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Abstract

Although variations in allele frequencies at common SNPs have been extensively studied in different populations, little is
known about the stratification of rare variants and its impact on association tests. In this paper, we used Affymetrix 500K
genotype data from the WTCCC to investigate if variants in three different frequency categories (below 1%, between 1 and
5%, above 5%) show different stratification patterns in the UK population. We found that these patterns are indeed
different. The top principal component extracted from the rare variant category shows poor correlations with any principal
component or combination of principal components from the low frequency or common variant categories. These results
could suggest that a suitable solution to avoid false positive association due to population stratification would involve
adjusting for the respective PCs when testing for variants in different allele frequency categories. However, we found this
was not the case both on type 2 diabetes data and on simulated data. Indeed, adjusting rare variant association tests on PCs
derived from rare variants does no better to correct for population stratification than adjusting on PCs derived from more
common variants. Mixed models perform slightly better for low frequency variants than PC based adjustments but less well
for the rarest variants. These results call for the need of new methodological developments specifically devoted to address
rare variant stratification issues in association tests.
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Introduction

Population stratification is an important cause of false positive

results in case-control association studies. Indeed, if the sampled

population includes subgroups with different allele frequencies at

some markers and different disease prevalences, there is a risk of

detecting false positive associations between these stratified

markers and the disease. This often occurs when the individuals

are sampled from different ethnic groups. The most famous

example in the literature is the association between a Gm

haplotype and type 2 diabetes explained by Pima-Papago ancestry

[1]. With the development of large scale genome wide association

studies (GWAS), it was shown that the problem may even exist

between populations that were previously assumed to be

homogeneous such as Europeans [2,3,4,5,6,7,8,9,10]. Even

between different regions of the United Kingdom (UK), important

differences in allele frequency exist for some Single Nucleotide

Polymorphisms (SNPs) such as those located on chromosome 2q21

in the region of the lactase gene that was shown to be under strong

recent positive selection [11] or on chromosome 6p21 in the HLA

region [12]. Thus, accounting for population stratification in

GWAS is a crucial issue, leading researchers to reactualize

methods proposed in the context of candidate gene studies

[13,14,15,16,17] or to develop new methods to detect and correct

for population stratification in case-control data

[18,19,20,21,22,23] (for a review see [24]). Simulation studies

have shown that most of these methods perform generally well

under different scenarios of population stratification [25] with

usually a small advantage to the principal component corrected

method, as implemented in the quick and simple Eigenstrat

software [18]. More recently, mixed models that explicitly model

population structure, family structure and cryptic relatedness have

also been applied to GWAS and shown to perform even better

than principal component analysis in situations where some

individuals in the sample are related [26,27,28].

However, most of the studies on population stratification have

focused on common genetic variants, namely SNPs with a minor

allele frequency (MAF) above 5% because of the ‘‘common

disease-common variant hypothesis’’ [29,30]. More recently, after

several GWAS have shown that common variants only explain a

minor part of the heritability of most complex diseases, interest has

moved to variants with lower frequencies. Rare variants have been

shown to be involved in several diseases [31,32,33,34,35]. The

hitherto identified rare risk variants often have functional

consequences with a direct impact on protein functionality and

tend to confer a stronger increase in disease risk than common
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variants. Rare variants are more likely to be under moderate levels

of negative selection [36,37] and/or to have arisen recently and be

population-specific. Because of these differences between rare and

common variants, it is plausible that rare variants could exhibit

stratification patterns different from common variants. However,

to date, the issue of rare variant stratification has not been

addressed in the literature using real data except in the study of

Heath et al. [5] where axes of variations in 13 European

populations obtained using low frequency variants were strongly

correlated to those obtained with common variants. This

observation indicates that rare variants were not stratified

differently from common ones in Europe. However, the conclu-

sions drawn were limited because rare variants were very poorly

represented in the SNP-chip used (Illumina 317K) and thus the

study was underpowered to show differences between rare and

common variants.

Our aim is to assess population stratification based on rare

variants using the population-based control data from the

WTCCC1 study and to examine how this stratification can

impact the results of association tests, using the example of type 2

diabetes. We take advantage here of the high content in rare

variants of the Affymetrix 500K SNP-chip used in the WTCCC1

study. This chip contains about 55,000 variants with MAF below

0.05 in Europeans, whereas the Illumina 317k chip contained

approximately 9,000.

Results

Quality Control and MAF categories
Three sample sets from the WTCCC1 study (http://www.ebi.

ac.uk/ega/home) are considered: the two control datasets (58BC

with 1,480 individuals and UKBS with 1,458 individuals) and the

type 2 diabetes (T2D) case dataset (1,924 individuals). These

samples originate from 12 UK regions (see Table S1 and Figure

S1) and are all genotyped on the Affymetrix 500K chip. After

stringent quality control (QC) (see Methods), a total of 319,278

SNPs are available and classified into 4 categories depending on

their minor allele frequency (MAF) in the total control group

(58BC and UKBS combined) (Figure 1). A total of 254,642

(79.8%) SNPs with a MAF $0.05 are classified as ‘‘common’’,

29,300 (9.2%) with a MAF in the range [0.01; 0.05] as ‘‘low

frequency’’, 19,246 (6%) with a MAF #0.01 but with a minor

allele present in more than two copies in the combined set of

controls are classified as ‘‘rare’’ and the last 16,090 (5%) with a

minor allele present in 2 or less copies are classified as

‘‘others’’(Table S2).

Patterns of stratification in the control datasets
The two sets of controls have very similar allele frequencies at

the different SNPs whatever the MAF category (Table S3 and

Methods) except for the ‘‘others’’ category where an inflation of

the genomic lambda is observed. The ‘‘others’’ category that

includes SNPs with a minor allele seen only once or twice in the

control datasets is more prone to genotyping assignment problems

and will therefore no longer be considered in subsequent analyses.

On the pooled set of controls, an individual carries on average

110 rare variant alleles but this number varies between 48 and 563

with 95% of the individuals carrying less than 156 rare alleles. For

low-frequency variants, these numbers are higher with an

individual carrying on average 1,701 low frequency alleles with

a range varying between 1,443 and 2,431 (Figure S2). The number

of rare variants carried by each individual varies significantly

between regions (p-value of the Kruskal-Wallis test = 1.8

1029)(Figure S3). In particular, individuals from region R12 have

less rare variants (mean and median numbers per individual are

101.6 and 97, respectively) than individuals from the other regions,

especially in regions R1, R2 and R4 (mean and median number of

rare variants per individual are, respectively, 115.5 and 109 for

R1, 114.0 and 108 for R2, 115.3 and 108 for R4). Differences in

allele frequencies between the 12 UK regions show similar

patterns over the different MAF categories with similar propor-

tions of SNPs strongly differentiated between regions (Table S4).

Most of the rare variants are polymorphic in several regions and

about 14% (i.e., 2,693 out of the 19,246) are even found in all 12

regions (Figure 2A). Interestingly, 14% is exactly the proportion of

rare variants expected to be shared by the 12 UK regions if rare

variants were homogeneously distributed over the UK regions. In

contrast, a majority of the low frequency variants (more than 98%)

are found in all regions (Figure 2B). These patterns of regional

distribution of rare and low frequency variants are very similar in

the two control datasets. However, a large proportion of the rare

variants unique to one region in one of the control datasets are

spread over several regions in the other control dataset. This

probably illustrates the fact that the rare variants present on the

chip are slightly biased towards higher frequencies. Moreover,

only 18 (8.2%) of the 220 variants unique to one region in both the

UKBS and 58BC samples are found in the same region in these

two samples (Table S5).

The distributions of the principal component (PC) scores for

individuals from the different UK regions overlap considerably.

No difference in these scores is found when comparing the two

control datasets, ruling out concerns of batch effects between them

(data not shown). However, significant differences are observed

between the different regions for the top PC computed on the 3

MAF sets (Figure S4 and Table S6). To investigate geographic

population structure, the means of the top 3 scores of individuals

within a region were calculated and plotted in Figure 3. These PCs

are informative about regional geographical structure but the

positions of the different regions differ depending on the pruned

MAF set considered. When only the common variants are

included in the analysis, the regions tend to separate more on

PC1, PC2 and PC3 than when low-frequency or rare variants are

considered. Note that the plot of PC3 against PC2 obtained for

common variants is very similar to the one reported in [38]. The

screeplots (Figure S5) show that the percentage of variance

explained by the top PCs is much greater for rare variants (,35%

for PC1 and ,28% for PC2) than for low frequency (,9% for

PC1 and ,8% for PC2) or common variants (,7% for both PC1

and PC2) suggesting that the rare variant stratification is stronger

than the one of more common variants. Common, low-frequency

and rare SNPs tell different stories regarding population stratifi-

cation, as can be seen from the very low levels of correlations (R2)

between PCs. PCs computed from the rare variant set are poorly

correlated to the PCs computed from the common or low

frequency sets and this, even if we consider jointly several PCs

extracted from these different sets and look if one PC from one set

is captured by several PCs from another set (Table 1). This is

especially striking for PC1 from rare variants that is not captured

at all by the top 10 PCs from common variants (R2 = 0.02). To

rule out the possibility that this could be due to stochastic

variations given the low number of SNPs used to perform the PCA

(11,848 SNPs for the rare variant set after pruning), we extracted

from the 54,599 pruned common SNPS, four disjoint subsets of

11,848 SNPs and measured their correlations (Table S7). We

found that such a low number of SNPs is not sufficient to fully

capture the subtle population structure effects within the UK as

the correlations between the PCs extracted from these four

different subsets are far from 100% with R2 values between the
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PC1 from the different sets ranging from 0.26 to 0.33. However,

these correlation values are much higher than the ones observed

between PC1 computed from the rare variant set and the top 10

PCs computed from the common variants (R2,0.30 compared to

0.02). This is less true for PC2 from rare variants that shows a

correlation with PC2 from common variants of 0.28, similar to the

level of correlation observed on the disjoint subsets of common

SNPs. PCs computed using the low frequency variant set show R2

correlation values of about 60% with the top 10 PCs from both the

rare and common variants sets, showing that their stratification

pattern is relatively well captured by the PCA performed on either

set of variants.

Although the top PCs of the PCA performed on the different

pruned MAF sets appear to be strongly correlated to region of

origin (as shown by the extreme P-value of the ANOVA

comparing PC values per region on Table S6), supervised analysis

with Admixture (see Methods) fails to correctly assign individuals

to their reported geographic region of origin. For most of the

individuals, there are strong ambiguities regarding the regions they

belong to (Figure S6) and the estimated posterior probabilities to

belong to their true region are very low (Figure S7). The different

sets of variants give similar results, although common variants

perform slightly better. Indeed, among the 1,458 UKBS controls,

the number of individuals assigned to their correct region with a

posterior probability greater than 50% are respectively 166

(11.39%), 102 (7.00%) and 132 (9.05%) for common, low

frequency and rare variants. To determine if the better perfor-

mances of Admixture on common variants could be explained by

the fact that they outnumber the rare and low frequency variants,

we also run Admixture on the disjoint subsets of 11,848 common

SNPs and found that indeed the number of individuals assigned

correctly to their region decreases (119 to 139 depending on the

Figure 1. Flowchart showing the different QC steps and the number of SNPs in the different MAF categories.
doi:10.1371/journal.pone.0046519.g001

Figure 2. Distribution of the number of rare (A) and low frequency (B) variants shared by several regions.
doi:10.1371/journal.pone.0046519.g002
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subset; i.e. 8.16% to 9.53%). The proportions of correctly assigned

individuals also vary between regions, with regions R11 (Wales)

and R12 (Scotland) showing better performance than the others.

This could probably be explained by their more isolated

geographic locations but it is also possible that the recorded

regions of origin are not an accurate reflection of ancestry within

the UK.

Impact of the stratification of the different sets of
variants on association tests

Geographical structure in UK datasets, if not well accounted

for, could lead to an inflation of the number of false positive

associations. This inflation is obvious for rare variants in the

simulated scenario of strong stratification where a larger propor-

tion of individuals from region R12 are assumed to be cases (0.55

Figure 3. PCA for the different pruned MAF sets. The mean of PC1 and PC2 scores (top row) and of PC2 and PC3 scores (bottom row) in each
region are plotted considering the common variants, the low frequency variants and the rare variants.
doi:10.1371/journal.pone.0046519.g003

Table 1. Correlation (R2 values) between the first two PCs (PC1.x and PC2.x) obtained on the different subsets of variants
(x = ‘‘common’’, ‘‘lowfreq’’ or ‘‘rare’’).

PC1.common PC2.common PC1.lowfreq PC2.lowfreq PC1.rare PC2.rare Top10.common Top10.lowfreq Top10.rare

PC1.common 1.00 0.00 0.14 0.44 0.00 0.07 1.00 0.59 0.13

PC2.common 1.00 0.50 0.12 0.01 0.19 1.00 0.63 0.43

PC1.lowfreq 1.00 0.00 0.03 0.31 0.67 1.00 0.65

PC2.lowfreq 1.00 0.00 0.00 0.57 1.00 0.00

PC1.rare 1.00 0.00 0.02 0.04 1.00

PC2.rare 1.00 0.28 0.31 1.00

The last three columns Top10.x give the cumulative R2 values over the top 10 PCs to show how each PC.x in line is captured by the combined top 10 PCs of the different
subsets.
doi:10.1371/journal.pone.0046519.t001
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from region R12 versus 0.40 from region R11) and compared to

control individuals more often sampled in region R11. The

genomic control lambda values lGC of the tests without correction

are then respectively 1.006, 1.058 and 2.1928 for the common,

low frequency and rare categories (Table 2). When the rare variant

category is further subdivided into very rare (MAF#0.005) and

less rare (MAF.0.005), we see that the inflation is larger for the

rarest variants with respective lGC for these two categories of

2.193 and 1.121 for the unadjusted test. As expected, the

Cochran-Mantel-Haenszel (CMH) test that accounts well for the

bias introduced by stratifying on the 2 regions shows lGC values

closer to one on the different sets of variants even if these lGC

values still remain slightly inflated for the low frequency variants

(lGC = 1.023) and more strongly inflated for the rare variants

(1.802 for the entire set and 1.103 for the one with MAF .0.005).

When the tests are adjusted on the PCs, lGC values are decreased

compared to the unadjusted tests and tend towards those observed

for the CMH test. When adjustment is performed on 10 PCs, the

lGC values are slightly smaller than those of the CMH and this

might indicate some over-adjustment. No major differences are

seen whether the adjustment is performed with PCs computed

using the pruned MAF sets corresponding to the tested variant or

not. Moreover, the mixed model implemented in EMMAX

provides good results for the common category but leads to

inflation factors very similar to the uncorrected test for low

frequency and rare variants and thus slightly worse than the PC-

based corrections. In the more realistic scenario where association

with type 2 diabetes is tested, we also observe that the lGC values

of PC adjusted tests are very similar when PCs are computed on

variants with the same allele frequencies as the ones tested or on

variants with different frequencies (Table S8). Focusing on rare

variants, we see that the most extreme p-values are found in the

same regions with the different tests and are very similar to the p-

values of the unadjusted test except for the CMH test with p-values

one order of magnitude smaller (Figure S8).

Discussion

With the development of next-generation sequencing technol-

ogies, investigators will soon be able to study the impact of rare

variants on complex traits. Methods have been developed to test

for association between rare variants and disease in case-control

datasets: for reviews, see [39,40]. Most of these methods assume

that samples are homogeneous and not stratified in subpopula-

tions. Previous studies on common variants have shown that such

an assumption is unrealistic and that it is necessary to properly

account for population stratification in case-control association

tests to avoid false positive findings [9,41]. If the population

stratification of common variants has been extensively studied on

empirical data, this is not the case for rare variants. Intuitively, one

would expect the stratification issue to be more problematic for

rare variants than for more common ones as these rare variants

are more likely to cluster in particular geographic regions. Using

the WTCCC1 control data, we show that indeed several rare

variants are only found in one or a few of the 12 UK regions and

that there is no strong correlation between the axes of variation of

allele frequencies observed in the UK for rare and more common

variants.

Indeed, when performing a principal component analysis on the

different sets of variants determined based on their MAF, we

Table 2. Genomic control coefficient lambda lGC obtained for the different tests of association performed on the simulated
scenario of stratification in regions R11 and R12.

Within the Rare set

Common LowFreq Rare MAF, = 0.005 MAF.0.005

CMHa 0.993 1.023 1.802 1.802 1.103

Rawb 1.006 1.058 2.193 2.193 1.121

common.2c 0.993 1.042 2.072 2.137 1.067

common.3 0.993 1.042 2.052 2.129 1.066

common.4 0.990 1.048 1.927 2.053 1.104

common.10 0.978 1.027 1.675 1.880 1.100

lowfreq.2 0.995 1.044 1.969 2.085 1.072

lowfreq.3 0.995 1.041 1.945 2.044 1.064

lowfreq.4 0.992 1.033 1.922 2.022 1.071

lowfreq.10 0.980 1.012 1.767 1.931 1.112

rare.2 0.993 1.040 2.085 2.152 1.089

rare.3 0.991 1.043 2.081 2.143 1.090

rare.4 0.989 1.032 1.960 2.074 1.081

rare.10 0.974 1.014 1.858 2.013 1.072

EMMAX.commond 1.001 1.052 2.182 2.182 1.115

EMMAX.lowfreq 1.001 1.052 2.182 2.182 1.115

EMMAX.rare 1.000 1.048 2.165 2.180 1.114

aCochran-Mantel-Haenszel test accounting for the 2 different regions.
bTest not corrected for population stratification.
cTest corrected for population stratification using different number of PCs computed on different pruned MAF sets (i.e.; common.2 means that the PCs were computed
on the common varint sets and 2 the test is adjusted on 2 such PCs).
dTest performed using the mixed model implemented in EMMAX with the relatedness matrix computed either on the common, low frequency or rare variant sets.
doi:10.1371/journal.pone.0046519.t002
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found that the top PCs are poorly correlated. This result is in

discrepancy with the one reported by Heath et al. [5] using data

on 5,847 individuals originating from 13 countries across Europe.

In their study, the authors compared the top PCs obtained when

principal component analyses were performed using a panel of

8,412 low frequency SNPs with a MAF of less than 5% and using a

panel of 8,734 common SNPs with a MAF greater than 0.485.

They found that these two panels of markers gave the same overall

pictures with the first two PCs showing very strong correlations

above 0.8. This is not the case in our data where individual PCs

computed on the different pruned MAF sets are poorly correlated.

Differences between our study and that of Heath et al. [5] could

first be explained by the fact that the SNPs studied are different

and the Affymetrix 500K SNP-chip used here is more enriched in

rare variants than the Illumina 317k used by Heath et al. The

populations studied are also different and so is the extent of genetic

variation in these populations. Indeed, there are more variations at

the scale of the entire Europe than at the scale of the UK and the

top PCs on the European data explain more of this variation than

our top PCs. If individual PCs computed on one set of variants

were poorly correlated to individual PCs computed on another set,

some stronger correlations were observed when considering

several PCs together. This was true especially for the low

frequency set since PCs from this set were well explained by a

combination of several PCs from the common or the rare variant

sets. On the other hand, results were not improved for PC1 from

rare variants that was not explained by any combination of PCs

extracted from common or low frequency variants. Since this PC1

explains much more variance than the first few PCs extracted from

the other datasets and than PC2 from the rare variants, we believe

it could in fact capture an important axe of variation of rare

variants, although we cannot exclude this might be due to some

genotyping problems or batch effects we tried to avoid as much as

possible by using very stringent QC criteria. It is also interesting to

note that the PC1 values from rare variants were not differentially

distributed over the different regions, indicating that this

component captures a stratification that is not well correlated

with the UK regions. However, it is also possible that part of the

effect could in fact be due to the fact that, in the PCA, an allele

frequency weighted coding was used for each SNP that assigns

higher weights to rare variants and that could inflate genotyping

error effects of rare variants. Indeed, when the analysis was redone

without allele frequency weighting, we found that the first two PCs

were inverted with PC1 being now differentially distributed over

the geographic regions and PC2 no longer showing this

differentiation.

Since the top PC values calculated on the different sets of

markers are all significantly different between the 12 UK regions,

except for PC1 from rare variants, one could wonder whether it

would be efficient to use principal component analysis to cluster

individuals and then perform stratified analyses to test for

association. Such a strategy for association testing where

individuals are first clustered using the genetic information and

then stratified association tests are performed was first proposed by

Pritchard et al. [42] using the efficient model-based clustering

method implemented in STRUCTURE [15]. More recently,

several other clustering methods based on distances computed

from genetic data [21,22,43,44,45,46] have been proposed. To

determine if such a strategy could indeed be useful when testing for

association with lower frequency variants, we used Admixture to

determine how well the region of origin of the controls could be

inferred from the SNP data. We found that overall the predictions

are not very good, but that they are similar whatever the MAF

category. This could be due to the fact that the reported regions of

origin are not very accurate or it could indicate that the SNP data

are not informative enough to clearly cluster individuals within the

UK. Indeed, a single cluster is the best solution when running

Admixture on the whole panel of controls (data not shown).

Results on type 2 diabetes also tell us that it is not easy to adjust

for stratification in rare variant association tests. Since the PCs

computed on common and rare variants were poorly correlated,

one would have expected to see an improvement when adjusting

on PCs computed from rare variants as compared to PCs

computed from common variants. This was not the case however

even when the level of stratification was strong as in the extreme

stratification scenario that we simulated. Interestingly, mixed

models did also no better than simple PC-based corrections for

rare variants. Since these models have been shown to better adjust

for stratification of common variants, especially in the presence of

remote relatedness between individuals, one could have expected

an improvement for rare variants. Indeed, remote relatedness

might be a concern when studying rare variants since carriers of a

same rare allele are likely to be more related than random

individuals. Recently, Mathieson and McVean [47] reached

similar conclusions regarding the difficulty to adjust for rare

variant stratification in association tests using existing methods.

Their results combined to ours emphasize the need for method-

ological developments to better account for rare variant stratifi-

cation patterns in association tests. It should be noted however that

in our study we did not explore the impact of population

stratification on gene-based variant collapsing methods that are

often used to test for association with rare variants. It is possible

that these methods could be more robust to stratification but we

could not study them as the number of rare variants within each

gene present on the SNP-chip was too small.

A major concern in our study is the fact that the rare variants we

considered here might not be very representative of rare variants

that would be discovered through resequencing studies. Indeed, to

be included in the SNP-chip, these variants need to have been

observed on other samples than the one investigated here and we

are therefore not investigating the lower tail allele frequency

spectrum. The number of rare variants investigated is also much

reduced as compared to what will be found in resequencing studies

and the investigation of population stratification based on such a

small number of variants might not be very reliable. We could also

not exclude the possibility that genotyping errors could have

obscured regional membership assignment especially for the rare

variants that are more prone to genotyping errors than more

common ones. The current dataset was not ideal to answer the

question raised and our observations will thus need to be

confirmed on other more appropriate datasets. With the

increasing availability of sequence data, it will soon be possible

to perform a study similar to ours using rare variants discovered

through direct resequencing. Nevertheless, we believe it is

important to evaluate rare variant stratification at this stage and

using the available empirical data to guide researchers in the

planning of their future studies using next-generation sequencing

technologies.

Methods

Quality Control
Stringent quality control (QC) was performed in several steps.

First, each dataset was treated separately and only SNPs with an rs

number and genotypes with a calling probability .0.99 were kept.

Second, SNPs were eliminated if their call rates were lower than

0.99 in any of the three samples or if their genotype distribution in

the two control datasets was significantly different from the one

Rare Variant Stratification in Association Tests
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expected under Hardy-Weinberg proportions (p-value,1028).

Finally, only the SNPs retained in all three samples were kept,

giving a total of 319,276 SNPs post-QC. No specific QC was

performed on the individuals as the 4,862 individuals considered

here were the ones selected in the WTCCC1 study after QC.

Patterns of stratification in the control datasets
Homogeneity between the two sets of controls (58BC and

UKBS) was first tested for each MAF category using a 1 degree of

freedom (d.f.) Mantel-extension test of the difference in MAF

between subjects from the 58BC and UKBS collections, stratified

by the 12 broad regions of the United Kingdom. Homogeneity of

the two control datasets was assessed by the Genomic Control

lambda [13], lGC, which is the ratio of the median of the observed

chi-square values over the expected median of a 1-df chi-square.

To study the stratification between the 12 UK regions, the two sets

of controls were pooled and homogeneity between the 12 regions

was tested using an 11-df chi-square test. Significance was

evaluated by permutations as implemented in Plink [48](http://

pngu.mgh.harvard.edu/,purcell/plink/). In the absence of het-

erogeneity, the observed p-values are uniformly distributed, and

the quantity 22*log(observed p-value) follows a 2-df chi-squared

[49]. We therefore introduced a measure of overdispersion

(referred to as genomic inflation coefficient) for each MAF

category, lr. Similarly to the Genomic Control lambda [13], lr

is the ratio of the median of 22*log(observed p-value) over the

expected median of a 2df chi-squared distribution.

In a next step, the SNPs in each MAF category (‘‘common’’,

‘‘low frequency’’ and ‘‘rare’’) were first pruned on Linkage

Disequilibrium (Plink options: ‘‘indep-pairwise 50 5 0.2’’).

Principal component analysis of the genotype data using

SmartPCA from the Eigensoft package [18,50](http://genepath.

med.harvard.edu/,reich/EIGENSTRAT.htm), was performed

on the three pruned MAF sets and the correlation between the

top principal components (PC) obtained in these different analyses

were computed.

To determine how much of the regional geographic information

can be inferred from the genetic data, the Admixture software [51]

(http://www.genetics.ucla.edu/software/admixture) was used to

impute the region of the UKBS controls, assuming the region of

origin of the 58BC controls was known. This supervised analysis

was carried out for each MAF category with the same pruned

MAF sets as for the PCA.

Impact of the stratification of the different categories of
variants on association tests

The impact of rare variant stratification on the results of case-

control association studies was evaluated in an extreme scenario of

stratification where cases and controls were sampled from regions

R11 and R12 in different proportions. Among the 146 individuals

from region R11, 59 (40.4%) were assigned cases and the

remaining individuals were assigned controls and among the 273

individuals from region R12, 150 (54.9%) were assigned cases and

the remaining individuals were assigned controls. First a Cochran-

Mantel-Haenszel (CMH) test accounting for the 2 different regions

(as implemented in Plink with p-values estimated by case-control

status permutations within each stratum) was performed in each

MAF category. Since this test adjusts exactly on the confounding

factor introduced in the analysis, we used it as reference to assess

the performances of the other tests. Second, the association test

statistics in each MAF category were calculated either ignoring the

stratification or after adjusting on the PCs derived from the PCA

described above, using eigenstrat from the Eigensoft package

[18,50]. Third, the mixed model implemented in EMMAX [28]

was used with relatedness matrix computed using the different sets

of variants. Genomic control lambdas lGC were computed from

the observed chi-squared distributions or after transforming the p

values obtained from EMMAX into a chi-square with one degree

of freedom.

Finally, a more realistic scenario where the type 2 diabetes cases

were compared to all the controls was also investigated with the

same methods except for the CMH test that was stratified on the12

regions instead of 2.
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