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Abstract

Studies in rodents indicate that diets deficient in omega-3 polyunsaturated fatty acids (n–3 PUFA) lower dopamine
neurotransmission as measured by striatal vesicular monoamine transporter type 2 (VMAT2) density and amphetamine-
induced dopamine release. This suggests that dietary supplementation with fish oil might increase VMAT2 availability,
enhance dopamine storage and release, and improve dopamine-dependent cognitive functions such as working memory.
To investigate this mechanism in humans, positron emission tomography (PET) was used to measure VMAT2 availability pre-
and post-supplementation of n–3 PUFA in healthy individuals. Healthy young adult subjects were scanned with PET using
[11C]-(+)-a-dihydrotetrabenzine (DTBZ) before and after six months of n–3 PUFA supplementation (Lovaza, 2 g/day
containing docosahexaenonic acid, DHA 750 mg/d and eicosapentaenoic acid, EPA 930 mg/d). In addition, subjects
underwent a working memory task (n-back) and red blood cell membrane (RBC) fatty acid composition analysis pre- and
post-supplementation. RBC analysis showed a significant increase in both DHA and EPA post-supplementation. In contrast,
no significant change in [11C]DTBZ binding potential (BPND) in striatum and its subdivisions were observed after
supplementation with n–3 PUFA. No correlation was evident between n–3 PUFA induced change in RBC DHA or EPA levels
and change in [11C]DTBZ BPND in striatal subdivisions. However, pre-supplementation RBC DHA levels was predictive of
baseline performance (i.e., adjusted hit rate, AHR on 3-back) on the n-back task (y = 0.19+0.07, r2 = 0.55, p = 0.009). In
addition, subjects AHR performance improved on 3-back post-supplementation (pre 0.6560.27, post 0.8060.15, p = 0.04).
The correlation between n-back performance, and DHA levels are consistent with reports in which higher DHA levels is
related to improved cognitive performance. However, the lack of change in [11C]DBTZ BPND indicates that striatal VMAT2
regulation is not the mechanism of action by which n–3 PUFA improves cognitive performance.
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Introduction

Previous studies in humans suggest that n–3 PUFA deficiency is

associated with impairment in mood [1] and cognitive functioning

[2]. Some [3–5], but not all studies [6–9] suggest that the

supplementation of n–3 PUFA in several neuropsychiatric

disorders such as mood disorders, schizophrenia and attention

deficit hyperactivity disorder holds promise as a primary or

adjunctive therapy. Mechanistic studies are discovering roles of n–

3 PUFAs in modulation of neuronal membrane fluidity and

permeability, enhancement of monoamine transmission, alteration

of the activity of protein kinases and phosphatidylinositol-

associated second messenger systems, alteration in gene expression

and decreased oxidative stress and inflammation. Nonetheless,

how these actions relate to the putative effects of n–3 PUFA on

cognitive functioning and affective symptoms is unknown.

Basic science investigations involving rodents indicate that n–3

PUFA deficiency alters the transmission of monoamines such as

dopamine and serotonin in the brain [10]. For example, studies

that have measured stimulant-induced dopamine release report

35% and 60–80% reductions in dopamine release in the ventral

striatum and prefrontal cortex respectively in n–3 PUFA deficient

animals relative to controls [11,12]. Also compelling are the

tyramine-induced dopamine release microdialysis studies that have

reported a 90% reduction in prefrontal cortical dopamine

transmission [13,14] and the cerebral monoamine quantitation

studies that have reported a 40 to 75% reduction in prefrontal

dopamine in n–3 PUFA deficient animals relative to controls

[15,16]. In addition, rodent studies are consistent in reporting a 25

to 60% reduction in the VMAT2 density in the prefrontal cortex

and ventral striatum in n–3 PUFA deficient animals relative to

controls [11,12,14,17]. Since most of these studies involved

pregnant rodents and pups the effects of n–3 PUFA supplemen-

tation on dopamine in a mature animal/healthy human are not

known. Nevertheless, as VMAT2 regulates the size of the vesicular

dopamine pool available for release into the synapse, it is plausible
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that n–3 PUFA increases dopamine transmission by increasing the

number of dopamine storage vesicles and associated VMAT2.

Therefore it is tempting to speculate that dietary supplementation

with fish oil enriched in n–3 PUFA increases VMAT2 availability,

in turn enhancing dopamine storage and release and improving

dopamine-dependent cognitive and mood functions in a broad

array of neuropsychiatric disorders.

To evaluate this hypothesis we evaluated 11 healthy individuals

with the selective VMAT2 PET radioligand, [11C]DTBZ both

before and after six-months of n–3 PUFA supplementation

(Omega-3-acid ethyl esters, Lovaza 2 g/day, which contains

DHA 750 mg/d and EPA 930 mg/d). Our primary hypothesis

was that n–3 PUFA would increase VMAT2 availability

(measured as [11C]DTBZ binding potential, BPND) in healthy

individuals after six months of supplementation. In addition, we

hypothesized that this increased availability of VMAT2 will lead to

greater vesicular dopamine stores and improve dopamine-depen-

dent working memory, which was measured using a verbal n-back

task and three working memory loads (1-back, 2-back and 3-back).

Materials and Methods

Ethics Statement
The study was conducted following the approvals of the

University of Pittsburgh Institutional Review Board and Radio-

active Drug Research Committee. All subjects provided written

informed consent.

Study criteria for healthy controls were [1] males or females

between 18 and 25 years old, of all ethnic and racial origins; [2] no

past or current Diagnostic and Statistical Manual of Mental

Disorders IV criteria for psychiatric disorders, including addiction

to drugs, alcohol or nicotine (as confirmed by urine drug screen at

screening) [3] not currently on any prescription or over the

counter medications including vitamins or herbal supplements; [4]

female subjects were not currently pregnant and used of an

effective birth control such as intrauterine contraceptive device,

oral contraceptive pills during the entire course of the study; [5] no

current or past severe medical or neurological illnesses (including

glaucoma, seizure disorders, a focal finding on magnetic resonance

imaging, MRI such as stroke or tumor) as assessed by a complete

medical assessment; [6] no hypersensitivity to fish or shell fish; [7]

no history of significant radioactivity exposure (nuclear medicine

studies or occupational exposure); [8] no metallic objects in the

body that are contraindicated for MRI; [9] no drinking of more

than two standard alcoholic drinks per day; [10] no first degree

relatives with an Axis I psychiatric disorder; [11] no consumption

of fish more than twice a month or currently on fish oil

supplements.

A total of thirteen subjects who met inclusion/exclusion criteria

(as determined by a structured clinical interview for DSM IV,

medical evaluation, electrocardiogram, and routine blood and

urine tests, which included a drug screen and pregnancy test) were

enrolled to participate in the study that was conducted in the

outpatient setting. All enrolled subjects underwent a pre-supple-

mentation [11C]DTBZ PET scan, n-back task and RBC mem-

brane extraction for fatty acid analysis after an overnight fast.

Then, subjects were supplemented with n–3 PUFA (Lovaza), 2 g

once daily for six months after which they were eligible for the

post-supplementation evaluations (conducted a minimum of five

months and maximum of 6 months after n–3 PUFA supplemen-

tation), which included a repeat [11C]DTBZ PET scan, n-back

task and RBC for fatty acid analysis. Subjects were monitored on a

monthly basis during the n–3 PUFA supplementation period for

subjective complaints, medication adherence (via pill counts), illicit

drug abuse and pregnancy. In addition to this subjects underwent

a complete blood cell count, liver function test, fasting lipid profile

and RBC for fatty acid analysis at 1-month, 3-months, 5-months

to monitor for abnormal lab results (such as elevations in liver

function tests and low-density lipoproteins and reduction in

platelet count) and confirmed adherence to n–3 PUFA. The

monitoring led to discontinuation on n–3 PUFA supplementation

in two individuals –one for elevated low-density lipoproteins

(193 mg/dl) and another for low platelet counts (120,000/mL) at 1-

month and 5-months post-supplementation respectively (these

abnormal laboratory values reverted back to normal range after

discontinuation in both these subjects). Thus, the final sample

includes pre- and post-supplementation data in only 11 out of the

13 enrolled subjects.

RBC Fatty Acid Composition
Fasting blood samples were processed for the separation of RBC

membranes using previously methods and stored at 280 degree

Celsius [18]. These frozen RBC samples were analyzed for fatty

acid composition using gas chromatography [19]. Individual

PUFA levels are expressed as percentages of the total fatty acid

pool (weight or mol %).

Working Memory Assessment
We chose to assess verbal working memory based on a previous

study that showed a relationship between this neurocognitive

domain and serum DHA [2]. The choice was also driven by the

literature that supports a role for dopamine in working memory

[20–23]. Working memory assessment was performed using a

verbal n-back task that used three loads of working memory (1-

back, 2-back and 3-back) consistent with that previously reported

in [20]. The outcome measure for the n-back was the adjusted hit

rate (AHR, range 21 to 1), which was calculated as the difference

between hit rate (correct responses/number of targets, range 0 to

1) and error rate (errors/number of non targets, range 0 to 1).

[11C]DTBZ PET Imaging
Prior to PET imaging, a magnetization prepared rapid gradient

echo structural MRI scan was obtained using a Siemens 3 Tesla

Trio scanner for determination of regions of interest.

[11C]DTBZ was synthesized using the methodology reported

previously by Kilbourn, et al. [24]. PET imaging sessions were

conducted with the ECAT EXACT HR+ camera. [11C]DTBZ

was injected as a bolus plus constant infusion consistent with that

reported in [25,26] because this infusion paradigm allows for

radioactivity to be measured at true equilibrium, thereby

eliminating the need for invasive arterial catheterization (i.e., the

amount of radiotracer in the region of interest, reference region,

arterial and venous compartments are at equilibrium). Briefly,

55% of the [11C]DTBZ dose (, 15 mCi) was administered as an

intravenous bolus injection over the first 30 seconds, while the

remaining 45% of the dose was continuously infused over the next

60 minutes. This infusion ratio allowed for [11C]DTBZ to reach

steady state thirty minutes after the beginning of the bolus plus

constant infusion [25,26]. Following a 10 minute transmission

scan, emission data were then collected in 3D mode from time,

t = 30 to 60 minutes, relative to the start of the bolus plus constant

infusion in a series of six consecutive 5-minute frames to

correspond to steady state concentration for [11C]DTBZ. In

addition, four venous blood samples (collected at time = 30, 40, 50

and 60 min) were obtained to measure plasma concentration of

[11C]DTBZ as described in [27]. Parent compound plasma

concentrations in these four samples were averaged to obtain

[11C]DTBZ concentration at steady state (CSS, mCi/mL). Plasma

Omega-3 Fatty Acid Supplementation and VMAT2
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clearance (CL, L/h) was calculated as the rate of infusion/CSS and

the free fraction (fp) was measured using previously described

methods [26,28,29].

All region drawing and image analysis was performed with

MEDx (Sensor Systems, Inc., Sterling, Virginia) and SPM2.

Regions of interest were drawn on the MRI and transferred to the

co-registered PET scan. The primary region of interest, the

striatum was divided into five anatomical and three functional

subdivisions using criteria outlined in [30]. The three functional

subdivisions of the striatum included the limbic striatum (ventral

striatum), the associative striatum (which, included the precom-

missural caudate, precommissural putamen and postcommissural

caudate) and sensori-motor striatum (postcommissural putamen).

The occipital cortex was used as the reference region [26,28].

Correction for head movement and co-registration of the PET

data to the MR were done using methods described in [31].

In this section we use the consensus nomenclature for in vivo

imaging of reversibly binding radioligands to describe all outcome

measures [32]. The regional tissue distribution volume (VT ROI,

mL/cm3) defined as the ratio of [11C]DTBZ concentration in the

region of interest (CT, mCi/cm3) to the concentration of un-

metabolized [11C]DTBZ in venous plasma (CSS, mCi/g) at

equilibrium was derived as.

VT~CT=CSS:

The concentration of VMAT2 is negligible in the occipital

cortex [26,28], such that only free and nonspecifically bound

radiotracer is considered to contribute to VT in the occipital cortex

(VT OCC ). Thus, VT OCC was assumed to be equal to the non-

displaceable distribution volume (VND).

VMAT2 availability in the striatal regions of interest was

estimated as [11C]DTBZ BPND, i.e., binding potential relative to

non-displaceable uptake. This was computed as.

VTROI{VTOCC

VTOCC
~fND~

Bavail

KD

where fND is the free fraction of radiotracer in brain expressed

relative to the non-displaceable concentration (fND = fp/VND),

Bavail is the density of VMAT2 available to bind to [11C]DTBZ in

vivo and KD is the equilibrium disassociation constant of

[11C]DTBZ.

The effect of n–3 PUFA supplementation on VMAT2

availability was calculated as the relative change in BPND (%).

DBPND~

BPND post supplementation{BPND pre supplementation

BPND pre supplementation

Statistical Analysis
All statistical analyses were performed using IBM SPSS

statistics, version 20. Comparison of the pre- and post- supple-

mentation condition outcome measures such as RBC PUFA,

AHR, D BPND etc., were evaluated with paired t tests and linear

mixed model with region of interest as a repeated measure and

condition as fixed factor. Relationships between the fatty acid

composition, cognitive and imaging measures were analyzed with

Pearson product moment correlation coefficient. A two-tailed

probability value of p,0.05 was selected as significant.

Results

11 subjects (5 males/6 females; all Caucasian) completed the

study. The mean age of the subjects was 2262 years. The mean

body mass index of the subjects was 25.663.5. All eleven subjects

were non-smokers.

RBC Fatty Acid Composition
The results of the RBC fatty acid composition analysis before

and after six months of n–3 PUFA supplementation are shown in

Table 1. They include the main n–3 PUFAs (DHA, EPA) and its

precursor a-linolenic acid (ALA) and the main n–6 PUFA

(arachidonic acid, AA) and its precursor linolenic acid (LA).

Compared to the pre-supplementation condition, n–3 PUFA led

to mean increases in RBC DHA and EPA of 75% and 450%

respectively, and decreases in AA of 13% at six months (p,0.05,

paired t tests, Table 1). No significant changes were observed in

the n–3 and n–6 PUFA precursors ALA and LA. Figure 1 A and B

show the increase in RBC DHA and EPA over the 6-month

duration of the study.

Working Memory Assessment
Table 2 shows the AHR for 1-, 2- and 3-back conditions before

and after n–3 PUFA supplementation. n–3 PUFA supplementa-

tion improved working memory performance (measured as AHR)

in the 3-back (p,0.05, paired t test, Table 2), but not in the 1- and

2- back conditions.

The pre-supplementation AHR on the 3-back was linearly

related to pre-supplementation RBC DHA (r = 0.74, p = 0.009, see

Figure 2A), but not EPA (r = 20.11, p = 0.76, see Figure 2B).

The post-supplementation AHR on the 3-back was not related

to the post-supplementation RBC DHA (r = 20.06, p = 0.86) or

EPA levels (r = 20.13, p = 0.71).

There was no significant association between the change in

working memory performance (D AHR on 3-back) and change in

RBC DHA (r = 0.29, p = 0.39) or EPA (r = 0.04, p = 0.90) levels

following supplementation.

[11C]DTBZ PET Imaging
Critical PET scan parameters are listed in Table 3.

[11C]DTBZ injected dose, specific activity at time of injection,

and injected mass did not differ between the pre- and post-n–3

PUFA supplementation conditions. No significant between-condi-

tion differences were observed in the plasma free fraction and

clearance rate of [11C]DTBZ, or in [11C]DTBZ occipital cortex

distribution volume, VND measure (data available from n = 10/11

subjects, in whom venous line placement was successful).

n–3 PUFA supplementation had no significant effect on

[11C]DTBZ BPND in the striatal subdivisions [linear mixed model,

effect of condition, F(1,20) = 0.52, p = 0.48; effect of region, F(4,

80) = 285.6: p,0.001; condition-by-region interaction,

F(4, 80) = 0.63, p = 0.64]. In addition, a test of between-condition

differences in each region of interest failed to reach significance in

all five striatal subdivisions (p.0.05, paired t tests, data in Table 4).

Correlation analyses revealed no significant relationship be-

tween pre-supplementation [11C]DTBZ BPND in the striatum and

RBC DHA (r = 20.40, p = 0.22) or EPA (r = 0.12, p = 0.70) levels.

Also, no significant associations were noted between the change in

[11C]DTBZ BPND in the striatum and change in RBC DHA

(r = 20.29, p = 0.39) or EPA (r = 20.04, p = 0.90) levels following

supplementation. No significant associations were noted when the

above correlations were performed using [11C]DTBZ BPND and D
BPND from the functional or anatomical subdivisions of the

striatum.

Omega-3 Fatty Acid Supplementation and VMAT2
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Discussion

In this study, we evaluated VMAT2 availability with

[11C]DTBZ and PET in a group of healthy young adults before

and after six months of supplementation of a FDA approved

formulation of n–3 PUFA (Lovaza, 2 g/day). Despite the fact that

the formulation used in this study led to significant elevations in

RBC DHA (1.75-fold) and EPA (4.5-fold) levels relative to pre-

supplementation values, we failed to detect an effect for it on

striatal VMAT2 availability. The mean change in [11C]DTBZ

BPND in the striatal subdivisions (range 21 to 24%) after n–3

PUFA supplementation was well within the reported test-retest

variability (4 to 7%) for this radioligand [28]. This observation in

humans is somewhat inconsistent with rodent studies that suggest

n–3 PUFA deficient animals relative to controls have 25 to 60%

less VMAT2 binding in the ventral striatum [12–14]. An

important difference that led to the inability to detect an effect

on [11C]DTBZ binding might be related to the fact that healthy

humans were supplemented with n–3 PUFA in this study, as

opposed to the rodent studies in which a group of animals were

developmentally deprived of n–3 PUFA and compared to

controls. Thus, the possibility of dietary depletion of n–3 PUFA

leading to a reduction in striatal VMAT2 availability in humans

cannot be excluded based on the six-month supplementation data.

Because individuals with diets deficient in n–3 PUFA are likely to

have less RBC DHA/EPA, we evaluated whether lower RBC

DHA/EPA levels are associated with lower striatal VMAT2

availability in subjects before supplementation. Contrary to this

hypothesis, we found no relationship between the RBC DHA/

EPA levels and striatal [11C]DTBZ BPND. Taken together these

data do not support an effect for n–3 PUFA on striatal VMAT2 in

healthy adults.

Two interesting observations are reported in this study. The first

is that in this group of young adults superior working memory

performance in the 3-back condition prior to supplementation was

correlated with higher RBC DHA. This finding is consistent with a

previous report in which higher serum DHA was related to

superior performance on tests of non verbal reasoning and

working memory in a relatively large cohort of middle aged adults

[2]. Second, there was an improvement in working memory

performance in the 3-back condition after six months of n–3

PUFA supplementation. Although, practice-effects cannot be ruled

out as the reason for this observation in this cohort, this result is

consistent with some clinical trials suggesting that n–3 PUFA (fish

oil) supplementation improves cognitive functioning in elderly

adults with mild to no cognitive impairment [33–37]. Surprisingly,

3-back performance improvement was significant despite the fact

that there was no correlation between changes in AHR and RBC

DHA/EPA levels following supplementation with n–3 PUFA. But,

when individuals were stratified into two groups based on their

pre-supplementation DHA levels (i.e., less than or greater than 3%

mol of total fatty acid pool) we found that the mean change in

AHR 3-back was 0.2960.18 in the low DHA group (n = 6

Figure 1. A and B show the increase in RBC DHA and EPA over the course of the six-month study, i.e., from pre-supplementation
levels at baseline (0-month) to post-supplementation levels prior to the [11C]DTBZ PET scan (6-months).
doi:10.1371/journal.pone.0046832.g001

Table 1. RBC fatty acid composition analysis.

Type PUFA
Pre- n3
PUFA

Post- n3
PUFA t df p-value

n–3 PUFA ALA 0.460.1 0.460.1 0.11 10 0.92

DHA 2.961.0 5.161.2 29.89 10 ,0.01

EPA 0.460.1 1.860.8 26.30 10 ,0.01

n–6 PUFA LA 21.765.1 21.963.8 20.13 10 0.90

AA 13.962.0 12.262.0 3.49 10 0.01

Values are mean and standard deviation (SD), n = 11 per condition.
p-values are from two-tailed, paired t tests; t is t statistic; df is degrees of
freedom.
doi:10.1371/journal.pone.0046832.t001

Table 2. Adjusted hit rate from the n-back working memory
task.

n-back
Pre- n3
PUFA

Post- n3
PUFA t df p-value

1-back 0.9860.04 0.9960.02 21.480 10 0.17

2-back 0.9360.10 0.9460.09 20.399 10 0.70

3-back 0.6560.27 0.8060.15 22.292 10 0.04

Values are mean and standard deviation (SD), n = 11 per condition.
p-values are from two-tailed, paired t tests; t is t statistic; df is degrees of
freedom.
doi:10.1371/journal.pone.0046832.t002
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subjects) and 20.0160.14 in the high DHA group (n = 5 subjects).

This suggests that the individuals with low pre-supplementation

DHA levels benefitted the most by the n–3 PUFA. Further

investigation in larger samples is needed to understand this

relationship.

The fact that working memory performance was enhanced by

n–3 PUFA supplementation regardless of an effect on striatal

VMAT2 suggests that its potential pro-cognitive effects, are

mediated via extrastriatal dopamine or other non-dopaminergic

mechanisms such as effects on inflammation, cellular signaling and

trafficking etc. Alternatively other mechanisms that govern the

release and storage of dopamine such as afferent regulation of

dopamine cell activity or dopamine synthesis may play a role.

Future studies are needed to investigate the role of n–3 PUFA on

dopamine release mechanisms as well as indices of prefrontal

cortical dopamine function. The latter studies are especially

critical because prefrontal cortical dopamine is linked to working

memory performance [38]. Since the concentration of dopamine

in the prefrontal cortex is 10 to 35-fold lower than in the striatum

(dopamine concentration: cortex 0.5 nM vs striatum 5–18 nM) it

is likely that a relatively small increase in dopamine following n–3

PUFA supplementation has a greater impact in the cortex and

translates to pro-cognitive effects [39,40]. In addition, the

likelihood to detect relatively small changes in dopamine

concentration is better in the prefrontal cortex than in the

striatum because of the low baseline dopamine levels in this region.

Future studies with D1 and D2/3 receptor PET radiotracers to

evaluate the effects of n–3 PUFA on prefrontal cortical dopamine

and its relationship with working memory are necessary to address

these issues.

The current investigation was designed as a proof of concept

study to clarify whether n–3 PUFA supplementation leads to

increased VMAT2 availability in the human striatum. This

question arose based on a recent PET imaging study in which

we showed that cocaine addicts have lower vesicular monoamine

transporter type 2 in the striatum relative to healthy controls [41].

This reduction in VMAT2, which suggests fewer dopamine

storage vesicles in the terminals, is one of the mechanisms that lead

to the blunted (or less) dopamine release in the striatum after a

psychostimulant challenge in cocaine addicts compared to controls

[42]. In addition, more recent data links this blunted dopamine

release in the striatum to relapse and treatment failure in cocaine

addicts [43,44]. Since preclinical studies in rodents signaled that

diets deficient in n–3 PUFAs lead to lower striatal VMAT2 density

by 25 to 60% and reduce stimulant-induced DA release [10] we

Figure 2. Shows the relationship between pre-supplementation RBC DHA or EPA in x-axis and pre-supplementation performance
(AHR) in 3-back test in y-axis. The AHR ranges from 1 (best performance) to 21 (worst performance), with a score of 0 corresponding to
performance at chance level. RBC DHA (Panel A), but not EPA (Panel B) was associated with performance in the task.
doi:10.1371/journal.pone.0046832.g002

Table 3. Scan parameters.

Parameter
Pre- n3
PUFA

Post- n3
PUFA t df

p-
value

Injected dose
(mCi)

16.060.6 16.060.5 20.09 10 0.93

SA (Ci/mmoles) 297361543 318961288 20.35 10 0.73

Injected Mass
(ug)

2.862.6 2.161.0 0.86 10 0.41

Free Fraction,
fp (%){

30.262.9 30.962.8 20.57 9 0.58

Clearance
(L/h){

72.3617.4 67.4621.0 0.70 9 0.50

Occipital VT
(mL cm-3){

3.8060.89 3.3861.05 1.31 9 0.22

Values are mean and standard deviation (SD), n = 11 per condition (unless
noted as different).
p-values are from two-tailed, paired t tests; t is t statistic; df is degrees of
freedom.
{n = 10/condition.
doi:10.1371/journal.pone.0046832.t003
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were interested in evaluating the potential of n–3 PUFA as means

to increase VMAT2 availability, enhance DA storage and release,

and prevent relapse in cocaine addicts. The result of this human

imaging study suggests that n–3 PUFA supplementation is unlikely

to enhance striatal DA transmission in cocaine addicts and

promote abstinence.

In summary, we found no effect for n–3 PUFA supplementation

on striatal VMAT2 availability in healthy humans using

[11C]DTBZ and PET. Higher RBC DHA levels were associated

with better working memory performance in this cohort of young

adults, which is consistent with that previously shown in middle-

aged adults. Also, n–3 PUFA supplementation improved working

memory performance, which is consistent with some but not all

clinical trials that have evaluated the pro-cognitive effects of n–3

PUFA in humans. Further research is warranted to elucidate the

mechanisms by which n–3 PUFA enhances cognitive performance

in healthy individuals.
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