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Abstract

Clostridium perfringens, one of the most common causes of food poisonings, can carry the enterotoxin gene, cpe, in its
chromosome or on a plasmid. C. perfringens food poisonings are more frequently caused by the chromosomal cpe-carrying
strains, while the plasmid-borne cpe-positive genotypes are more commonly found in the human feces and environmental
samples. Different tolerance to food processing conditions by the plasmid-borne and chromosomal cpe-carrying strains has
been reported, but the reservoirs and contamination routes of enterotoxin-producing C. perfringens remain unknown. A
comparative genomic hybridization (CGH) analysis with a DNA microarray based on three C. perfringens type A genomes
was conducted to shed light on the epidemiology of C. perfringens food poisonings caused by plasmid-borne and
chromosomal cpe-carrying strains by comparing chromosomal and plasmid-borne cpe-positive and cpe-negative C.
perfringens isolates from human, animal, environmental, and food samples. The chromosomal and plasmid-borne cpe-
positive C. perfringens genotypes formed two distinct clusters. Variable genes were involved with myo-inositol,
ethanolamine and cellobiose metabolism, suggesting a new epidemiological model for C. perfringens food poisonings.
The CGH results were complemented with growth studies, which demonstrated different myo-inositol, ethanolamine, and
cellobiose metabolism between the chromosomal and plasmid-borne cpe-carrying strains. These findings support a
ubiquitous occurrence of the plasmid-borne cpe-positive strains and their adaptation to the mammalian intestine, whereas
the chromosomal cpe-positive strains appear to have a narrow niche in environments containing degrading plant material.
Thus the epidemiology of the food poisonings caused by two populations appears different, the plasmid-borne cpe-positive
strains probably contaminating foods via humans and the chromosomal strains being connected to plant material.
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Introduction

Enterotoxin gene-carrying (cpe-positive) Clostridium perfringens

type A is one of the most common causes of food poisoning in

the industrialized world, and the third leading cause of food

poisoning in USA [1]. Limited knowledge of the reservoirs and the

contamination routes of cpe-positive C. perfringens complicates the

prevention of C. perfringens food poisonings.

C. perfringens is an anaerobic ubiquitous spore-forming bacte-

rium, frequently present in the normal intestinal microbiota of

humans and animals. C. perfringens strains are classified into

different types (A–E) based on their expression of alpha, beta,

epsilon, and iota toxins [2]. C. perfringens can cause several

diseases in humans and animals due to the variety of toxins it

produces.

Fewer than 5% of C. perfringens type A strains carry the

enterotoxin gene cpe [3]. The cpe can be located in the bacterial

chromosome or on a large plasmid [4–6]. The chromosomal cpe is

flanked by an insertion sequence (IS) element IS1470 (cpe-genotype

IS1470) [4], whereas the plasmid-borne cpe is flanked by either the

IS1470-like or IS1151 element (cpe-genotypes IS1470-like or

IS1151) [6,5]. Until recently, only the chromosomal cpe-carrying

strains were associated with food poisonings [7]. This was

explained by their better tolerance to heating, low temperatures,

and preservatives than that of the plasmid-borne cpe-carrying

strains [8,9]. However, also the plasmid-borne genotypes were

found to cause food poisonings [10–12] and the cpe was carried on

a plasmid in 25% of food poisoning outbreaks investigated in

Finland and Germany [12].

Both chromosomal and plasmid-borne cpe-positive C. perfringens

genotypes were found in retail meat products [13,14], but the

contamination route remains unknown. The contamination of

meat by the intestinal contents of slaughtered animals has been

suggested to serve as the main source of cpe-positive C. perfringens

[15]. However, no successful isolations of cpe-positive C. perfringens

strains have been reported from healthy production animals [16–

18]; thus, the role of animals as the main reservoir of cpe-positive C.

perfringens has been questioned [18].

Humans are a rich reservoir for plasmid-borne cpe-carrying

strains [19,20] and were thus suggested to introduce a contam-

ination risk into foods through handling [18]. However, only a few

chromosomal strains were found in human feces [19]. Plasmid-

borne cpe-positive strains were also detected in soil and sediments
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[21,22]. For better prevention of C. perfringens food poisonings, the

reservoirs of the cpe-positive C. perfringens strains and the potentially

different epidemiology of C. perfringens type A food poisonings

caused by the chromosomal and plasmid-borne cpe-carrying strains

need to be elucidated.

Comparative genomic hybridization (CGH) with DNA micro-

arrays was performed to shed light on the epidemiology of the

chromosomal and plasmid-borne cpe-carrying and cpe-negative C.

perfringens type A strains of food, human, or animal origin. The

results of the CGH analysis were complemented with growth

studies, which demonstrated different metabolism between the

chromosomal and plasmid-borne cpe-carrying strains. The results

suggest different epidemiology of the cpe-positive C. perfringens

groups, which is relevant when designing prevention of C.

perfringens food poisonings.

Results

To assess genetic relatedness and possible metabolic differences

between the chromosomal and plasmid-borne cpe-positive and

cpe-negative C. perfringens strains, a DNA microarray was designed

based on three sequenced Clostridium perfringens genomes

ATCC13124, strain 13 and SM101. A wide collection of C.

perfringens strains (n = 83) from food and feces associated with food

poisonings, feces of healthy humans, feces of healthy production

animals, soil and sludge, were studied (Table S1). The strains

represented different cpe-positive genotypes and cpe-negative

strains, the latter including the reference strains ATCC13124

and 13 which were used as positive controls. A two-color labeling

system was used and the differently labeled DNA sample pairs to

be hybridized into one of the eight subarrays on each array slide

were randomly selected. Reproducibility of the hybridizations

was controlled by hybridizing 20 samples in duplicate and the

control strains in quadruplicate. The DNA samples of the

reference strains 13 and ATCC 13124 hybridized 99.9% with

their own gene probes. The putative metabolic differences

suggested by the CGH analysis were further confirmed by

metabolic tests using minimal growth medium. All strains tested

grew in the minimal medium with glucose as the sole carbon

source and failed to grow in minimal medium without any source

of carbon, demonstrating that the medium supported the growth

of C. perfringens.

The 54 cpe-positive C. perfringens type A strains formed two

distinct clusters, one consisting of the chromosomal cpe-carrying

genotypes and the other of the plasmid-borne cpe-carrying

genotypes (Figure S1). The similarity between strains, based on

Pearson’s correlation on a scale from 21 to 1, was 0.85 in the

chromosomal cpe group and 0.76 in the plasmid-borne cpe group.

The similarity between the two groups of cpe-positive C. perfringens

strains was 0.59 (Figure 1). When the 29 cpe-negative strains were

included in the analysis, the chromosomal strains still clustered

separately, and the plasmid-borne cpe-carrying strains and the cpe-

negative strains were evenly distributed in the other cluster. The

chromosomal cluster was homogeneous, whereas the cluster

consisting of plasmid-borne cpe-carrying or plasmid-borne cpe-

carrying and cpe-negative strains was more heterogeneous

(Figure 1).

In general, the plasmid-borne cpe-carrying strains shared more

CDSs (75,6%–87,4%) with the cpe-negative reference strains

ATCC 13124 and 13 than with the chromosomal cpe-carrying

reference strain SM101 (71,8%–84,4%) (Table 1). By contrast, the

chromosomal cpe-positive C. perfringens strains shared more CDSs

with the reference strain SM101 (86,2%-94,9%) than with the two

other reference strains (63,8%–81,4%) (Table 1). Altogether 372

CDSs were exclusively present in the plasmid-borne cpe-positive

strains, and 242 CDSs were exclusively present in the chromo-

somal cpe-carrying strains.

When the CDSs of the reference strains were divided into

functional groups based on J. Craig Venter Institute Comprehen-

sive Microbial Resource (CMR) annotations, the plasmid-borne

cpe-positive strains carried more CDSs than chromosomal strains

of all except two functional groups: transposable elements, and

protein synthesis and electron transport (Table S2). Marked

differences were present in the numbers of CDSs without specific

annotation (Table S2).

The major differences between the chromosomal and plasmid-

borne cpe-carrying strains were in the presence of the operons

related to myo-inositole and ethanolamine utilization; a gene cluster

encoding phosphotransferases and beta-glucanases, including

laminarinase and cellobiose phosphotransferase; and a gene

cluster encoding biotin synthesis.

All plasmid-borne cpe-carrying strains carried the myo-inositol

operon, whereas all chromosomal cpe-positive strains lacked this

operon (Figure 2, Table S4). Accordingly, all tested plasmid-borne

cpe-positive C. perfringens strains and none of the tested chromo-

somal cpe-positive strains utilized myo-inositol (Table S3). In the

reference strain ATCC13124, the myo-inositol operon is located in

the chromosome and consists of 13 CDSs (locus CPF0079–

CPF0092). iolR upstream of the cluster is predicted to encode a

divergent regulator.

All the 21 chromosomal cpe-carrying strains lacked the operon

predicted to encode ethanolamine utilization, whereas 23 of the

33 plasmid-borne cpe-carrying strains, including all strains

representing genotype IS1151-cpe and ten of 20 strains repre-

senting genotype IS1470-like-cpe, had this operon (Figure 2,

Table S4). Again, the result was verified by all tested plasmid-

borne cpe-positive C. perfringens strains and none of the tested

chromosomal cpe-positive strains utilizing myo-inositol (Table S3).

The ethanolamine utilization operon is found in the genomes of

the reference strains ATCC13124 and 13, and it contains 17

CDSs.

Nearly all (19 of 21) chromosomal cpe-carrying strains had a

gene cluster predicted to encode cellobiose phosphotransferase,

laminarinase, and beta-glucanases, whereas all plasmid-borne cpe-

carrying strains lacked this gene cluster. In support of the CGH

data, all the chromosomal cpe-positive strains tested utilized

cellobiose as the only carbon source (Table S3). Of the 12

plasmid-borne cpe-positive strains that lacked this gene cluster, nine

failed to grow in minimal medium with cellobiose as the sole

carbon source, and three grew in the minimal medium with

cellobiose despite lacking the gene cluster. The gene cluster

predicted to encode phosphotransferases and beta-glucanases

contains 11 CDSs and is located in the chromosome of the cpe-

positive SM101 (locus CPR2599–CPR2609) (Figure 2, Table S4).

Moreover, all chromosomal cpe-positive C. perfringens strains lacked

a gene cluster containing nine CDSs, of which bioB and bioD

encode biotin synthesis (locus CPF1787–1795 in ATCC 13124).

All 83 strains carried bioY (CPF1796), predicted to encode biotin

intake.

The genomic content of the cpe-negative strains resembled that

of the the plasmid-borne cpe-gene carrying strains. All cpe-negative

strains carried an operon for myo-inositol utilization, most (26 of

29) carried the operon encoding ethanolamine utilization, all

carried the gene cluster encoding biotin synthesis, and all lacked

the gene cluster encoding phosphotransferases and beta-

glucanases.

CGH Analysis of cpe-Positive C. perfringens Type A

PLOS ONE | www.plosone.org 2 October 2012 | Volume 7 | Issue 10 | e46162



Discussion

The chromosomal and the plasmid-borne cpe-carrying C.

perfringens type A strains differed in their gene composition and

clustered separately in the CGH analysis. The microarray results

were confirmed by functional metabolic studies. The main

differences were related to genes involved in the utilization of

myo-inositole, ethanolamine, and cellobiose, and the synthesis of

biotin. Accordingly, different ability of the chromosomal and

plasmid-borne cpe-positive strains to utilize myo-inositole, ethanol-

amine, and cellobiose as the only source of energy was

demonstrated. This suggests that the chromosomal and plasmid-

borne cpe-carrying C. perfringens strains are differently adapted to

various environments, and thus, the epidemiology of C. perfringens

food poisoning caused by the two strain populations may be

different.

The plasmid-borne cpe-carrying and the cpe-negative strains

formed a heterogeneous group, with some plasmid-borne cpe-

carrying and cpe-negative strains being very similar. This supports

horizontal transfer of the cpe plasmid between C. perfringens strains,

as proposed in previous studies [19,23,24].

The chromosomal cpe-positive strains formed a homogeneous

cluster, which is in agreement with an earlier study using multi-

locus sequence typing [25]. It seems plausible that the chromo-

somal cpe-positive strains have diverged from the remaining C.

perfringens population, which is ubiquitous in nature and consists of

a heterogeneous group of cpe-negative but also plasmid-borne cpe-

carrying strains. Although the chromosomal cpe-carrying strains

appear to better survive in certain extreme conditions [8,9], the

present results suggested that the plasmid-borne cpe-carrying and

cpe-negative strains have specific properties by which they are

better adapted to diverse environments than the chromosomal cpe-

carrying strains.

The property of both the plasmid-borne cpe-positive and cpe-

negative strains, utilizing myo-inositol, suggests that these strains

are similarly adapted to multiple habitats. Apart from being

abundant in the soil and environment, myo-inositol is a component

of the eukaryotic cell wall and has been reported to be used by C.

perfringens as an alternative carbon source in the absence of glucose

[26]. Several microorganisms inhabiting the soil can utilize myo-

inositol [26]. The absence of this operon in all chromosomal cpe-

carrying strains may limit their ubiquitous occurrence considered

typical for C. perfringens, which suggests that the chromosomal cpe-

carrying strains have their own, an as-yet unidentified narrow

niche in the environment.

Since ethanolamine is abundant in the human intestine [27], the

presence of the operon encoding ethanolamine utilization in 70%

of the plasmid-borne cpe-carrying strains and in 90% of the cpe-

negative strains probably provides an advantage for survival and

colonization of the intestine for these strains [19,27]. The

clostridial ethanolamine operon resembles that of Enterobacteriacae

[28], among which ethanolamine utilization is common. Due to

their ability to utilize ethanolamine, the plasmid-borne cpe-

carrying strains could be adapted to the intestinal environment,

unlike the chromosomal cpe-carrying strains, that lacked the

ethanolamine utilization operon.

Biotin is involved in the central pathways of cell metabolism,

and bacteria unable to synthesize biotin need to acquire it from

external sources [29]. The lack of this gene cluster in the

chromosomal cpe-positive strains may indicate that the habitat of

these strains is rich in free biotin.

The ability of the chromosomal cpe-positive C. perfringens strains

to utilize cellobiose obtained by enzymatic or acidic hydrolysis of

cellulose and laminarin common in plant cell walls may indicate

that these polysaccharides are available in the yet unknown habitat

of the chromosomal cpe-positive strains. Despite lacking the gene

cluster predicted to encode utilization of cellobiose, three plasmid-

borne cpe-carrying strains utilized cellobiose, which may indicate

that cellobiose utilization is encoded by multiple loci, not

necessarily represented in our microarrays.

Based on the currently available genome sequences, we expect

the cpe-positive C. perfringens strain population to contain hundreds

of genes not present in the reference genomes and thus not

represented on the microarrays. For example, majority of the 73

and 62 genes of the cpe-containing plasmids pCPF5603 and

pCPF4969 [30], respectively, are specific to plasmids, since they

share only 10 and 7 genes with SM101 according to BLAST.

Therefore one should bear in mind that the differential gene pool

observed in this study is likely to be larger and warrants future

study.

The chromosomal cpe-carrying C. perfringens strains seem unable

to utilize myo-inositol or ethanolamine or to synthesize biotin,

Figure 1. Chromosomal cpe-carrying C. perfringens strains clustered separately from the plasmid-borne cpe-carrying and cpe-
negative strains. The figure was constructed using the MEV software [28].
doi:10.1371/journal.pone.0046162.g001

Table 1. Minimum and maximum percentage of CDSs in the
three reference strains (SM101, ATCC13124, and 13) carried by
chromosomal and plasmid-borne cpe-carrying and cpe-
negative C. perfringens strains.

cpe location SM101 ATCC13124 Strain 13

min max min max min max

Chromosomal 86.2 94.9 70.7 81.4 63.8 74.8

Plasmid-borne 71.8 84.4 82.8 91.5 75.6 87.4

cpe-negative 73.4 85.3 80.4 99.9 74.5 99.0

doi:10.1371/journal.pone.0046162.t001

CGH Analysis of cpe-Positive C. perfringens Type A
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which are important for soil and intestinal bacteria competing in

complex environments. The majority of the chromosomal cpe-

carrying strains in this study also lacked the fucose and sialidase

encoding genes, which further diminishes the territory of the

chromosomal cpe-positive strains [31]. Presumably, the chromo-

somal cpe-positive strains are not ubiquitous and soil or intestines

are not the habitat of these strains, although the chromosomal

strains may compensate for some of the aforementioned deficien-

cies by producing toxins or by acquiring appropriate genes from

the environment. This is supported by the presence of many IS-

elements suggestive of gene transfer [31].

In light of our results, the habitat of the chromosomal cpe-

carrying C. perfringens strains appears to be rich in biotin, and the

ability to utilize cellobiose and laminarin may be beneficial.

Cellobiose, laminarin, and biotin are available in environments

where bacteria decompose plant material, such as composts. In

composts, the temperature may be high, allowing only the most

heat-tolerant strains, such as the chromosomal cpe-carrying strains,

to survive. Access of the spores of chromosomal cpe-carrying C.

perfringens to the food chain via the compost soil on the surface of

vegetables should be investigated.

Other environments rich in biotin and cellobiose include sewage

and sludge [32], where the chromosomal cpe-carrying C. perfringens

strains may end up via the excretions of food-poisoning patients.

The heat-resistant spores of the chromosomal cpe-positive strains

could also tolerate heat treatments and drying [8,9], which are

usually included in the waste water treatment procedures. Thus,

the role of sewage and sludge as a reservoir of chromosomal cpe-

positive C. perfringens should be addressed, as the spores surviving

the waste water treatment procedures may return to the food

chain via sludge used as fertilizer.

In conclusion, the results suggest the plasmid-borne cpe-carrying

strains and cpe-negative strains to be ubiquitous and adaptated to

the mammalian intestine. By contrast, the chromosomal cpe-

carrying strains appear to have a narrow niche in environments

containing degrading plant material. Thus, the plasmid-borne cpe-

carrying strains are proposed to contaminate foods by human due

to poor hygiene, whereas the chromosomal cpe-carrying strains

Figure 2. Genes differentiating the chromosomal cpe-carrying C. perfringens strains from the plasmid-borne cpe-carrying and cpe-
negative strains. The figure was constructed using the MEV software [28].
doi:10.1371/journal.pone.0046162.g002

CGH Analysis of cpe-Positive C. perfringens Type A
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could spread to the food chain through ingredients of plant origin.

Further research is needed to elucidate the habitat of these strains.

Materials and Methods

Bacterial strains
A total of 83 C. perfringens type A strains isolated from foods

(n = 19) and feces (n = 9) associated with food poisonings, feces of

healthy (n = 21) and ill (n = 6) people, feces of healthy production

animals (pigs n = 7, cattle n = 5, broiler chickens n = 5), soil (n = 5),

and sludge (n = 6) during 1986–2007 included 54 cpe-positive

strains and 29 cpe-negative strains (Table S1). Of the cpe-positive

strains, a chromosomal cpe was carried by 21 strains while 33

carried the cpe on a plasmid. Of the plasmid-borne cpe-carrying

strains, 20 represented genotype IS1470-like and 13 represented

genotype IS1151. The cpe-negative C. perfringens strains ATCC

13124 and 13, and the chromosomal cpe-positive strain SM101

were used as hybridization references. Genomic DNA of all strains

was isolated as described by Keto-Timonen et al. (2005) [33].

DNA microarrays
The DNA microarrays, based on the genomes of C. perfringens

type A strains 13 [34], ATCC13124, and SM101 [31], contained

two 60-mer probes for all protein coding sequences (CDSs)

annotated in the three genomes. The probes were designed using

the OligoArray2.1 software [35]. Upon the probe design,

OligoArray2.1 software utilizes the BLAST algorithm for checking

the specificity of a probe. There are 2170 conserved genes (core

genome) in all the three reference genomes and over 2000 strain-

specific genes or genes present only in two of the reference strains.

First, probe design was done for each individual strain, and then

the results were combined. Up to five candidate probes were

designed for each CDS. Finally a maximum of two probes per

CDS were selected, not accepting any duplicate probes. Moreover,

four probes for each IS element (IS1469, IS1470, IS1470-like, and

IS1151) [6,4,5] were included for genotyping of cpe-positive C.

perfringens. Each of the eight sub-arrays of Agilent 8*15K custom

arrays (Agilent, Santa Clara, CA, USA) contained an equal set of

15 744 probes.

Hybridization and washes
A total of 0.5 mg of genomic DNA from each C. perfringens strain

was fluorescently labeled using the BioPrime labeling kit (Invitro-

gen, Carlsbad, CA, USA). The 26-ml labeling reaction contained

11.5 ml of diluted DNA, 10 ml of random octamer primers

(Invitrogen), 2.5 ml of 106 dCTP Nucleotide mix (Invitrogen),

1.5 ml of either Cy3 or Cy5-dCTP (GE Healthcare, Buckingham-

shire, UK), and 0.5 ml of Exo-Klenow fragment solution

(Invitrogen). The reactions were incubated at 37uC for 2 hours

and stopped by adding 2.5 ml of stop buffer (EDTA, Invitrogen).

For each hybridization, one Cy3-labeled and one Cy5-labeled

DNA sample were combined; thus two samples were hybridized

on each subarray and 16 samples on each array slide. The mixture

was purified with a DNA purification kit (QIAquick PCR

Purification Kit, Qiagen, Hilden, Germany) according to the

manufacturer’s instructions. The concentration of DNA and the

incorporation of the dye were checked with the Nanodrop device

(Nanodrop Technologies, Wilmington, MA, USA) before and after

labeling. A volume of 2.2 ml salmon sperm DNA (1 mg/ml) was

added to 17.8 ml of labeled combined sample solution, and the

mixture was heated at 95uC for 2 minutes for denaturation. A

volume of 5 ml of 106 blocking agent (Agilent) and 25 ml 2xGE

(HI-RPI) hybridization buffer (Agilent) were added. A total of

45 ml of the solution was hybridized to each microarray at 65uC

for 16 hours. The arrays were washed for 261 minute with Wash

Buffer 1 (Agilent) and for 1 minute with Wash Buffer 2 (Agilent),

pre-warmed to 37uC.

Scanning, image processing and data analysis
The slides were scanned (Axon GenePix Autoloader 4200 AL,

Westburg, Leusden, The Netherlands) using 5 mm pixel resolution.

Image processing was performed with the GenePix Pro 6.0

software. All hybridizations were normalized to the reference

strains after background correction. Since the probes were

designed based on three genomes, the location of the main mode

of log2-ratio distribution was calculated between the hybridized

strain and all reference strains, and the median value was used for

normalization.

The distribution of logarithmic signal intensities formed two

clear peaks in each hybridization. A threshold was set between the

peaks based on replicated hybridizations of the two reference

strains ATCC13124 and 13; signal intensities from the probes

designed for the reference strain were above the threshold. The

selected threshold divided the probes into two groups: The peak

with greater values corresponded to probes with specific hybrid-

ization and genes predicted to be present, and the peak below the

threshold corresponded to probes predicting a gene to be absent/

divergent or yiedling unspecific hybridization and. The data

analysis was done using the R software [36], and visualization and

clustering were conducted using MEV [37]. The data discussed in

this publication are compliant with the MIAME guidelines and

were deposited in NCBI’s Gene Expression Omnibus and are

accessible through GEO Series accession number GSE30954 (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE30954).

To validate the DNA microarray results, the intensity of the IS

element, plc (encoding the alpha toxin), and the cpe probe spots was

compared with results of PCR assays showing the IS elements

downstream of cpe [4,5,23] and the presence of plc and cpe [38].

The signal intensity values of all validated probe spots were in

concordance with the PCR results.

Myo-inositol, cellobiose, and ethanolamine utilization of
the cpe-positive C. perfringens strains

The minimal medium was prepared according to Sebald and

Costilow (1975) [39]. The growth of 10, 10, and 8 chromosomal,

and 11, 12, and 7 plasmid-borne cpe-carrying C. perfringens strains

was examined in the minimal medium using myo-inositol,

cellobiose, and ethanolamine, respectively, as the sole source of

energy. For controls, the growth of each strain was also examined

in minimal medium with glucose and in a plain minimal medium.

In brief, 25 ml of a 56104 cfu/ml cell suspension of each strain was

inoculated into 2.5 ml of fresh minimal medium containing 1% of

either myo-inositol, cellobiose, or ethanolamine and incubated at

37uC overnight under anaerobic conditions. Growth in the

presence of myo-inositol and cellobiose was studied in an

automated turbidity reader (Bioscreen C Microbiology Reader,

Growth Curves, Helsinki, Finland). To demonstrate ethanolamine

utilization, 0.05% adenocylcobalamine, which is considered

essential for ethanolamine consumption [27], was added to the

media together with bromothymol blue as an indicator. Growth in

the presence of ethanolamine was studied in 10-ml aliquots. A

change of the indicator colour suggested ethanolamine utilization.

Supporting Information

Figure S1 Similarity between the strains in the clusters
of chromosomal and plasmid-borne cpe-carrying C.
perfringens strains. The similarity between the chromosomal

CGH Analysis of cpe-Positive C. perfringens Type A
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cpe-carrying strains is 0.85 (Pearson’s correlation) The similarity

between the plasmid-borne cpe-carrying strains (IS1470-like and

IS1151) is 0.76, and the similarity between the two clusters is 0.59.

(TIF)

Table S1 Characterization of Clostridium perfringens type A strains

isolated from various sources.

(RTF)

Table S2 Variable CDSs (probes) in chromosomal cpe-carrying

C. perfringens strains related to plasmid-borne cpe-carrying strains.

(RTF)

Table S3 Utilization of myo-inositole, ethanolamine, and cello-

biose of chromosomal and plasmid-borne cpe-carrying C. perfringens

strains.

(RTF)

Table S4 The presence (+) and absence (2) of operons and gene

clusters encoding the metabolic traits differentiating between the

chromosomal and plasmid-borne cpe-carrying C. perfringens strains.

(RTF)
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