualization under a ZEISS Axio Observer.Z1 (ZEISS, Oberko-

chen, Germany) fluorescent microscope (list of primary antibodies

used is provided in Table S2). Similarly, immunofluorescent

labelling with anti- CD34, CD45, CD144/VE-Cadherine,

CD144/H-CAM, CD146/MCAM and CD166/ALCAM anti-

bodies was used for staining the full thickness limbal grafts.

Phenotyping of Cells and Comparison to bmMSCs
To analyse the phenotype of the isolated corneal limbal cells

multicolour flow cytometric analysis was used. FITC, R-phycoer-

ythrin (PE) and allophycocyanin (APC) conjugated antibodies

were used to measue the expression of CD34, CD44, CD45,

CD49f/Itg a6, CD73, CD106, CD144, CD147 (all from BD

Biosciences, San Jose, CA, USA); CD49a/Itg a1 (Biolegend, San

Diego, CA, USA), CD14, CD29/Itg b1, CD31, CD36, CD47,

CD49b/Itg a2, CD54, CD56/NCAM, CD69, CD90/Thy-1,

CD104, CD105, CD117/c-kit, CD146/MCAM, CD166/AL-

CAM, CXCR4, HLA-DR, PDGF-Rb, VEGFR2 (all from R&D

Systems, Minneapolis, MN, USA) and CD133 molecules (Miltenyi

Biotech, Gladbach, Germany) (for further details refer to Table
S2). Samples were measured by FACSCalibur flow cytometer (BD

Biosciences Immunocytometry Systems) and data were analyzed

using WinMDI freeware (Joseph Trotter, La Jolla, CA, USA). For

comparison, bmMSCs were used – their availability and isolation

protocol were based on another unrelated study carried by V.Z.

and R.E.

Lectin Staining of Cells
Lectin screening of isolated LESCs were performed by Lectin

kits from Vector Labs (Burlingame, CA). For detecting certain

carbohydrate structures, the following lectins were tested: for sialic

acid (WGA: Wheat germ agglutinin (Triticum vulgaris)); for N-

acetylglucosamines (STL: Potatoe lectin (Solanum tuberosum), DSL:
Datura stramonium lectin (Datura stramonium), ECL: Erythrina

cristagalli lectin (Erythrina cristagalli), LEL: Tomato lectin (Lycoper-

sicon esculentum), GSL II: Griffonia (Bandeiraea) simplicifolia lectin

II (Griffonia simplicifolia)); for mannose (ConA: Concanavalin A

(Canavalia ensiformis)); for galactose N-acetylgalactosamines (RCA:
Ricinus communis Agglutinin (Ricinus communis), PNA: Peanut

agglutinin (Arachis hypogaea), AIL: Jacalin (Artocarpus integrifolia),

VVA: Hairy vetch agglutinin (Vicia villosa), DBA: Horse gram

lectin (Dolichos biflorus), SBA: Soy bean agglutinin (Glycine max)) and

for fucose (UEA: Ulex europaeus agglutinin (Ulex europaeus)).
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The lectins were diluted in Lectin dilution buffer; the rest of the

staining procedure was similar to the staining described for the

FACS analysis.

Colony-forming Assay
To check the colony forming properties of LESCs, cells were

seeded at a 3000 cells/cm2 density into 6 well plates, coated with

various matrices. The wells were pre-coated for 30 minutes with

either 0,1% Gelatin (Sigma-Aldrich), 10 ng/mL Fibronectin (BD

Biosciences) or MethoCult (Stem Cell Technologies, Vancouver,

Canada) before the cells were added. Standard growth medium for

the LESCs was used and changed every other day. At day 7, the

samples were fixed in 4% paraformaldehyde and stained with

H&E. The colonies were stained with crystal violet (0.5% w/v)

against actin with phalloidin-FITC and the nucleus with Hoechst

33342. Examination was carried out under an Olympus IX81

inverted microscope with MT20 station (Olympus, Münster,

Germany), and acquired and analysed by a ScanR (Olympus)

software.

Statistical Analysis
Each experiment was performed at least three times and each

sample was tested in triplicates. Data are expressed as mean 6

S.D. or SEM. Statistically significant differences were determined

by paired student-t tests. p,0.05 *, p,0.01 **, p,0.001 ***.

Supporting Information

Figure S1 Histograms of the expression of hematopoi-
etic (A), endothelial (B), stemness (C) and adhesion (D)
molecules on LESCs shown in Table 1.
(TIF)

Figure S2 In situ immunohistochemical staining of
human cornea limbal sections for the presence and
localization of LESC markers found by flow cytometry.
(TIF)

Table S1 Additional transcripts and functional cluster-
ing of selected genes in LESCs compared to differenti-
ated corneal epithelium with high or low FC or
previously documented relation to LESCs (n = 3,
p,0.01).
(PDF)

Table S2 Details of the antibodies used for immuno-
histochemistry and/or flow cytometry.
(PDF)
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