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Abstract

Although molecular classification brings interesting insights into breast cancer taxonomy, its implementation in daily clinical
care is questionable because of its expense and the information supplied in a single sample allocation is not sufficiently
reliable. New approaches, based on a panel of small molecules derived from the global or targeted analysis of metabolic
profiles of cells, have found a correlation between activation of de novo lipogenesis and poorer prognosis and shorter
disease-free survival for many tumors. We hypothesized that the lipid content of breast cancer cells might be a useful
indirect measure of a variety of functions coupled to breast cancer progression. Raman microspectroscopy was used to
characterize metabolism of breast cancer cells with different degrees of malignancy. Raman spectra from MDA-MB-435,
MDA-MB-468, MDA-MB-231, SKBR3, MCF7 and MCF10A cells were acquired with an InVia Raman microscope (Renishaw)
with a backscattered configuration. We used Principal Component Analysis and Partial Least Squares Discriminant Analyses
to assess the different profiling of the lipid composition of breast cancer cells. Characteristic bands related to lipid content
were found at 3014, 2935, 2890 and 2845 cm21, and related to lipid and protein content at 2940 cm21. A classificatory
model was generated which segregated metastatic cells and non-metastatic cells without basal-like phenotype with a
sensitivity of 90% and a specificity of 82.1%. Moreover, expression of SREBP-1c and ABCA1 genes validated the assignation
of the lipid phenotype of breast cancer cells. Indeed, changes in fatty acid unsaturation were related with the epithelial-to-
mesenchymal transition phenotype. Raman microspectroscopy is a promising technique for characterizing and classifying
the malignant phenotype of breast cancer cells on the basis of their lipid profiling. The algorithm for the discrimination of
metastatic ability is a first step towards stratifying breast cancer cells using this rapid and reagent-free tool.
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Introduction

Despite the reduction in mortality in breast cancer patients due

to earlier diagnosis and implementation of adjuvant chemo- and

hormone therapies, breast cancer is still the commonest cause of

cancer death in women worldwide [1]. Many factors and genes are

involved in the initiation of breast cancer, but mortality is due to

metastatic disease [2]. Patients who go on to develop life-

threatening metastases in the visceral tissues have a much higher

mortality rate and shortened life expectancy [3], [4].

Although the different biological behaviors and metastatic

patterns observed among the distinct breast cancer phenotypes

may suggest different mechanisms of invasion and metastasis, the

biological features of breast tumors have proven insufficient for a

comprehensive description of progression at first diagnosis, due to

the heterogeneity of the disease [5]. The datasets available use

specific genomic alterations to define subtypes of breast cancer [6].

However, the large number of genetic alterations present in tumor

cells complicates the discrimination between genes that are critical

for maintaining the disease state and those that are merely

coincidental [7]. Thus, although molecular classification provides

interesting insights into breast cancer taxonomy, its implementa-

tion in clinical care is questionable because it is too expensive to be

introduced in daily pathological diagnosis, and because the

information supplied is of insufficient reliability in single sample

allocation [8].

Many observations during the early period of cancer biology

research identified metabolic changes as common features of

cancerous tissue, such as the Warburg effect [9], [10]. New

approaches based on a panel of small molecules derived from the

global or targeted analysis of metabolic profiles of cells are being

developed to link cancer and altered metabolisms and to

characterize cancer cell–specific metabolisms [11], [12]. One of
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the clearest signals is the de novo production of fatty acids in tumor

cells associated with cancer progression, linked to an increased

need for membranes during rapid cell proliferation as a part of a

more general metabolic transformation, which provides cancer

cells with autonomy in terms of their supply of building blocks for

growth [13]. This metabolic change occurs as a result of common

oncogenic insults and is mediated by the activation of multiple

lipogenic enzymes affected at all levels of regulation, including

transcription, translation, protein stabilization and protein phos-

phorylation [14]–[][16]. Activation of de novo lipogenesis correlated

with a poorer prognosis and shorter disease-free survival for many

tumor types [17], [18]. A low ratio of TUFA/TFA has been

proposed as a molecular marker for these aggressive tumors, which

is called the lipogenic phenotype. The pathway that regulates

synthesis of fatty acid in normal and tumor cells shares identical

downstream elements including the SREBP-1c (transcriptional

regulator sterol regulatory element-binding protein-1) and LXR

(liver X receptor) [15], [19]. We hypothesized that the lipid

content of breast cancer cells might be an indirect measure of a

variety of functions coupled to breast cancer progression, and that

it could discriminate between different genetic features of breast

cancer cells, providing new information on the aggressiveness of

their phenotype.

To explore the lipid phenotype associated with breast cancer

malignancy we used Raman microspectroscopy (RS). RS is an

optical technique that utilizes molecular-specific, inelastic scatter-

ing of photons to interrogate biological material [20]. When a

sample is illuminated with an optical beam, a small fraction of the

photons is inelastically scattered by the intramolecular bonds

present. When this occurs, the photon donates energy to, or

receives energy from, the molecule, producing a change in the

molecule’s vibrational state. When it subsequently exits the

material, the photon has an altered energy level and, therefore,

an altered wavelength. This change in the photon’s energy is

known as the ‘Raman shift’ and is measured in wavenumbers.

Photons interacting with different biochemical bonds undergo

specific Raman shifts, which, considered together, form the

‘Raman spectrum’, a plot of intensity against the Raman shift

and a direct function of the molecular composition of the material

studied. When applied to biological tissue, the technique can

distinguish between pathologies based on the differences in their

biochemical makeup [21]. RS is a rapid, reagent-free and non-

destructive alternative for the analysis of cell biology systems [22].

Recent advances in Raman spectroscopy have given way to a wide

range of biomedical applications including cancer. Its ability to

detect variance related to DNA/RNA, proteins, and lipids have

made it an excellent tool for quantifying changes on the cellular

level, as well as differentiating between various cell fingerprints

over all the Raman spectral range. The collection of spectra can be

performed in vitro, ex vivo or in vivo without disrupting the cellular

environment [23]. This is a major advantage of Raman

spectroscopy, as most biological assays utilize chemical biomarkers

and often require conditions nonnative to the biological environ-

ment.

Usually, Raman spectra of biological samples are highly

complex, and so mathematical processing of the spectroscopic

data is required to obtain objective information. Multivariate

techniques reduce the dimensionality of the spectral data and

allow extraction of useful, objective and less complex information

[24], [25]. We used Principal Component Analysis (PCA) [26] and

Partial Least Squares Discriminant Analyses (PLS-DA) [27] to

assess the different profiling of the lipid composition of breast

cancer cells, which permitted differentiation of the lipogenic

phenotype according to the proportion of unsaturated fatty acids.

Moreover, PCA clearly distinguished cells with the epithelial-to-

mesenchymal transition (EMT) phenotype, which is widely linked

with breast cancer cell aggressiveness [28]. A discriminative model

was generated that segregates metastatic cells and non-metastatic

cells without basal-like phenotype with 90% sensitivity and 82.1%

specificity.

Materials and Methods

Cell culture and treatments
MDA-MB-435, MDA-MB-468, MDA-MB-321, SKBR3,

MCF7 and MCF10A cells were obtained from the American

Type Culture Collection. With the exception of MCF10A, all lines

were maintained under standard conditions in 1:1 (v/v) mixture of

DMEM and Ham F12 medium (DMEM/F12) supplemented with

10% fetal bovine serum (FBS), 1 mM pyruvate and 2 mM L-

glutamine in 5% CO2-95% air at 37uC in a humidified incubator.

MCF7 medium was supplemented with 0.01 mg/ml bovine

insulin. MCF10A was grown in DMEM/F12 medium supple-

mented with 5% horse serum, 1 mM pyruvate, 2 mM L-

glutamine, 0.01 mg/ml bovine insulin, 20 ng/ml EGF, 1 mg/ml

hydrocortisone and 100 ng/ml Tetanus toxine, in the same

incubator conditions described above. The treatment with the

LXR agonist T0901317 (Cayman Chemical Company, Michi-

gan), dissolved in DMSO, was performed at 2 mM final

concentration (controls were treated with DMSO at the same

concentration).

Immunocytochemistry and labelling of cells
For immunocytochemistry 86104 cells were seeded in 24 well-

plates containing cover slips and were fixed after 24 h using cold

methanol for 1 min. MCF10A in sparse conditions was obtained

with 86103 cells/well. Cells were washed three times with PBS1x

and treated with PBS1x-5% FBS for 30 min at room temperature.

The antibodies used were: Vimentin, mouse anti-human (Dako,

Atlanta); E-cadherin, mouse anti-human (BD Biosciences, NJ).

Antibodies were diluted 1:50 in PBS1x-1% FBS and used for 1 h

at room temperature. After three washes with PBS1x the

secondary antibody, Alexa 555 anti mouse IgG (Life technologies,

NY) was used diluted 1:1000 in PBS1x-1% FBS for 30 min at

room temperature. After three washes with PBS1x the cover slips

were mounted on slides using Vectashield (Vector laboratories,

Burlingame) with DAPI for nucleus visualization. Preparations

were analyzed with an Olympus BX60 fluorescence microscope

(Olympus, Japan), using the optimal filters and 406magnification.

For Nile Red and filipin staining 86104 cells were seeded in 24

well-plates containing coverslips and 24 h later cells were fixed

with 4% cold paraformaldehyde (PFA) in PBS1x for 15 min. After

fixing, cells were washed three times with PBS1x and stained with

Nile Red at a final concentration of 1 mg/ml for 1 h, or filipin at a

final concentration of 50 mg/ml for 2 h. Coverslips were then

mounted as described above (filipin staining without DAPI) and

analyzed with the confocal microscope (Leica TCS SP5, Wetzlar,

Germany) for Nile red and the Olympus BX60 fluorescence

microscope for filipin, with 406magnification.

Raman spectroscopy
For analysis, 36105 cells were used, and for MCF10A cells in

sparse conditions 36104 cells were used. For measurements in the

2820–3030 cm21 range, cells were seeded in Petri dishes with #0

coverglass (Mattek, Ashland, MA). After 24 h, cells were treated as

indicated for Nile red staining.

The Raman system Renishaw (Apply Innovation, Gloucester-

shire, UK) comprises a 514 nm laser that supplies an excitation

Raman Spectroscopy in Breast Cancer
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beam of about 10 mW power, which is focused onto the sample

via a microscope with 606 objective (Edmund, York, UK). The

same objective collects the scattered light from the sample and

directs it to the spectrometer. The spectrometer processes this

scattered light, by rejecting the unwanted portion and separating

the remainder into its constituent wavelengths. The Raman

spectrum is recorded on a deep depletion charge-coupled device

(CCD) detector (Renishaw RenCam). The recorded Raman

spectrum is digitized and displayed on a personal computer using

Renishaw WiRE software which allows the experimental param-

eters to be set.

The spectra were background subtracted with a custom-written

Labview program and the Gaussian fits for total fatty acids (TFA)

and total unsaturated fatty acids (TUFA) bands (2845 cm21 and

3015 cm21 respectively) were performed in Matlab allowing the

quantification of the two types of fatty acids in the cytoplasm [20].

Statistical analysis
Raman spectroscopy is a promising technique in biomedical

studies due to its non-invasive character and high specificity but

Micro-Raman spectra of biomedical samples are inherently

complex and weak. The use of multivariate analysis can improve

their applicability and extract the useful information that Raman

spectroscopy can provide to biomedicine.

In this study two multivariate techniques: Principal Component

Analysis (PCA) and Partial least square-discriminant analysis (PLS-

DA) were performed over the pre-processed Raman spectra in

order to evaluate the spectral differences between the cancerous

cell lines studied and to develop a model allowing their

discrimination and classification.

PCA operates in an unsupervised manner (no previous

knowledge of the samples under study is provided) and finds an

alternative set of coordinates, the principal components, (PCs) to

reduce the dimensionality and complexity of the data set. All the

spectra can then be explained in a much simpler fashion through a

small number of PCs that accounts for the maximum variance in

the data. In a PCA model, the matrix containing the set of spectra

(X) is decomposed into two smaller matrices (the scores (T) and the

loadings (P)): X = TPT+E where E is the residual explaining non-

useful information that could not be explained by the multiplica-

tion of the scores and the loadings for each spectrum. By plotting

the first Principal Components scores, relations between samples

(grouping) are revealed. In addition, plotting loadings as a function

of the wavenumbers reveal the most important diagnostic variables

or regions in the spectra related with the differences found in the

data set.

PLS-DA is a supervised classification method in which

knowledge of the sample (in our case, malignant or benign

phenotype) is included. PLS-DA employs the fundamental

principle of PCA but further rotates the component (latent

variables, LVs) by maximizing the covariance between the spectral

variation and group affinity so that the LVs explain the

diagnostically relevant variations rather than the most prominent

variations in the spectral dataset. In this study, the performance of

the PLS-DA diagnostic algorithm was validated using the venetian

blinds cross validation methodology with eight data splits. The

number of retained LVs was determined based on the minimal

root mean square error of cross validation (RMSECV) curves, and

finally six were taken.

Multivariate statistical analysis was performed using the PLS

toolbox (Eigenvector Research, Wenatchee, WA) in the Matlab

(Mathworks Inc., Natick, MA) programming environment. SPSS

(Statistical Package for the Social Sciences) for Windows was used

for the statistics of TFA and TUFA quantification. In all the

analyses, differences were considered significant when student’s

‘‘t’’ was lower than 0.05.

Before including Raman spectra in the multivariate statistical

techniques, correct preprocessing must be performed. In this case,

background subtraction was achieved with a Matlab and Labview

algorithm [29], and then normalization under all Raman spectra

was performed to correct for the different amplification in the

signal. This normalization can be based on the fact that the

spectral region used (the CH stretching region) can be considered

as the total biomass present in our confocal volume [30].

Real-time reverse transcription-PCR
Real-time reverse transcription-PCR (qRT-PCR) was per-

formed with gene-specific fluorescent SYBR Green probes

(Applied Biosystems, NY, USA) using a 7300 Real time PCR

system detection Instrument and the associated software (Applied

Biosystems), following the manufacturer’s instructions. Primers

were designed using Primer Express software (primer sequences

are available on request). We calculated relative changes by the

comparative CT method using cyclophilin A as the reference gene.

Each reaction was performed in triplicate.

Results and Discussion

The expression of lipid metabolic genes is correlated to
the metastatic ability of cells

The transcription factors SREBP-1c (transcriptional regulator

sterol regulatory element-binding protein-1) and LXR (liver X

receptor) maintain cholesterol homeostasis through complemen-

tary pathways of feedback inhibition and feed-forward activation

[15], [31], [32]. To assess their coordinated action in the lipid

phenotype of breast cancer cells, we explored the LXR pathways

in a set of breast cancer cells according to their malignant

phenotype including both non-metastatic and metastatic cells:

MCF7, which expressed hormone receptors like luminal A tumors;

SKBR3, a phenotype with amplifications of the ErbB2 oncogene;

MDA-MB-468, p53 mutated cells with basal-like phenotype; and

two different metastatic models: MDA-MB-435, with lung

metastasis tropism, and MDA-MB-231 with bone metastasis

tropism, both belonging to the basal-like phenotype (also called

post-EMT cells) [33]. We analyzed the expression of SREBP-1c,

gene target of LXR, and ABCA1, other direct LXR target gene

involved in cell cholesterol export [19]. Twenty-four hours after

treatment with 2 mM LXR agonist T0901317 (Figure 1A), the up

regulation of SREBP-1c was evident in the metastatic cells MDA-

MB-231 and MDA-MB-435 compared with non-metastatic cells:

the transcriptional induction of SREBP-1c was 20 times higher in

MDA-MB-231 and 17.4 times higher in MDA-MB-435. In

contrast, treatment with the agonist produced only moderate

increases in the expression of SREBP-1c in SKBR3 (2.9 times) and

MCF7 (3.6 times), and a decrease in MDA-MB-468 cells.

Moreover, the cholesterol related gene ABCA1 was increased in

MDA-MB-231 (6.8 fold) and MDA-MB-435 (8 fold) and

differently induced in non-metastatic cells (SKBR3 cells, 27 fold,

MCF-7, 2.4 fold, and MDA-MB-468, 1.3 fold). These results

showed the differences in regulation of lipid metabolism pathways

in breast cancer cells.

Like nutritional control, neoplastic lipogenesis is controlled

through the modulation of the expression and/or maturation

status of the transcription factor SREBP-1c, a crucial intermediate

of the pro- and anti-lipogenic actions of nutrients and hormones,

which stimulates fatty acid synthase transcription in normal and

malignant cells [32], [34]. In tumor cells, SREBP-1c expression

and/or maturation is constitutively driven by the aberrant

Raman Spectroscopy in Breast Cancer
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hyperactivation of these pathways in response to a variety of

oncogenic changes, including overproduction of growth factors

(GFs), ligand-dependent or independent hyperactivation of GF

receptors (GFRs), and loss of function of components of the

signalling cascade such as the phosphatase and tensin homologue

(PTEN), a potent tumor suppressor [35], [36].

SKBR3 cells, a classical ErbB2 amplified model, responded

against the LXR agonist with increased ABCA1 expression,

different to that of MDA-MB-468 cells which have two

populations with different degrees of EGFR expression [37],

displaying low response against the agonist. It is well known that

endogenous synthesized fatty acids increase the signal-to-noise

ratio in the HER1/HER2-driven progression of human breast

epithelial cells towards malignancy [13]. Malignant cells have

devised a mechanism to subvert the normal pathways for feedback

inhibition via the EGFRvIII and PI3K-dependent activation of

SREBP-1c [15]. SKBR3 overexpressed SREBP-1c at basal levels

by a factor of five with regard to MDA-MB-468 and metastatic

cells; therefore, LXR might respond to excess cellular cholesterol

by promoting ABCA1-dependent cholesterol efflux [31]. On the

other hand, in normal cells, PI3K activation is tightly controlled by

dephosphorylation of PIP3 by the phosphatase PTEN. Activity of

the pathway is deregulated in cancer through a variety of

mechanisms, including activating mutations in PI3K or PTEN

loss [38], [39]. Indeed, the role of cholesterol metabolism in cancer

Figure 1. Variability in lipid metabolic genes expression and FA composition in MDA-MB-231, MDA-MB-435, MDA-MB-468, MCF7
and SKBR3 cell lines analysed by Raman microspectroscopy. A) The gene expression of SREBP-1c and ABCA1 were examined after 24 h
treatment with the LXR agonist T0901317 2 mM compared to the basal conditions by RT and real-time PCR. The fold induction is represented over the
pointed line. Cyclophilin A gene was used for normalization. B) Simplistic representation of the progression status of breast cancer cells used in the
study: 1) MCF10A cells; 2) MCF7, SKBR3 and MDA-MB-468 and 3) MDA-MB-231 and MDA-MB-345. C) Above, brightfield image of MDA-MB-435 cells,
with an asterisk indicating the position of the measurements in the cytoplasm. 606magnification and 9 mW power were used. Down, fluorescence
microscopy image of MDA-MB-435 cells stained with Nile red. 406magnification was used. D) Measured raw Raman spectra of the cell lines where
the axes are intensity (in arbitrary units) versus Raman shift (cm21). MCF10A cells were also measured. The TFA (2845 cm21) and TUFA (3015 cm21)
bands are indicated with the arrows in the first spectra.
doi:10.1371/journal.pone.0046456.g001
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pathogenesis and its association with EGFR/PI3K signaling has

recently been described as a potential therapeutic target [15].

The inverse correlation between estrogen receptors in breast

tumors and genes involved in lipid storage is well known [40].

Indeed, MCF7 cells had the lowest induction of SREBP-1c and

ABCA1. In addition, the increased expression of SREBP-1c and

ABCA1 in the estrogen negative metastatic cell lines indicated that

both genes are functionally implicated in the most malignant

phenotype. Therefore, the pathogenesis of metastasis may include

the conjunction of both constitutive metabolic features: fatty acid

synthesis and cholesterol cell content.

The lipid phenotype characterized by Raman
microspectroscopy

To explore the lipid phenotype associated to breast cancer

malignancy we optimized the Raman microspectroscopy (RS)

system to acquire Raman spectra in the range of 2820–

3030 cm21, where TFA (2845 cm21) and TUFA (3015 cm21)

bands were located. In the analysis we included MCF10A cells as

benign breast tumor cells, unable to spread outside the basal

membrane, despite their basal-like phenotype (Figure 1B).

The cytoplasm lipids were measured by RS in a position near

the nucleus and outside the endoplasmic reticulum area, where the

Nile red staining showed major lipid concentration (see asterisk in

Figure 1C). Each spectrum line in Figure 1D represents the

Raman intensity versus the Raman shift measured in a single cell,

and illustrates the cell variability inside each cell line. The bands

corresponding to TFA and TUFA for individual cells were used to

quantify the TFA and the TUFA average content in each cell line

(Figure S1A and S1B). To obtain the relative quantities of

unsaturated fatty acids (% UFA) in each cell line, which indicate

the lipogenic phenotype, the values of individual cells followed by

the average of cell lines were calculated (Figure S1C). Low but

significant changes in the TFA bands intensities were found when

the cell lines were compared with the MCF10A cells (Student’s

‘‘t’’,0.0009). The TFA content was clearly highest in MDA-MB-

435 cells, followed by the MCF10A cells, and lowest in the SKBR3

cells. These results are in agreement with the increasing evidence

that lipid accumulation is a hallmark of aggressive cancer cells, and

is involved in the production of membranes for rapid cell

proliferation [41].

TUFA bands intensities were only significantly lower in MDA-

MB-468, SKBR3 and MCF7 cells when compared to MCF10A

cells (Student’s ‘‘t’’,0.04). Moreover, no significant differences

were found between MCF10A and the metastatic cells MDA-MB-

231 (Student’s ‘‘t’’ = 0.076) and MDA-MB-435 (Student’s

‘‘t’’ = 0.661) with regard to TUFA. The unsaturation ratio, and

not the TUFA value, is indicative of de novo lipogenesis and cell

malignancy. For this reason, the percentage of unsaturated fatty

acids in each cell line was calculated, but we did not observe

significant differences due to the high dispersion in the individual

cell values. The Student’s ‘‘t’’ scores for the cells compared to

MCF10A were: MDA-MB-435 = 0.179; MCF7 = 0.166; MDA-

MB-231 = 0.323; MDA-MB-468 = 0.148 and SKBR3 = 0.139.

Thus, the quantification of these two bands was not sensitive

enough to differentiate benign from malignant breast cancer cells.

The total amount of lipids was analyzed with an alternative

technique using Nile red staining (Figure S2). The red channel

showed mainly the membrane phospholipids (hydrophilic lipids)

and the green channel mainly the hydrophobic lipids (in yellow in

the merge image), which accumulated in the typical cytoplasm

storage vesicles derived from the endoplasmic reticulum compart-

ment (called lipid droplets). They contain mainly esterified

cholesterol and triglycerides [42]. The confocal images of lipids

showed similar results to the RS quantifications with the exception

of MDA-MB-468 cells, which showed the highest Nile red

intensity. As expected, this technique was less informative than

Raman for differentiating the cells. The green channel intensities

labeling the lipid droplets did not correspond to the TUFA

quantification obtained by Raman. MCF7 cells did not show lipid

droplets, but their RS quantification was similar to that of SKBR3

and MDA-MB-468 cells. The RS results might also lead us to

expect more droplets in MCF10A cells. The overestimation of

unsaturated lipid content in MCF7 and MCF10A cells using RS

may be due to differences in the lipid composition of the droplets

[41].

The idea that exacerbated lipogenesis provides immortalized

epithelial cells with a profound neoplastic growth and/or survival

advantage over those that maintain physiological levels of

endogenous fatty acid biosynthesis strongly suggests that some

lipogenic enzymes may work as metabolic intermediates of

oncogenesis by linking cellular anabolism and malignant transfor-

mation [43], [44]. Indeed, the level of fatty acid saturation

indicative of de novo lipogenesis decreased when LNCaP prostate

cancer cells were treated with soraphen A (a lipogenesis inhibitor)

[17].

To improve the information obtained with the lipid phenotype

measurements, we performed a PCA analysis using the 2820–

3030 cm21 spectral data to study the grouping and the

homogeneity of the sample distribution (Figure 2). PC1 and PC2

scores accounted for 47% and 39% respectively of the total

variance in the dataset. Raman band regions responsible for the

PC1 score discrimination were 3014, 2890 and 2848 cm21

(related to lipid content) and 2940 cm21 (related to lipid and

protein content). Raman band regions responsible for the PC2

score discrimination were 2846 cm21 (TFA) and 2935 cm21,

associated with the chain end –CH3 [45].

MCF7 and SKBR3 cells were grouped in the low PC2 region

and separated for high and low levels of the PC1 axis respectively.

In contrast, other cell lines like MCF10A and MDA-MB-435

appear to be more heterogeneous, spreading through a larger area

in the PC axes (Figure 2, left panel). Although Raman spectral

region 2900 to 3100 cm21 has been labeled the CH stretching

region [45] and therefore, contains bands common for many

biomolecules, we attempted to extract a hypothesis from the PCA

score plot. As lipids were included in both PC1 and PC2 loadings,

we interpret that SKBR3 and MCF7 had the lowest content.

MDA-MB-231 and MDA-MB-468 cells had intermediate lipid

content and MDA-MB-435 and MCF10A cells differed widely,

though it was always high. Our interpretation of the PC1 loading

was that it represents mainly TFA, and that lipid and protein cell

content were inversely correlated, because we had lipid bands in

positive and the 2940 cm21 band (which includes both lipids and

proteins) in negative. MCF7 and SKBR3 cells, with similar PC2

scores, had different PC1 values, suggesting different protein

content, higher in SKBR3.

The most prominent band included in the PC2 loading was

2935 cm21. No one substrate is clearly associated with the

2935 cm21 band due to the fact that many biomolecules contain –

CH3 side terminal groups. The 2846 cm21 band, also included in

PC2, corresponds to total fatty acids and we hypothesized a

contribution of cholesterol and cholesterol esters in the 2935 cm21

band, because it is a lipid with many –CH3 side terminal groups.

We also observed differences in the ABCA1 gene expression, and

differences in cholesterol have been associated to proliferation and

migration of breast cancer cells [40], [41], suggesting the

involvement of cholesterol in the malignant phenotype of the

cells studied.

Raman Spectroscopy in Breast Cancer
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We analyzed the cholesterol content of the cell lines using filipin

staining, which labels free (unesterified) cholesterol present in the

cytosol and membranes of cells. We found differences in the

content and distribution of free cholesterol between the cell lines.

MDA-MB-231, MDA-MB-468 and MDA-MB-435 cells presented

the highest cholesterol intensity, though with different distribu-

tions: in MDA-MB-231 and MDA-MB-468 it was accumulated in

large cytoplasm spots, whereas MDA-MB-435 cells mainly

presented cholesterol in the plasma membrane together with

some smaller spots in the cytosol (Figure S3). The levels of

cholesterol were also high in MCF10A but low in MCF7 cells.

SKBR3 cells had higher cholesterol content than expected, given

their localization in the PCA, but reinforcing our hypothesis that

their high ABCA1 gene expression occurs in response to an excess

in cholesterol content (see Figure 1A). Taken together, these results

suggested that cholesterol might be involved in the lipid differences

between metastatic and non-metastatic cells. Moreover, its

contribution in the PC2 loading may also include cholesterol

esters, not observed with filipin.

The lipid profiling of breast cancer cells distinguishes
metastatic ability from malignancy

In the second step, a PLS-DA was used to construct a

classification model. This is a supervised method, meaning that

prior knowledge of the class membership was included. First we

built a classification algorithm to discriminate between non-

metastatic non-basal-like (MCF7 and SKBR3) and metastatic

basal-like (MDA-MB-231 and MDA-MB-435) cell lines. Then, in

the ideal prediction model, the first group will have class 0 and the

second one class 1 (Figure 3). The PLS-DA model was carried out

over the pre-processed Raman spectra and a cross-validation was

performed in order to check the strength of the algorithm to

predict new samples. The method for cross-validation was

venetian blinds w/10 splits and the errors for the prediction and

cross validated model were RMSEC: 0.3 and RMSECV: 0.45

respectively, showing good stability for predicting new samples. A

good discrimination between metastatic and non-metastatic cell

lines was achieved with sensitivities and specificities of 92.5% and

97.4% for the calibration and 90% and 82.1% for the cross-

validation respectively. These results showed good accuracy in

Figure 2. PCA scores showing the cell variability present inside each cell line and between the different cell lines. Illustration of PCA
scores from MCF10A, MDA-MB-231, MDA-MB-435, MDA-MB-468, MCF7 and SKBR3 cell lines RS acquisition. SKBR3 cells are shown in the green circle
and MCF7 cells in the blue circle. MDA-MB-435 and MCF10A cells are the most dispersed in the plot. On the right, the loading plots for each Principal
Component, both related to fatty acid and protein content (TUFA: 3014 cm21; protein and lipid: 2940 cm21; TFA: 2871, 2890, 2846 and 2848 cm21;
-CH3: 2935 cm21). Percentages in the score plots represent the variance accounted for each PC.
doi:10.1371/journal.pone.0046456.g002

Figure 3. PLS-DA discriminative model using Raman micro-
spectroscopy spectra of non-metastatic (SKBR3 and MCF7) and
metastatic (MDA-MB-231 and MDA-MB-435) cell lines. PLSDA
classification algorithm, in which non-metastatic cells are predicted with
class 0 and metastatic cells with class 1. A threshold is assigned (red
line) corresponding to the best specificity and sensitivity parameters
that separate groups of cells. RMSECV is represented by the error bars.
A sensitivity of 90% and a specificity of 82.1% were achieved. Once the
model was built, MCF10A and MDA-MB-468 were included to predict
their membership. Seventy-five per cent of MCF10A and 40% of MDA-
MB-468 cells are related to the metastatic group.
doi:10.1371/journal.pone.0046456.g003
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discriminating metastatic ability of breast cancer cells, better than

those reported for the Raman spectral window (2,800–

3,100 cm21) comparing benign disease and breast cancer tissue

in vivo samples, which had specificity and sensitivity of 81.2 and

72.4, respectively [46].

We used the PLS-DA model to test the membership of

MCF10A and MDA-MB-468 cells, which were not included in

the groups (Figure 3). The result indicated that most of the

MCF10A cells were very similar to the metastatic group. Seventy-

five per cent of the MCF10A cells analyzed were predicted to

belong to the metastatic class (above the threshold). The rest of the

MCF10A cells were localised below the threshold. Following the

same criteria eight of the twenty MDA-MB-468 cells analyzed

(40%) were localized in the metastatic group and the rest in the

non-metastatic group. The PLS-DA model showed that MCF10A

and MDA-MB-468 cells had different basal-like phenotypes.

These results suggested that the classification algorithm might

discriminate two different basal-like phenotypes: MDA-MB-468

cells, common to a subgroup of MCF10A cells, and the MCF10A

cells, common to MDA-MB-231 and MDA-MB-435 metastatic

cells.

It has been described that MCF10A cells with basal-like

phenotype, which present many features of mesenchymal cancer

cell lines in sparse cultures, have intrinsic plasticity for undergoing

EMT, transition present in the most aggressive breast tumors with

a basal phenotype [28]. Since MCF10A cells were grown at low

confluence, we hypothesized that the similarities between

MCF10A and MDA-MB-435 cells in the PCA and between

MCF10A and the metastatic cells group in the PLS-DA might be

related to culture conditions. We performed Raman analysis in

sparse and in dense MCF10A cultures, and in cells growing at the

edge of dense cultures (Figure 4A). In the PCA (Figure 4B), PC1

had a prominent TUFA band contribution, and PC2 loading was

formed by three lipid bands: 3014, 2890 and 2845 cm21, and the

2935 cm21 band with inverse correlation. The PCA scores plot

clearly separated MCF10A and MDA-MB-435 cell lines: the

phenotype of the MDA-MB-435 cells was characterized by higher

lipid content (y axis) and lower TUFA (x axis). TUFA band

intensity (PC1, x axis) also distinguished between the MCF10A

Figure 4. Raman microspectroscopy and PCA differentiate the MCF10A cells grown in confluent and sparse conditions. A) MCF10A
microscopy images of the cells measured by RS in confluent and sparse conditions. Brightlight images were obtained with an inverted microscope
and 106 magnification. Arrows indicate the different areas that were measured by Raman (a: confluent; b: separate cells grown at the edge of
confluent cultures; c: sparse). B) PCA representation of MDA-MB-435 cells and MCF10A cells (grown in high confluence and in sparse conditions). PC 1
and 2 separate different groups of cell lines. MDA-MB-435 cells have higher PC2 scores, separated from the MCF10A. MCF10A grown in high
confluence are displaced from the ones grown in sparse conditions showing higher PC1 scores. Asterisk indicates the localization of the ‘‘lipogenic
phenotype’’ in the axis. PC1 and PC2 loadings are described down with the bands related to TFA (arrow head) and TUFA (arrow) indicated. The
percentage means the variance accounted for each PC. C) Immunofluorescence images of E-cadherin and vimentin proteins in both MCF10A culture
conditions. DAPI staining appears minimized inside each picture.
doi:10.1371/journal.pone.0046456.g004
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subtypes, being lower in the sparse area and higher in the

confluent area.

We also analyzed the EMT phenotype of MCF10A cells grown

in sparse and confluent conditions. As expected, like MDA-MB-

435, cells lost E-cadherin and expressed more vimentin in sparse

conditions (Figure 4C) than in confluence. These results confirmed

that the spectroscopical differences were secondary to phenotypic

changes and correlated well with malignancy; clearly the degree of

similarity between MDA-MB-435 and MCF10A cells depends

strongly on the culture conditions of MCF10A.

The expression in the set of breast cancer cells of E-cadherin,

CK18 and vimentin at the mRNA level, and E-cadherin and

vimentin at protein level as well, confirmed the close relationship

between the lipid phenotype and the EMT process (Figure 5).

MCF7 did not express vimentin protein and SKBR3 did so in less

than 5% of the cells (Figure 5B), similar to MDA-MB-468 cells.

These results suggested that in addition to metastatic ability the

PLS-DA model discriminated cells with basal-like phenotype that

undergo EMT (MCF10A) from basal-like cells with no EMT

(MDA-MB-468).

The combination of multivariate statistical techniques applied to

the Raman spectral data (PCA and PSL-DA analysis) provided a

powerful quantitative method to discriminate cancer phenotypes.

These mathematical methods used the whole range of the spectra

for the differentiation of the cells. Our results suggest that the lipid

phenotype of these cells is a signal of the proclivity to mesenchymal

transition related to the high aggressiveness and metastatic spread

[47]. EMT is an essential developmental process by which cells of

epithelial origin lose epithelial characteristics and polarity, and

acquire a mesenchymal phenotype with increased migratory

behavior. Thus, the characterization of this functional phenotype

of cancer cells with RS provides information on intercellular cell

adhesion, down-regulation of epithelial markers, up-regulation of

mesenchymal markers, acquisition of fibroblast-like (spindle)

morphology with cytoskeleton reorganization, increase in motility,

invasiveness, and metastatic capabilities [47]–[49]. The PSL-DA

model described discriminates luminal or HER-2 overexpressing

cells without EMT and post-EMT cells with a sensitivity of 90%

and a specificity of 82.1%. Aggressive cells with basal phenotype

(related to EMT plasticity) can also be differentiated, although it

may be necessary to include other spectral regions to increase the

sensitivity in the differentiation of metastatic and non-metastatic

basal-like cell phenotypes. Recently, it has been reported that the

analysis of human tumor gene expression profiles identifies triple

negative breast cancer subtypes with an overall false-positive rates

of 1.7%, 1.7%, and 0.9% for ER, PR, and HER2, respectively [50].

Breast cancer is a heterogeneous disease that includes a wide

range of histological subtypes and a diversity of clinical behaviors

and patient outcomes [51]. We used representative cell variants,

including different phenotypes of breast cancer cells: estrogen

receptor expression, ErbB2 amplification, p53 mutation and

aggressive metastasic. The molecular and cellular characterization

of their associated ‘lipid signatures’ by RS, combined with

multivariate statistical analysis, is a promising technique for

characterizing the malignant phenotype of breast cancer cells

and might provide a helpful adjunct to gene-expression profiling

or proteomics in the classification, diagnosis and prognosis of

human cancers. Using different spectral ranges of RS, similar

results have been obtained regarding the lower lipid content in

SKBR3 compared to MDA-MB-231 and -435 cells [52]. These

Figure 5. Epithelial and EMT marker gene expression in MCF7, SKBR3, MDA-MB-231, MDA-MB-468, MDA-MB-435 and MCF10A
cells. A) The gene expression of epithelial cell markers (E-cadherin, cytokeratin 18) and the mesenchymal cell marker vimentin were examined by RT
and real-time PCR using 200 ng of RNA. E-cadherin and CK18 are represented compared to the luminal MCF7 cell line expression and vimentin is
represented compared to the MDA-MB-231 cell line. Cyclophilin A gene was used to normalize gene expression. B) Immunofluorescence staining of
the epithelial E-cadherin and the mesenchymal vimentin markers in MCF7, MDA-MB-468, MCF10A, SKBR3, MDA-MB-231 and MDA-MB-435 cells. DAPI
staining appears minimized in each picture. 406magnification was used.
doi:10.1371/journal.pone.0046456.g005
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findings support the use of this technology in the study of the lipid

phenotype of cells, with possibilities to be used in experimental

tumors [46], [53] and in human samples to distinguish between

ductal carcinoma in situ and invasive ductal carcinoma of the

breast [54]. Serum samples have been used to discriminate

between breast cancer patients and healthy individuals; the bands

analyzed were statistically accepted as markers corresponding to

proteins, polysaccharides and phospholipids [55]. Moreover, the

identification of new spectral signatures expanding the RS window

may offer more accurate classification of cells for diagnostic

purposes, providing rapid, reagent-free and non-destructive

alternatives for the analysis of tumor samples.

Raman spectroscopy has shown promise for use as a clinical tool

for diagnosis of breast cancer. Optimization of spectral acquisition

times and spatial resolution for clinical use is an area which needs

further investigation. Studies of larger patient population samples

will be needed to establish comparisons between spectral makers

for breast cancer cells and pathological indicators that are used for

current diagnosis. Moreover, improvements on current data

analysis techniques, including the application of advanced data

mining methods, along with novel preprocessing techniques will

also be critical to introduce RS in the clinical practice.

Conclusions

Raman spectroscopy is a promising technique in biomedical

studies due to its non-invasive character and high specificity. The

lipid phenotype associated to breast cancer malignancy belongs to

Raman spectra adquired in the range of 2820–3030 cm21, where

TFA (2845 cm21) and TUFA (3015 cm21) bands were located.

The combination of multivariate statistical techniques, which use

the whole range of the spectra, applied to the Raman spectral data

(PCA and PSL-DA analysis) provided a powerful quantitative

method to discriminate cancer phenotypes. In addition, an

algorithm to differentiate metastatic from non metastatic and

non basal phenotype breast cancer cells was design using PLS-DA,

with 90% sensitivity and 82.1% specificity. Our results suggest that

the lipid phenotype of these cells is a signal of the proclivity to

mesenchymal transition related to the high aggressiveness and

metastatic spread, then the identification of new spectral signatures

expanding the RS window may offer more accurate classification

of cells for diagnostic purposes.

Supporting Information

Figure S1 Analysis of the lipid content in the breast
cancer cell lines using Raman microspectroscopy. A)

Total fatty acid (TFA) and B) total unsaturated fatty acid (TUFA)

Raman band intensity average in the cell lines is represented in

arbitrary units. C) Relative unsaturated fatty acid content is

represented as %. The average was calculated with the individual

cell ratio values. The lines and the p values (student’s ‘‘t’’) indicate

the significance between bars compared to the MCF10A values.

(TIF)

Figure S2 Analysis of the lipid content in the breast
cancer cell lines using Nile red staining and confocal
microscopy. Cells were fixed in 4% PFA and treated with Nile

red (1 mg/ml) for 1 h at room temperature and analysed as

indicated in material and methods. Hydrophilic fatty acids, mainly

phospholipids, are seen in the red channel. Hydrophobic fatty

acids, mainly cholesterol esters and triglycerides, are seen in the

merge image in yellow. DAPI staining labels the nuclei. 406
magnification was used.

(TIF)

Figure S3 Analysis of the cholesterol content in MCF7,
SKBR3, MDA-MB-231, MDA-MB-468, MDA-MB-435 and
MCF10A cells with filipin staining and fluorescence
microscopy. Cells were fixed in 4% PFA and treated with

filipin (50 mg/ml) for 2 h at room temperature and analyzed as

indicated in material and methods. Filipin labels free cholesterol

present in the membranes (arrow) and in the cytosol (arrow head).

406magnification was used.

(TIF)

Acknowledgments

We would like to thank Vanessa Hernandez and Patricia Gutierrez for

their expert technical assistance. We acknowledge Michael Maudsley for

expert language advice and Dr. Thomas Bocklitz for interesting discussions

about PLS-DA mathematical models.

Author Contributions

Conceived and designed the experiments: CN MM AS. Performed the

experiments: CN MM. Analyzed the data: CN MM AS. Contributed

reagents/materials/analysis tools: CN MM AS DP. Wrote the paper: CN

MM AS. Initial optimisation of Raman spectroscopy to cell analysis: NSC

SR.

References

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, et al. (2010) GLOBOCAN

2008 v1.2, Cancer Incidence and Mortality Worldwide. IARC CancerBase

Lyon, France: International Agency for Research on Cancer.

2. American Cancer Society: Cancer Facts and Figures 2010 (2010) Atlanta.

3. Sleeman J, Steeg PS (2010) Cancer metastasis as a therapeutic target.

Eur J Cancer 46:1177–1180.

4. Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS (2005) Breast cancer

metastasis to the central nervous system. Am J Pathol 167:913–920.

5. Rodenhiser D, Andrews JD, Vandenberg TA, Chambers AF (2011) Gene

signatures of breast cancer progression and metastasis. Breast Cancer Res

13:201–208.

6. Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, et al. (2012) A refined

molecular taxonomy of breast cancer. Oncogene 31: 1196–1206.

7. Brough R, Frankum JR, Sims D, Mackay A, Mendes-Pereira AM, et al. (2011)

Functional viability profiles of breast cancer. 1:261–273.

8. Kasaian K, Jones S JM (2011) A new frontier in personalized cancer therapy:

mapping molecular changes. Future oncology 7:873–894.

9. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to

current concepts of cancer metabolism. Nat Rev Cancer 11:325–37.

10. Bayley JP, Devilee P (2012) The Warburg effect in 2012. Curr Opin Oncol

24:62–7.

11. Simpson NE, Tryndyak VP, Beland FA, Pogribny IP (2012) An in vitro

investigation of metabolically sensitive biomarkers in breast cancer progression.

Breast Cancer Res Treat 133:959–68.

12. Hu H, Deng C, Yang T, Dong Q, Chen Y, et al. (2011) Proteomics revisits the

cancer metabolome. Expert Rev Proteomics 8:505–33.

13. Vazquez-Martin A, Colomer R, Brunet J, Lupu R, Menendez JA (2008)

Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine

kinase receptors in human breast epithelial cells. Cell Prolif 41:59–85.

14. Hilvo M, Denkert C, Lehtinen L, Müller B, Brockmöller S, et al. (2011) Novel
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