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Abstract

Human and many other animals can detect, recognize, and classify natural actions in a very short time. How this is achieved
by the visual system and how to make machines understand natural actions have been the focus of neurobiological studies
and computational modeling in the last several decades. A key issue is what spatial-temporal features should be encoded
and what the characteristics of their occurrences are in natural actions. Current global encoding schemes depend heavily on
segmenting while local encoding schemes lack descriptive power. Here, we propose natural action structures, i.e., multi-size,
multi-scale, spatial-temporal concatenations of local features, as the basic features for representing natural actions. In this
concept, any action is a spatial-temporal concatenation of a set of natural action structures, which convey a full range of
information about natural actions. We took several steps to extract these structures. First, we sampled a large number of
sequences of patches at multiple spatial-temporal scales. Second, we performed independent component analysis on the
patch sequences and classified the independent components into clusters. Finally, we compiled a large set of natural action
structures, with each corresponding to a unique combination of the clusters at the selected spatial-temporal scales. To
classify human actions, we used a set of informative natural action structures as inputs to two widely used models. We
found that the natural action structures obtained here achieved a significantly better recognition performance than low-
level features and that the performance was better than or comparable to the best current models. We also found that the
classification performance with natural action structures as features was slightly affected by changes of scale and artificially
added noise. We concluded that the natural action structures proposed here can be used as the basic encoding units of
actions and may hold the key to natural action understanding.
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Introduction

Human and many other animals can easily detect, recognize,

and classify a range of actions very quickly. How this is

accomplished by the visual system has been intensively studied

over the past several decades [1–3]. Extensive studies suggest that

both the ventral and dorsal streams of visual cortex are involved in

the processing of human or animal actions [4,5]. Along the

hierarchical visual pathways, neurons at early levels have small

receptive fields and encode simple features such as orientation and

direction of motion. Neurons at higher levels have large receptive

fields and encode complex features such as complex shapes and

motion trajectories. These neurobiological studies motivated, to

varying degrees, a number of computational models of human

action understanding [5–10]. Because of its many applications in

surveillance, human-machine interaction, and robotics, action

recognition and understanding resurges as an active research area

of computer vision.

A key issue of action recognition is what spatial-temporal

features should be used. There are two broad feature represen-

tations of actions, global representations and local representations.

In global representations [11,12], actions are segmented from

background first and space-time volumes extracted from the

segmented videos are used for recognition. Global representations

can be highly informative, but they depend heavily on segmen-

tation and tracking, and are sensitive to changes of viewpoints and

occlusions. In local representations [13–16], a set of local, multi-

scale features compiled at the selected points of interest, including

cuboids descriptors [17], histograms of gradient orientation or

optic flow [18], extended speeded up robust features [19], are used

for action recognition. Local representations are not sensitive to

changes of viewpoints and occlusions, but lack descriptive power

and subject models of action recognition to extensive training.

In this paper, we propose Natural Action Structures (NASs), i.e.,

multi-size, multi-scale, spatial-temporal concatenations of local

features, as the basic features for representing natural human

actions. There are several reasons for using multi-scale represen-

tations. First, visual information processing at the retina appears to

be multi-scale [20]. Second, the retinotopic map of the visual

world has a multi-scale structure, having an expanded central
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visual field and a compressed peripheral visual field [21]. Finally,

the sizes of the receptive fields of the visual neurons increase along

the visual pathway [22]. Thus, in this representation of human

actions, any action is a spatial and temporal concatenation of a set

of NASs, which convey a range of information about natural

human actions at spatial-temporal scales. To compile NASs from

videos of natural human actions, we first sampled a large number

of sequences of patches at multiple spatial-temporal scales. The

spatial and temporal scales were so coupled that the sequences at

finer spatial scales had shorter durations. We then performed

Independent Component Analysis (ICA) [23] on the patch

sequences and collapsed the obtained Independent Components

(ICs) into clusters using the K-means method. Finally, we obtained

a large set of NASs, with each corresponding to a unique

combination of the clusters at all the spatial-temporal scales. We

examined the statistics of NASs and selected a set of NASs that are

highly informative and used them as inputs to two widely used

methods for pattern recognition, i.e., Latent Dirichlet Allocation

(LDA) and Support Vector Machine (SVM), to classify a range of

human actions in the popular KTH and Weizmann datasets. We

found that NASs obtained in this way achieved a significantly

better recognition performance than simple spatial-temporal

features and that the performance was better than or comparable

to the best current models. We also found that the recognition

performance was slightly degraded by changed spatial-temporal

scales and by artificially added noise. These results suggest that

NASs can be used as the basic features for encoding human

actions and activities. Finally, we discuss how population of

neurons might encode NASs and thus human actions and other

natural dynamic events.

Results

A hierarchical model of natural human actions
Experimental observations from the primary visual cortex from

many animal species suggest that the brain may invariantly deploy

an array of neurons with multi-size and multi-scale visual receptive

fields (Figure 1 and S1). Accordingly, we have proposed the multi-

size and multi-scale coding strategy for computational modeling of

rapid scene categorization [24]. We were able to develop a set of

encoding units, natural scene structures–multi-scale structured

patches in natural scenes, for rapid and accurate scene categori-

zation [24]. We used 70 natural scene structures to encode a

variety of animals and 134 natural scene structures to encode a

variety of vehicles. With this highly informative structural

representation, we can localize and categorize animals in natural

scenes and vehicles in street scenes with a near human-level

performance. To examine the utility of the multi-size and multi-

scale coding strategy for action recognition, here we propose NASs

as the basic units for encoding human actions and activities. NASs

are multi-size, multi-scale, spatial-temporal concatenations of

features in natural actions. Each action is a collection of NASs

that are arranged in both space and time domains. In this study,

we generalized this multi-scale encoding strategy to: 1) extract all

local features at each point of interest in space-time volumes of

natural human actions that have sizes significantly greater than

those at which usual local features such as gradients and optical

flows are computed; 2) compile all combinations of local features

in the space-time volumes; 3) apply these two steps to multiple

coupled spatial and temporal scales; 4) avoid grouping, segment-

ing, and tracking that are used to extract features in other

approaches; 5) reduce the encoding of natural human actions to a

relatively simple spatial-temporal concatenation of a set of

encoding units.

We used ICs as local features in space-time volumes of videos of

actions at three sizes (i.e., 13 (space)613 (space)611 (time),

25625621, and 49649631), collapsed all combinations of ICs in

the space-time volumes into a set of clusters, and assigned all patch

sequences that shared the same dominant clusters to a NAS. There

are several advantages of using the NASs obtained this way as the

basic encoding units of human actions. First, NASs capture

structural spatial-temporal information of actions at multiple scales

in a compact way. Second, NASs naturally incorporate multi-

scale, spatial-temporal features and thus are less sensitive to noises

and changes of scales. Finally, NASs provide a simple way to

encode natural actions since NASs are local structured descriptions

of the space-time volumes of natural actions. In the following

sections, we describe how to compile NASs from datasets of videos

of human actions, the statistics and the information content of

NASs, and our results of action recognition using NASs.

Compiling natural action structures
We took five steps to compile NASs in two widely used video

datasets of human actions, the KTH dataset and the Weizmann

dataset (see Figure 2 and details in Materials and Methods).

1. Sample a large number of sequences of circular patches at

multiple spatial-temporal scales.

2. Perform ICA on the patch sequences at each spatial-temporal

scale and obtain ICs at each scale.

3. Fit Gabor functions to the ICs and collapse the ICs into a set of

clusters

4. Map the patch sequences to the IC clusters and compute the

corresponding feature vectors.

5. Partition the space of feature vectors into a set of structural

clusters and obtain the multi-scale NASs.

To generate samples from videos of human actions, we first

selected points of interest as the local maxima of the responses of

the cuboids detector [17], which is formulated as follows

R~(V � g � hev)2z(V � g � hod )2 ð1Þ

where * denotes convolution operation, V is the extracted video

volume, g is the 2D Gaussian kernel applied to the spatial

dimensions, and hev and hod are a quadrature pair of 1D Gabor

filters applied to the temporal dimension.

At the selected points of interest, we sampled sequences of

circular patches using the configuration shown in Figure 3. Each

circle is a circular patch and the configuration has 3 temporal

scales (i.e., 11, 21, and 31 video frames) and 3 spatial scales (i.e.,

the diameters of the circles are 13, 25, and 49 pixels). The spatial

and temporal scales are coupled so that the sequences at finer

scales have shorter durations. The rationale for using this

configuration is to capture dynamic structures at multiple

spatial-temporal scales to achieve robustness, which will become

clear later on. To make computing more efficient, we down

sampled the sequences at larger spatial-temporal scales. For

example, we reduced the patch sequences of 25625621 at the

middle scale to sequences of 13613611 by picking up the frames

or pixels indexed by even numbers starting from the center of the

sequences along both the spatial and temporal dimensions. Thus,

all the patch sequences had the same number of frames and the

same patch size.

We then performed ICA on the patch sequences at the three

spatial-temporal scales and fitted the Gabor functions to ICs. The

fitting algorithm worked well, accounting for 85% the variance of
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the ICs. Figure 4 shows a few examples. In these examples, as

expected, the sequences of the ICs entail appearance, disappear-

ance, rotation, translation, and phase shift of oriented bars, all of

which are well captured by the fitted Gabor functions.

To derive a compact representation of the ICs obtained above,

we performed clustering in the parameter space of the fitted Gabor

functions. For this purpose, we used 6 parameters of the Gabor

functions, i.e., 4 parameters for the scale and location of the

Gaussian envelope and 2 parameters for the orientation and the

phase of the sinusoid carrier. Since different values of the

parameters may correspond to the same Gabor function (e.g.,

adding 2p to the phase does not change Gabor function), we

converted the estimated parameters to pre-set intervals (see details

in Materials and Methods). We then performed clustering using

the K-means method with the Euclidean distance metric. Let

A = {A1, A2, …, Am} denote the i-th IC cluster containing m filters

at a spatial-temporal scale, each of which is a column vector with l

elements, where l is the number of pixels in each patch sequence.

Then the feature, ai, of a patch sequence P (which is a row vector

with l elements) projected to the i-th IC cluster is calculated as

follows

ai~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

k~1

P:Akð Þ2
s

ð2Þ

Thus, for N IC clusters, there are N features which form a feature

vector at the spatial-temporal scale. Since the patch sequences

sampled from a set of actions do not uniformly pack the high-

dimensional feature space, we need to partition the feature space

into discrete blocks. To this end, at each spatial-temporal scale, we

classified the feature vectors into a set of clusters (referred to as

structural clusters) using the K-means method with the Euclidean

distance metric. We call all the patch sequences that share the

same structural clusters at the three spatial-temporal scales a NAS.

Note that, for illustration purpose only, each of the NASs shown in

the figures is the average of the patch sequences corresponding to

that NAS.

In contrast to simple features, such as ICs and cuboids

descriptors and simple spatial-temporal statistics (e.g., histogram

of optical flow in a small region), NASs are highly structured patch

sequences that are building blocks of natural actions. Roughly

speaking, as a result of the K-means clustering procedures,

instances of any NAS are patch sequences cropped from videos of

human actions that share the same structural indices described

above and the NASs for any natural human action can range from

simple to complex spatial-temporal concatenations of local

features. Figure 5A shows 6 most frequent NASs of each of the

four selected actions in the KTH dataset. These structures

represent coarse but informative descriptions of a variety of

movements of body parts. For example, in the boxing action, the

six most frequent action structures (indicated by six different

colors) describe, respectively, the movements of the right leg, the

left foot, the left arm, the left shoulder, the waist, and the right leg.

In the jogging action, the six most frequent action structures

describe, respectively, the movements of the foot, the shoulder, the

Figure 1. Illustration of the multi-scale neural computation principle in the primary visual cortex. (A), Multi-scale neural computation
principle. (B), Illustration of sequential activations of different neurons (N1, N2, and N3) during the action of ‘‘running’’.
doi:10.1371/journal.pone.0046686.g001
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head, the shoulder, the body, and the head. Figure 5B shows 6

most frequent NASs for each of the four selected actions in the

Weizmann dataset. As with the KTH dataset, these structures are

informative descriptions of various parts of the body movements.

For example, in the wave2 action, the six most frequent action

structures describe, respectively, the movements of the left arm,

the right hand, the right arm, the right arm, the left arm, and the

right hand. In the jump action, the six most frequent action

structures describe, respectively, the movements of the waist, the

shoulder, the waist, the foot, the head, and the waist.

Statistics of natural action structures
We obtained 193,600 NASs in the KTH dataset and 11,540

NASs in the Weizmann dataset. As shown in Figure 6, NASs

shared by more actions tend to be blurry while NASs occurring in

only one or two actions are usually coarse local movements in the

actions. To use NASs to categorize human actions, we need a

procedure to select informative NASs. We selected NASs for

action classification in two steps. In the first step, we selected NASs

that occurred more than Mc times in the training set to exclude

rarely occurring NASs. In the second step, we used a One-vs.-One

strategy to select discriminative NASs based on the histograms of

the NASs. For each pair of actions, we selected the first Nc most

discriminative NASs of each action by comparing the histograms

of the NASs in the two actions. Take boxing vs. handclapping as

an example. For the boxing action, we selected the Nc NASs that

had the smallest occurring frequency in the handclapping action

and the biggest difference in occurring frequency in the two

actions. We defined these Nc NASs as the most discriminative

NASs for boxing in boxing vs. handclapping. We then applied the

same procedure to the handclapping action. To set the thresholds,

Mc and Nc, we used a procedure called Leave-One-Out Cross-

Validation (LOOCV) (see definition in Material and Methods). As

a result, we selected 4,998 NASs in the KTH dataset and 6,392

NASs in the Weizmann dataset.

Next, we examined the statistics of the NASs, which include: 1)

the occurring frequencies of NASs, 2) the correlation between

NASs, and 3) the information content of NASs, defined as One-

vs.-Rest classification performance for each action. Figure 6 shows

the statistics of occurrence of NASs in the two datasets. Simpler

NASs (e.g., the NASs in the first row (6/6) of Figure 6A) occur

more frequently and are shared by more actions, and most NASs

are shared by only a few actions. The percentages of the NASs that

are shared by 1 to 6 actions in the KTH dataset are 35.77%,

33.47%, 20.04%, 4.54%, 1.36%, and 0.82% respectively

(Figure 6A). The percentages of the NASs that are shared by 1

Figure 2. Actions in the KTH and the Weizmann datasets. (A), Six actions in four conditions in the KTH dataset. The four conditions are, from
top to bottom, outdoor (C1), outdoor with variations in image scale (C2), outdoor with different cloths (C3), and indoor (C4). (B), Ten actions in the
Weizmann dataset.
doi:10.1371/journal.pone.0046686.g002
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to 9 actions in the Weizmann dataset are 64.25%, 22.52%, 8.28%,

3.28%, 1.46%, 0.15%, 0.04%, 0.01%, and 0.01% respectively

(Figure 6B). Thus, in both datasets, only a few percent of the NASs

are shared by more than three actions. NASs shared by most of the

actions contain few structures and are blurry. For example, the

third NAS in the first row (6/6) of Figure 6A is shared by all the

actions, but conveys little information about any of the actions. On

the other hand, NASs shared by only one or two actions contain

more structures and more action-specific information. For

example, in Figure 6A, the fourth NAS in the fifth row (2/6)

occurs in handclapping and jogging classes and describes arm

movements and leg movements in the two actions, respectively. In

Figure 6B, the NAS in the first row (9/10) is shared by all the

actions except run. We can see a blurry body shape in it. The

fourth NAS in the seventh row (3/10) is shared by jump, skip, and

walk and describes body movements shared by the three actions.

Figure 7A shows the correlation matrix of the NASs in the KTH

dataset. The dashed lines indicate the ranges of the indices of the

NASs complied from each action. The indices are so arranged that

no two or more NASs share the same index. There are two clusters

in the matrix in the upper left corner and the lower right corner.

These clusters indicate that NASs in the in-position actions (i.e.,

Figure 3. Natural action structures. First, we sampled sequences of circular patches at three coupled spatial-temporal scales centered at selected
points of interest from videos of human actions. Second, we performed ICA on the patch sequences, fitted Gabor functions to ICs, and collapsed the
ICs into a set of clusters. For each IC cluster, we computed a feature, defined as the root mean square amplitudes of the ICs in the cluster, and
obtained a feature space. Finally, we digitized the feature space into a set of non-overlap regions using the K-means method, assigned an index to
each region. We applied this procedure at the three spatial-temporal scales separately, concatenated the three indices, and designated all patch
sequences that shared the same indices as a NAS. Note that each NAS is a set of patch sequences and also that each NAS shown is the average of all
patch sequences that share the same structural indices. For illustration purposes, the numbers of video frames are down-sampled to 3, 5, and 7 for
the three spatial-temporal scales.
doi:10.1371/journal.pone.0046686.g003
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boxing, handclapping, and handwaving) tend to be correlated with

each other and have weak correlation with NASs in the moving

actions (i.e., running, jogging, and walking). There is also stronger

correlation among NASs in the same action. Figure 7B shows the

numbers of NASs that are correlated with certain numbers of

other NASs (correlation coefficients greater than 0.5). Most of the

NASs are correlated with only a few other NASs. Roughly, 100 of

the 4,998 NASs are correlated with 10 NASs and only 40 are

correlated with 20 NASs. Thus, NASs compiled from this dataset

are quite sparse.

To examine the information content of NASs, we developed a

Gaussian model of the occurring frequency in video samples of

each action for each NAS, and classified the actions based on

models via Bayesian inference. We then performed LOOCV on

the training dataset, and sorted the NASs in each action according

to the One-vs.-Rest classification accuracy. Figure 7C shows the

One-vs.-Rest classification accuracy for each NAS, which is

indexed the same way as Figure 7A. As shown in Figure 7C, each

action has a set of NASs with high discriminative information;

some NASs convey information about multiple actions; most

NASs convey information about one action; and NASs in the in-

position actions contain higher discriminative information than

the moving actions.

We also obtained the similar results on the Weizmann dataset,

which are shown in Figure 7D–E. Figure 7D shows that the NASs

in the Weizmann dataset have higher correlations within the same

actions than in the KTH dataset since the Weizmann dataset has

relatively small variations. Also, more NASs in this dataset are

strongly correlated with other NASs (Figure 7E). Figure 7F shows

the One-vs.-Rest accuracy for the ten actions in the Weizmann

dataset. Compared to the NASs in the KTH dataset, NASs in the

Weizmann dataset have higher information content.

Another way to examine NASs is to find the NASs that best

discriminate pairs of actions as described above. Figure 8 shows 10

NASs for each of six selected pairs of actions. For boxing vs.

handclapping, NASs describing arm movements are the best

discriminative features. For handwaving vs. walking, NASs

describing arm movements and upper-body movements are the

best discriminative features. For jogging vs. running, NASs

describing lower-body and leg movements and NASs describing

head, upper-body, and leg movements are the best discriminative

features. For jack vs. pjump, NASs describing arm and leg

movements and NASs describing head, body, and foot movements

are the best discriminative features. For jump vs. side, NASs

describing head, body and leg movements and NASs describing

body and leg movements are the best discriminative features. The

most similar pair of actions in the Weizmann dataset is run and

skip. For the run action, the discriminative NASs describe head,

body and leg movements and, for the skip action, the discrimi-

native NASs describe head, body and foot movements.

Thus, NASs contain a full range of concatenations of spatial-

temporal features within space-time volumes with a size of 49

(space)649 (space)631 (time) and convey a range of information

about human actions. In the next section, we show how to use

NASs for action recognition.

Action classification
We used NASs as inputs to two methods for pattern

classification, LDA and SVM. LDA is a hierarchical probabilistic

model [25]. It has been used in several applications [26–28] in

computer vision. SVM is a discriminative model, which seeks the

optimal decision boundary between classes directly [29]. It is of

interest to compare these two classifiers as applied to action

recognition.

In LDA, the probability distributions (PDs) of the code words

(i.e., features) for each class are estimated and classification is

performed via Bayesian inference. Suppose that we have M video

sequences of each action video set D and each video sequence

contains N spatial-temporal code words w = {w1, w2, …, wN}, a

subset of a code book of size C. Each video sequence can be seen

as generated via the following process (Figure 9).

1. Choose N,Poisson(j)

2. Choose h,Dirichlet(a)

3. For each of N words wn

N Choose a topic zn,Multinomial(h)

N Choose a word wn from multinomial distribution p(wn|zn, b)

conditioned on topic zn

j is the mean of Poisson distribution, Poisson(j), a is the

parameter of K-dimensional Dirichlet distribution Dirichlet(a) (K is

the number of hidden topics zn), and h is the parameter of

Figure 4. Fitting Gabor functions to ICs. (A), ICs of the three patch sequences sampled at three scales (Scale1, Scale2, and Scale3) from the KTH
dataset. (B), fitted Gabor functions of the ICs shown in A. (C) and (D) are the same as (A) and (B) respectively for the Weizmann dataset. Note that, in
each figure from top to bottom, the actual sizes of patch sequences are increased and the sequences at larger sizes are down-sampled.
doi:10.1371/journal.pone.0046686.g004
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multinomial distribution Multinomial(h), which determines how

the K topics are mixed in the current video sequence. Given topic

zn, code word wn is generated according to p(wn|zn, b), a

multinomial distribution parameterized by b, a K6C matrix.

Thus, under the i.i.d. (independent and identically distributed)

assumption, the LDA model for an action video set D is

p(DDa,b)~ P
M

d~1

ð
p(hd Da) P

Nd

n~1

X
zdn

p(zdnDhd )p(wdnDzdn,b)

0
@

1
Adhd ð3Þ

where d is the index of video sequences and n is the index of code

word. Since it is difficult to estimate the parameters in this model

directly, as proposed in [25], we used the following variational

Figure 5. Examples of natural action structures. (A), 6 frequent NASs compiled from each of the 4 actions in the KTH dataset. The locations of
the NASs in the videos and the NASs are indicated by the same color. (B), Same format as (A). 6 frequent NASs compiled from each of the 4 actions in
the Weizmann dataset. Note that each NAS is a set of patch sequences and also that each NAS shown is the average of all patch sequences that share
the same structural indices.
doi:10.1371/journal.pone.0046686.g005
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distribution to approximate the posterior PD of hidden variables,

p(h,zDw,a,b), and learn the LDA model by using the variational

Bayesian method.

q(h,zDc,w)~q(hDc)P
n

q(znDwn) ð4Þ

where c and w are the variational parameters and n is the index of

code words.

By design, LDA is a bag-of-words model and leaves out spatial

and temporal interactions among NASs, which will be discussed

later. Several extensions have been proposed to address this

limitation [30–32].

In this work, NASs are used as code words and spatial-temporal

concatenations of NASs as topics. Thus, by definitions, parameter

hd stands for the mixing weight of the concatenations of NASs for

each video sample d, a controls the distribution of each hd, and b
defines the distribution of NASs in each topic z. To test this model,

Figure 6. Statistics of occurrences of NASs. (A), Examples of NASs shared by 1 to 6 actions in the KTH dataset. The numbers are the percentages
of the NASs shared by 1 to 6 actions. (B), Same format as (A) for the Weizmann dataset. Note that each NAS is a set of patch sequences and also that
each NAS shown is the average of all patch sequences that share the same structural indices.
doi:10.1371/journal.pone.0046686.g006
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we developed a LDA model for each action and performed

classification via Bayesian inference.

SVM is another widely used classifier [14,18,33,34], which we

describe briefly by taking binary classification as an example. In

this case, the data format is (xi,yigf gN
i~1, where

xi[Rn, yi[f{1,z1g, and the task is to find the best hyperplane

in the feature space F that separates the two classes by optimizing

Figure 7. Statistics of NASs. (A), Correlation coefficients between NASs. (B), The number of NASs that are correlated with (correlation coefficient
. = 0.5) a certain number of other NASs. (C), Each curve indicates the One-vs.-Rest classification accuracy for each action. In (A), NASs are indexed
sequentially by the occurrences in boxing, handclapping, handwaving, jogging, running, and walking. (A–C) are for the KTH dataset. (D–F), Same
format as (A–C) for the Weizmann dataset. In (F), structures are indexed sequentially by the occurrences in bend, jack, pjump, wave1, wave2, jump,
run, side, skip, and walk.
doi:10.1371/journal.pone.0046686.g007
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min
w,b,j

1

2
wk k2

zC
XN

i~1

ji

subject to yi w:W(xi)zbð Þ§1{ji, ji§0, i~1,:::,N

ð5Þ

W(x) maps data vector x into the feature space F, w is a weight

vector, b is a bias, j are slack variables, and C.0 is a regularization

constant. By introducing Lagrange multipliers ai, we obtain the

dual problem

max
a

XN

i~1

ai{
1

2

XN

i,j~1

aiajyiyjk(xi,xj)

subject to 0ƒaiƒC, i~1,:::,N

XN

i~1

aiyi~0

ð6Þ

where k(xi,xj)~W(xi):W(xj) is a kernel function. The decision

function is as follows

Figure 8. One-vs.-One discriminative natural action structures. (A), One-vs.-One discriminative NASs in three pairs of actions in the KTH
dataset. The locations and NASs in each individual action are indicated by the same color. (B), Same format as (A) for the Weizmann dataset. Note that
each NAS is a set of patch sequences and also that each NAS shown is the average of all patch sequences that share the same structural indices.
doi:10.1371/journal.pone.0046686.g008
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y~sign
XM
l~1

alylk(x,xl)zb

 !
ð7Þ

where M is the number of non-zero a and l is the index of non-

zero a.

In this work, we used 1-x2 kernel [35,36].

k(x1,x2)~2
Xn

i~1

x1i
:x2i

x1izx2i

ð8Þ

where x1i is the i-th element of x1. To use this formulation for

multi-class action recognition, we used the One-vs.-Rest strategy

and LIBSVM implementation of SVM [37,38]. To incorporate

spatial information into the SVM classifier, inspired by [18], we

partitioned spatial and temporal dimensions of the video

sequences into n-m-k grids (i.e., n equal grids in vertical

dimension, m equal grids in horizontal dimension, and k equal

grids in temporal dimension), concatenated the histograms of

NASs in the grids into a big feature vector, and used the pooled

histograms as inputs to the SVM model.

We compared the performance of the two classifiers with NASs

as inputs on the KTH and the Weizmann datasets to the

performance of two baseline methods (Table 1). In the baseline

methods, we used the cuboids descriptors as inputs to the LDA

model and the SVM classifier described above. For the LDA

classifier with NASs as inputs, the recognition rate is 89.5% on the

KTH dataset and 94.4% on the Weizmann dataset. For the SVM

classifier with NASs as inputs, the recognition rate is 92.7% on the

KTH dataset and 96.7% on the Weizmann dataset. For both

classifiers, using NASs as inputs improves recognition perfor-

mance. The error reduction rate relative to the performance of the

cuboids model (i.e., the ratio of improvement to the error in the

cuboids model) is up to 37% on the KTH dataset and up to 41%

on the Weizmann dataset.

These results also show that the SVM model achieves better

performance than LDA consistently. There are two reasons. First,

SVM seeks a decision surface with the maximal margin of

separation, which is usually beneficial for classification with a large

number of features and relatively small number of training

samples. Second, we concatenated the histograms of NASs in

multiple partitions of the video sequences in our implantation of

SVM, but we did not model any spatial-temporal interactions

among NASs in LDA.

Figure 10 shows the confusion matrices of the performance of

the SVM model on the KTH dataset and the Weizmann dataset.

For the KTH dataset, the in-position actions and the moving

actions can be well classified, while ,16% of the incidences of

jogging and running were misclassified. On the Weizmann

dataset, our model only misclassifies 33% of the incidences of

skipping as running. These two actions are indeed very similar.

We compared our model with the best current methods

(Table 2). For the KTH dataset, we used the training-testing

separation coming with the dataset, the same scheme used in

[18,39]. In the other models cited in the table [27,40–42],

LOOCV was used to obtain the performance (in [42], the authors

used 20-fold cross validation based on randomly selected training

and testing datasets), which is usually better than performance

obtained without cross-validation. For the Weizmann dataset,

because of the limited samples, all the results were obtained using

LOOCV. It should be also noted that the 100% performance on

the Weizmann dataset was achieved by using global space-time

shape features segmented from background. Based on these

comparisons, we concluded that the performance of the SVM

classifier with NASs as features on both datasets of human actions

is among the best current models.

We also examined the topics of the LDA models of the actions

in the KTH dataset. In LDA, topics are on a higher hierarchy

than code words, which can be seen as being sampled from PDs

conditioned on topics (Figure 9). Since we compiled NASs and

used them as code words, it is of interest to examine the topics in

these models. We developed a LDA model for each action and

signed NASs to a topic z according to the following equation

p(zDw,b,h)~
p(wDz,b)p(zDh)P

z

p(wDz,b)p(zDh)
ð9Þ

We obtained 50 topics for each action in the KTH dataset.

Figure 11A shows two topics A and B (indicated by different

colors) in 4 examples of each of the 6 actions in the KTH dataset.

Although code words (i.e., NASs) usually describe specific

movements of body parts (Figure 5), topics are much less specific

in terms of body parts and/or movements. For example, in the

boxing action, topic A can be hand movement (top panel) or

movements of head, arms, and legs (middle panel). In another

example, topic B covers almost all the body movements in the

boxing action. In the running action, topic A can be leg

movements (top panel) or upper-body movements (middle panel);

topic B covers almost all the body movements in the action. Thus,

there are no fixed spatial positions of the topics in the LDA model.

The underlying reason is that spatial and temporal relationships

among code words are ignored in LDA and that there are no other

Figure 9. Latent Dirichlet Allocation model. The nodes represent
random variables. The shaded nodes are observed variables and the
unshaded nodes indicate unobserved variables. The plates indicate
repetitions. M is the number of video sequences of each action, Nd is
the number of code words w in the d-th video sequence, and z is the
hidden topic. The parameters of the model include a, the parameter of
the Dirichlet distribution, h, the parameter of the multinomial
distribution, and b, which parameterizes the multinomial distribution
conditioned on topic z.
doi:10.1371/journal.pone.0046686.g009

Table 1. Performance of the proposed models and the
baseline models.

Methods KTH Weizmann

Cuboids+LDA 85.0% 90.0%

Cuboids+SVM 88.5% 94.4%

NASs+LDA 89.5% 94.4%

NASs+SVM 92.7% 96.7%

doi:10.1371/journal.pone.0046686.t001
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constraints on topics. Figure 11B shows the numbers of NASs

sharing the same topic of the LDA models. Each inset shows the

relative occurring frequencies of the NASs of the selected topics

that are shared by the 1–6 actions in the KTH dataset. A main

feature of the occurrences of NASs of the topics is that the NASs of

each selected topic are usually shared by two or three actions,

except for handwaving, where most NASs of each selected topic

occur mainly in handwaving. Another feature is that in each action

the curves of the relative occurring frequencies are more or less the

same while the number of the NASs of each topic varies

significantly.

While we did not consider spatial and temporal interactions

among code words in our implementation of LDA, we did test a

simple way to deal with these interactions in our implementation

of SVM on the KTH dataset as described above. The

performance was improved from 91.4% to 92.7% by using the

pooled features in 3-1-1 grids as illustrated in top-left of Figure 12.

This improvement arises from the fact that the spatial distributions

of NASs may be different for different actions. Figure 12 shows the

distributions of 4 NASs in the three parts in the 6 actions. Take the

first NAS as an example. Most samples of the NAS occur in the

upper grid in the boxing action, occur in the middle grid in the

handclapping, handwaving, and walking actions, and occur in the

lower grid in the jogging and running actions.

Finally, we examined how the recognition performance on the

KTH dataset would be affected by variations in scale and noise.

For scale variations, we generated two test datasets, ScaleP10 and

ScaleN10. In ScaleP10, we increased the sizes of video frames by

10% along both vertical and horizontal directions. In ScaleN10,

we decreased the sizes of video frames by 10%. The classification

accuracies of the SVM model on ScaleP10 and ScaleN10 were

88.1% and 90.7%, respectively. We also added white Gaussian

noise at each pixel of the video frames with a signal-to-noise ratio

of 20 db (i.e., Stdnoise/Stdsignal = 0.1) on both the training and

testing datasets, and retrained the SVM classifier. The classifica-

tion accuracy on the noise dataset was 91.4%.

As a final note, we should mention several reasons why the large

number of NASs does not impair the generalization of the

proposed methods. First, as described above, we selected the most

discriminative NASs for action recognition. Second, we randomly

selected a small portion of the training data (11.9% for the KTH

dataset and 17.5% for the Weizmann dataset) for compiling NASs.

Thus, the extracted NASs did not tend to over-fit the training set.

Finally, some NASs encode similar information, i.e., there is

redundancy among NASs.

We implemented the proposed procedure in Matlab (Version

7.8.0.347) running on a Dell Optiplex 960 desktop (with an Intel

E8500 3.16 GHz processor and 8G RAM). On average, it took

43.9 s to categorize each video of 100 frames. The main load was

to compute NASs from input videos. This step can be greatly

speeded up by using more efficient searching algorithms.

Discussion

Natural action structures
In this study we proposed NASs as the basic spatial-temporal

features for action recognition based on a range of evidence for

multi-scale information processing in the visual system [20–22].

Figure 10. Confusion matrices. (A), Confusion matrix of the performance of the SVM with NASs on the KTH dataset. The average accuracy is
92.7%. (B), Confusion matrix of the performance of the SVM with NASs on the Weizmann dataset. The average accuracy is 96.7%.
doi:10.1371/journal.pone.0046686.g010

Table 2. Performance of the proposed models and the state-
of-the-art models.

Methods KTH Weizmann

Proposed Method (SVM) 92.7% 96.7%

Wang et al. (2011) [39] 92.5% -------

Yao et al. (2010) [37] 92.0% 95.6%

Wang et al. (2009) [36] 92.1% -------

Bregonzio et al. (2009) [38] 93.2% 96.7%

Laptev et al. (2008) [13] 91.8% -------

Niebles et al. (2008) [24] 83.3% 90.0%

Gorelick et al. (2007) [11] ------- 100.0%

doi:10.1371/journal.pone.0046686.t002
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Under this concept, a NAS is a concatenation of sequences of

structured patches at multiple spatial-temporal scales and each

sequence of structured patches is a concatenation of a set of

dominant ICs of natural human actions. To make NASs more

compact while maintaining their descriptive power, we proposed

to combine ICs of natural human actions into a set of IC clusters,

to use the IC clusters to characterize sequences of structured

patches, and to classify sequences of structured patches into a set of

structural clusters. There are several advantages of using NASs.

First, compiling of NASs requires, in principle, no isolation of

objects or figure-background segmentation, nor computing of

global spatial-temporal features. Second, NASs are not sensitive to

noises and changes in scales since they are concatenations of local

features at multiple spatial-temporal scales. Third, NASs contain a

Figure 11. Action topics in LDA. (A), Locations of the NASs that share the same topic in the LDA model. Two topics are shown for each action in
the KTH dataset. (B), Number of NASs share the same topic of the LDA models of the six actions in the KTH dataset. The insets show the numbers of
NASs of the selected topics that are shared by the 1–6 actions in the dataset. Note that, by definition, topics are not shared by two or more actions.
doi:10.1371/journal.pone.0046686.g011
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variety of multi-scale information about human actions; general

structures are shared by more actions while specific structures are

shared by only one or two actions. Finally, encoding of actions by

NASs is more or less equivalent to specifying the spatial and

temporal arrangements of NASs, which reduces the training of

models for recognition.

We used NASs as the basic features for action recognition in two

popular recognition methods, LDA and SVM, on two datasets of

human actions. For LDA, the recognition rate is 89.5% on the

KTH dataset and 94.4% on the Weizmann dataset. For SVM, the

recognition rate is 92.7% on the KTH dataset and 96.7% on the

Weizmann dataset. For both methods, these results are better than

those obtained using low-level features and are among the best

current models of action recognition. We also found that the

classification performance with NASs as features was slightly

affected by changes of scale and noise.

Possible neural mechanisms
Neurons in the primary visual cortex respond selectively to

stimulus orientations, spatial frequency, speed, and directions

[43,44]. By the time information reaches neurons in the MT area,

local visual motion signals are integrated into the global motion of

complex objects [45]. Recent studies [46,47] showed that the

responses of V1 neurons can be described to a large degree by the

Linear-Nonlinear (LN) model where the responses of a set of linear

filters are combined in a simple nonlinear way. Furthermore, the

responses of MT neurons can be described by a nonlinear function

of a weighted sum of responses of V1 neurons [48]. These

observations strongly suggest a biological coding strategy in which

the visual system represents actions and events by assembling a set

of basic elements in a hierarchical way. As an example for this

strategy, our recent recording in the mouse’s primary visual cortex

suggests that patterns of sequential firing of a population of V1

neurons can encode various movements of a set of basic stimulus

features (Figure S2).

By comparison, global representations of actions and events

[11,12] by the computational modeling have not made use of

hierarchical neuronal encoding properties observed in the brain,

but rather employed the spatial-temporal volumes of actions and

events as a whole. On the other hand, current modeling on local

representations of actions and events [13–19], including cuboids

descriptors, histograms of optical flow, are not compatible with the

neuronal response properties. For instance, the basic spatial-

temporal features in these local representations are not similar to

the features to which V1 neurons are tuned. Moreover, the basic

features used in these local representations are discriminative

features but are not intended to encode natural actions in a

hierarchical way.

In the NASs obtained here, there are two layers. In the first

layer, the basic spatial-temporal features are ICs, similar to the

Figure 12. Spatial distributions of NASs. Spatial distributions of NASs in the 6 actions in the KTH dataset. The panels show the normalized
frequencies of the NASs shown to the left, in the three areas indicated by the numbers on the video frame. The top-left figure shows the partition
grids. Note that each NAS is a set of patch sequences and also that each NAS shown is the average of all patch sequences that share the same
structural indices.
doi:10.1371/journal.pone.0046686.g012
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features to which V1 neurons are tuned. The feature element ai of

each patch sequence is the root mean square of the amplitudes of

the ICs in an IC cluster (Equation (2)). In the second layer, each

structural cluster in the space of feature vector contains a

combination of the IC clusters, some of which may be more

dominant than others. Thus, each NAS is characterized by a set of

IC clusters at multiple spatial-temporal scales. At this time, we can

only speculate the possible neural mechanisms for this coding

scheme of natural actions. First, the feature element ai corre-

sponding to an IC cluster cannot be encoded by a single V1

neuron but may be expressed as a nonlinear function of the

responses of a set of V1 neurons whose tuning to orientation,

speed, direction, frequency, and phase are similar (since the ICs in

an IC cluster have similar parameters). This neural model of ai

would be a straightforward generalization of the LN model to the

population level. Second, an NAS, which usually contains multiple

IC clusters, may not be encoded by a single MT neuron but may

be expressed as a nonlinear function of the responses of a set of

MT neurons whose tuning characteristics are broadly similar

(since the dominant IC clusters in a structural cluster are broadly

similar). This neural model of NAS can be viewed as a critical

generalization of the MT neuron model [48] to the population

level. Thus, it is conceivable that the population coding strategy

can give rise to various NASs along the visual pathways.

Future directions
Our present study can be extended in three major ways. The

first extension is to develop parameterized, probabilistic models of

NASs. Because of the limited sizes of the datasets used in this

study, we did not attempt to develop probabilistic models on the

NASs. For this purpose, we are currently developing a large

dataset of human actions. With parameterized, probabilistic

models of NASs, we will be able to perform a range of statistical

analyses on NASs and develop a hierarchical, probabilistic model

of action recognition. The second extension is to develop

combinatorial principles for encoding natural human actions.

These principles, acting like a stochastic grammar, similar to

image grammars [49], specify the spatial and temporal concate-

nations of NASs for action encoding, and NASs are the

probabilistic code words in this action grammar. The third

extension is to combine this model with our models of motion

saliency [50] and object detection in natural contexts [24] to

categorize scenes and detect objects, animals and humans, and

their actions simultaneously. These directions need to be pursued

in the future.

Materials and Methods

Datasets of human actions
We used two video datasets of human actions, the KTH dataset

[14] and the Weizmann dataset [11]. The KTH dataset contains

2,391 videos of six actions, boxing, handclapping, handwaving,

jogging, running, and walking, performed by 25 human subjects.

Each video contains repeated executions of a single action and has

a resolution of 1606120 pixels and a frame rate of 25 frames/

second. These videos were recorded under four conditions:

outdoor, outdoor with variations in scale, outdoor with different

cloths, and indoor. Figure 2A shows 4 samples of each action in

the dataset.

The Weizmann dataset contains 90 videos of 10 actions

performed outdoors by 9 human subjects, including bend

(bending), jack (jumping jack), jump (jumping forward on two

legs), pjump (jumping in place on two legs), run (running), side

(galloping sideways), skip (skipping), walk (walking), wave1 (waving

with one hand), and wave2 (waving with two hands). Each video

contains repeated executions of a single action and has a resolution

of 1806144 pixels and a frame rate of 25 frames/second.

Figure 2B shows one sample of each action in this dataset.

Training and cross-validation
To test our models of action recognition on the KTH dataset,

we used the separation of the training set (subjects: 1, 4, and 11–

25) and testing set (subjects: 2, 3, 5–10, and 22) coming with the

dataset. Cross-Validation (CV) is a way to keep in control over-

fitting and is widely used in pattern recognition. We used LOOCV

on the training set to select model parameters, which included: 1)

the number of clusters obtained by the K-means method, 2) the

thresholds, Mc and Nc, for selecting NASs, 3) the partition grids

for the SVM classifier, and 4) the parameters of the LDA and

SVM classifiers. In this procedure, we tested on the video samples

of a single subject using the remaining samples as the training set.

We repeated this procedure until the video samples of all subjects

were tested. To test our models on the Weizmann dataset, we used

LOOCV on the whole dataset since this dataset is small.

Pre-processing
We used Dollar’s cuboids detector and descriptor on both KTH

and Weizmann dataset as a baseline method. We set the spatial

scale to 2 and the temporal scale to 3 in the cuboids detector and

the size of cuboids to 13 (space)613 (space)619 (time). To detect

points of interests in space-time volumes for compiling NASs, we

used the cuboids detector, defined as the local maxima of the

response function. At the selected points of interests, we sampled

sequences of circular patches of sizes of 13613611, 25625621,

and 49649631 and aligned to each other the centers of the

middle frames in the patch sequences (i.e., 6th, 11th, and 16th).

Testing on KTH dataset
We randomly sampled 66105 patch sequences, performed ICA

on the sequences, and obtained 1,200 ICs that accounted for

99.5% of the variance of the patch sequences. We fitted Gabor

functions to the 1,200 ICs, converted the fitted parameters into

pre-set intervals (i.e., the scale of the Gaussian envelope to [0, +‘),

the orientation of sinusoid carrier to [0, p), and the phase of the

sinusoid carrier to [0, 2p)). However, we did not convert the

location of the Gaussian envelope. We then collapsed the ICs into

480 IC clusters using the K-means method with the Euclidean

distance as a function of the parameters of the Gabor function.

To compile NASs, we randomly selected 56105 patch

sequences, mapped them to the 480 IC clusters, and collapsed

them to 1,000 structural clusters at each scale using the K-means

method. The distance used in this step was the Euclidean distance

between the root mean square of the amplitudes of the ICs in the

IC clusters. We call all the patch sequences that share the same

structural clusters at the three spatial-temporal scales a NAS. The

total number of NASs is 193,600.

To select NASs for the SVM classifier, we set the thresholds, Mc

and Nc, to 2 and 400 respectively. The total number of selected

NASs is 4,998. We used the 1- x2 kernel in the SVM classifier and

set C to 0.125. Also, we partitioned the video sequences into 3-1-1

grids (i.e., 3 equal grids in the vertical dimension and 1 grid in the

horizontal and temporal dimensions). For LDA classifier, we set

the thresholds Mc and Nc to 3 and 300 respectively. The total

number of the selected NASs is 4,349 and the number of topics is

50.
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Testing on Weizmann dataset
We randomly sampled 1.26106 patch sequences, performed

ICA on the sequences, and obtained 1,200 ICs that accounted for

99.9% of the variance of the patch sequences. We fitted Gabor

functions to the 1,200 ICs, converted the fitted parameters (see

above), and collapsed the 1,200 ICs into 440 clusters using the K-

means method with the Euclidean distance. To compile NASs, we

randomly selected 23,000 samples, mapped them to the 440 IC

clusters, and collapsed them to 700 structural clusters using the K-

means method (see above). The total number of NASs is 11,540.

To select NASs for the SVM classifier, we set the thresholds, Mc

and Nc, to 1 and 500 respectively. The total number of selected

NASs is 6,392. We used the 1- x2 kernel in the SVM classifier and

set C to 0.125. For this dataset, we used grid 1-1-1. For LDA

classifier, we set the thresholds, Mc and Nc, to 0 and 100

respectively. The total number of the selected NASs was 1,526 and

the number of topics is 30.

Supporting Information

Figure S1 Representative visual receptive fields record-
ed from the mouse primary visual cortex. The visual

receptive fields were recorded by using 64-channel recording array

in stereotrode format. The mouse’s head was fixed to a crossbar,

and standing or running on tread mill.

(TIF)

Figure S2 Neural correlates of action recognition re-
sponses in the mouse’s V1 cortex. (A–C), Neurons #1, 2,

and 3 have the preferred orientation at 45u, 67.5u, and 135u,
respectively, based on their responses to drifting grating stimuli.

Eight orientations were given as shown. (D), Sequential firings of

Neurons #1, 2, and 3 may provide a mechanism for computing

upper body and head motion information along the visual

pathway during the action recognition of ‘‘standing up’’.

(TIF)
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