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Abstract

Parisotoma notabilis is the most common species of Collembola in Europe and is currently designated as ubiquist. This
species has been extensively used in numerous studies and is considered as well characterized on a morphological ground.
Despite the homogeneity of its morphology, the sequencing of the barcoding fragment (59 end of COI) for several
populations throughout Europe and North America revealed four distinct genetic lineages. The divergence found between
these lineages was similar to the genetic distance among other species of the genus Parisotoma included in the analysis. All
four lineages have been confirmed by the nuclear gene 28S. This congruence between mitochondrial and nuclear signals, as
well as the geographical distribution pattern of lineages observed in Europe, supports the potential specific status of these
lineages. Based on specimens from the type locality (Hamburg), the species name was successfully assigned to one of these
lineages. This finding raises several problems as Parisotoma notabilis has been widely used in many ecological studies.
Accumulation of new data for the different lineages detected, especially ecological information and life history traits, is
needed to help resolve this situation.
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Introduction

Parisotoma notabilis was described by Schäffer in 1896 from

Hamburg in Germany. Since then it has been abundantly

recorded from various regions in the world [1,2] and can be

considered as the most abundant species of Collembola in the

temperate regions of the west Palearctic [2]. Populations reach

their highest densities in Northern and Central Europe, decreasing

steadily in the Mediterranean, Siberian and Arctic regions. The

species is often rare in Mediterranean lowland regions and in high

endemism areas such as Slovenia (unpub. observations) or Central

Pyrenees [3,4]. Following the description of several other species of

Parisotoma [5,6,7], the citations from Eastern Palearctic for this

species are considered dubious, and the species in its modern

definition has not been recorded recently from these localities. The

wide distribution of P. notabilis can partly be due to its near obligate

parthenogenesis [8,9] which facilitates its rapid installation and

spreading in new localities.

Parisotoma notabilis is currently considered as well characterized

morphologically [10,11,12,7,2]. It is defined by a combination

of characters including 2–5+2–5 eyes, 4+4 postlabial chaetae, an

abundant S-chaetotaxy, lower subcoxa of leg I without chaeta, 3

chaetae on each lateral flap of the ventral tube and 2 chaetae

on tenaculum. Four synonyms were listed by Potapov [2]:

Isotoma menotabilis Börner, 1903; I. delicatula Brown, 1929; I.

eunotabilis Folsom 1937; Desoria monticola Hao and Huang, 1995.

By contrast with its morphological homogeneity, P. notabilis is

known to be plastic ecologically, and can be found in a broad

range of natural or disturbed habitats, along a wide altitudinal

range [2]. The species is often favored in disturbed [13,14,15]

or regenerating habitats [16,17]. P. notabilis has paradoxically

been reported to both tolerate and being negatively impacted by

toxics such as industrial pollution [18], pesticides [19,15] and

heavy metal [20,21,15,22]. Parisotoma notabilis was also consid-

ered to be a poor indicator for pH, reacting positively to either

low or high pH values [23]. So even if P. notabilis is

morphologically well defined, the broad range of its ecological

and life history traits raises interrogations about its status as a

unique specific entity.

In order to explore and test the genetic homogeneity of this

ubiquist species, we used the DNA barcoding fragment (59 COI)

which has proved to be informative for congeneric and closely

related species delineation in many groups [24,25,26] including

collembolans [27]. A fragment of a nuclear gene (28S, D2 region)

was also sequenced to confirm the COI results.

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e46056



Materials and Methods

Sampling
252 specimens from 37 populations of P. notabilis were sampled

both in North America and Europe (Table 1, Fig. 1). The type

locality of the species in Hamburg was sampled as well. A largest

number of specimens from three localities (Guelph, Paris and

Hamburg) were analyzed in order to evaluate the intrapopula-

tional divergence and to test the potential sympatry of lineages.

Three other species of Parisotoma were added to the dataset to

provide a reference for both intraspecific and interspecific genetic

variation in other species within the genus: P. eckmani, P. amurica

and P. hyonosenensis (Table 1).

Molecular Analysis
DNA was extracted from entire specimens in 30 ml of lysis

buffer and proteinase K incubated at 56uC overnight. DNA

extraction followed a standard automated protocol using 96-well

glass fibre plates [28]. Specimens were recovered after DNA

extraction using a specially designed work flow allowing further

morphological examination [29]. The 59 region of COI used as a

standard DNA barcode was amplified using M13 tailed primers

LCO1490 and HCO2198 [30]. Samples that failed to generate an

amplicon were subsequently amplified with a pair of internal

primers combined with full length ones LepF1-MLepR1 and

MLepF1-LepR1 [31]. A standard PCR reaction protocol was used

for amplifications, and products were checked on a 2% E-gel

96Agarose (Invitrogen). Unpurified PCR amplicons were se-

quenced in both directions using M13 tailed primers [32], with

products subsequently purified using Agencourt CleanSEQ

protocol and processed using BigDye version 3.1 on an ABI

3730 DNA Analyzer (Applied Biosystems). Sequences were

assembled with Sequencer 4.5 (GeneCode Corporation, Ann

Arbor, MI, USA) and aligned by eye using BIOEDIT version

7.0.5.3 [33].

In addition, for 102 of the sampled P. notabilis specimens, a

fragment of the D2 region of the nuclear gene 28S of 411 base

pairs was amplified and sequenced with the same conditions than

COI. The primer pair used was ‘D2coll’ and ‘C2’coll’ designed

specifically for Collembola [34]. As we observed no indels in the

COI and 28S sequences, sequence alignment was unambiguous.

Sequences are publicly available on BOLD in the project

‘DATASET-CRYCOL2’ and on Genbank (GQ373667,

GQ373669, GQ373670, GU656217, GU656408–GU656423,

HM397729, HM397730, HM397803, HM398181, HM909156,

HM909328, HQ559271, HQ559489–HQ559494, HQ942514,

HQ942680–HQ942685, HQ943204, HQ943258–HQ943260,

HQ943297, HQ943298, JN298119–JN298134, JQ935008–

JQ935203, JQ909881–JQ909984).

Calculations
Distance analyses were performed with MEGA4 software [35].

Neighbor-Joining [36] algorithm with the Kimura-2 parameter

model [37] has been used to estimate the genetic distances. The

robustness of nodes was evaluated through bootstrap re-analysis of

1000 pseudoreplicates. The trees have been replotted using the

online utility iTOL [38].

Figure 1. Geographical distribution of Parisotoma notabilis lineages analyzed in this study. The global distribution potential limit of the
species is showed by a thick line.
doi:10.1371/journal.pone.0046056.g001

Cryptic Diversity in Parisotoma notabilis
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Results

Four distinct COI lineages were detected within P. notabilis.

Mean intraspecific and interspecific divergence among these 4

lineages were respectively 2.88% and 21.14% (Fig. 2 and 3,

Table 2). Comparable distances were found among the other

Parisotoma species included in the analysis with 0.54% for

intraspecific variation and 26.4% for interspecific divergence

(Table 2). The three populations more extensively sampled showed

comparable intraspecific divergences with the lineages they belong

to (P. notabilis L0 Hamburg 3.55%; P. notabilis L1 Guelph 2.92%; P.

notabilis L2 Guelph 0.82%; P. notabilis L1 Paris 3.76%). Several

lineages were found sympatric in some of the localities (Table 1).

Only L0 was detected in the type locality in Hamburg.

All the COI lineages of P. notabilis were retrieved with 28S. For

the nuclear marker, the divergence between lineages was 2.24%

and no intralineage variation was detected.

Table 1. Sampled populations.

Species Country Locality N Lineages

Parisotoma notabilis Algeria Edough 1 L1

Algeria Collo 1 L1

Canada British Columbia, Glacier NP 2 L2

Canada New Brunswick, Fundy 1 L2

Canada Nova Scotia, Kejimkujik 4 L2

Canada Ontario, Grey County 10 L0,L1,L2

Canada Ontario, Guelph 25 L1, L2

Canada Ontario, Elora 8 L1, L2

Canada Ontario, Haliburton 3 L2

Canada Ontario, Kawartha 5 L1

France Drome, Verclause 4 L1

France Seine Maritime 1 L0

France Isere, Sarcenas 4 L2

France Pas-de-Calais, Wimereux 6 L0

France Paris 87 L1, L3

France Essonne, Brunoy 2 L1

France Pyrenees-Orientales, Corsavy 8 L1

France Pyrenees-Orientales, L’Albere 5 L1

France Pyrenees-Orientales, Les Cluses 6 L1

France Pyrenees-Orientales, Mosset 6 L1

France Ariege, Le Port 3 L1, L2

France Haute-Garonne, Toulouse 5 L1

France Hautes-Pyrenees, Tarbes 5 L1

France Alpes-Maritimes, Peille 2 L1

France Hautes-Alpes, Aspres-sur-Buech 1 L1

France Savoie, Saint-Jean-de-Couz 4 L2

Germany Hamburg, Blankenese 17 L0

Italy Siena, Vagliali 1 L1

Italy Verona, Erbezzo 1 L2

Moldova Rezina 2 L1

Moldova Baius 2 L1

Netherlands Zutphen 3 L0

Poland Tatra Mts, Mala Laka valley 1 L2

Slovenia Bohinjska Bistrica 2 L2

Spain Catalonia, Gerona 6 L1, L2

Spain Navarra, Aritzkuren 4 L1

United Kingdom England, Hampshire 4 L0

Parisotoma amurica Russia Primorye Territory, Anisimovka 4

Parisotoma ekmani Russia Primorye Territory, Khualaza 3

Parisotoma hyonosenensis Russia Primorye Territory, Khualaza 2

doi:10.1371/journal.pone.0046056.t001
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The neighbor joining trees produced for both genes show that

the divergences among P. notabilis lineages are well supported

(Fig. 2 and 3). The distribution of the four lineages in the various

localities sampled is displayed in Table 1. All the individuals

collected from the type locality clustered together in the lineage

L0. Some of the lineages are sympatric in several localities

(Table 1).

Discussion

Cryptic Diversity in P. notabilis
The four distinct lineages detected within the morphological

boundaries of the species P. notabilis were supported by genetic

divergences in both mitochondrial (COI) and nuclear markers

(28S). The high divergences among Parisotoma species and P.

notabilis lineages for COI matched the values observed between

closely related [27], and even between more distant [39,40] species

of Collembola. The congruence with the nuclear gene 28S

confirms the genetic individualization of these lineages, and

suggests their specific status. On a morphological ground, such a

result was unexpected, as this ubiquist species was so far

considered as well-defined and homogeneous by modern taxon-

omists [10,11,12,7,2]. However, an unpublished dissertation [41]

overlooked in recent literature, clearly showed that P. notabilis was

constituted of different COI cryptic lineages. Several authors using

various markers also established that different populations of the

same species might be highly divergent genetically in Collembola

[42,43,44,45,46,47,48,49,50,51,52]. In the present study, further

Figure 2. Neighbor-joining K2P distance tree for COI (Bootstrap support values showed on the branches. Upper and lower side of the
triangle represent the maximum and minimum of genetic distances within a species).
doi:10.1371/journal.pone.0046056.g002

Table 2. Intraspecific and interspecific K2P-pairwise distances (%).

# Species Intraspecific Interspecific

1 2 3 4 5 6

1 P. notabilis L0 0.973

2 P. notabilis L1 3.630 21.02

3 P. notabilis L2 1.294 19.97 19.00

4 P. notabilis L3 0.023 22.98 21.59 22.90

5 P. amurica 0.000 21.65 21.05 21.17 21.68

6 P. ekmani 2.111 25.30 23.88 26.17 24.48 26.10

7 P. hyonosenensis 0.000 27.10 24.09 25.17 26.75 27.86 25.82

doi:10.1371/journal.pone.0046056.t002

Cryptic Diversity in Parisotoma notabilis
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elements of interpretation are gained by comparing high

intraspecific divergences to levels of interspecific divergence in

conspecific species. Recently, this method has also been used to

detect cryptic lineages in six other species of Collembola [53].

Although morphological diversity was not re-evaluated among in

most of these studies, some of them led to rehabilitate disused

characters and disused names in species complexes: Isotomurus

palustris [46,48] and Lepidocyrtus dispar/biphasis [52]. This will not be

possible in P. notabilis, as disused names are not based on disused

characters.

Retrieving the ‘True’ P. notabilis
One of the main problems raised by such results is to

recognize which genetic entity should bear the species name.

Here, the sequencing of specimens collected from the type

locality (Hamburg, Germany), thus considered as representative

of P. notabilis sensu stricto, allowed to resolve this issue. All these

individuals clustered in the lineage L0. As a consequence, the

species name Parisotoma notabilis should be assigned to this

lineage. In this context, the critical importance of integrating

DNA barcodes in new species descriptions through the

sequencing of the holotype [54,27] has to be emphasized.

Indeed this could be much helpful in Collembola, where most

widespread species are likely to be complexes of closely related

forms [55]. Here, only one lineage was retrieved from the type

locality, allowing to get easily to a conclusion. But this approach

has limitations [53], as for instance, several lineages could occur

in a species type locality, leaving as sole solution the sequencing

of the holotype specimen, thus often bringing up ancient DNA

issues because of the specimens age [54,56].

Naming the Other Species-level Lineages and
Consequences for Previous Results

The second critical problem is to name the extra genetic entities

recognized in this study. They are provisionally named after the

lineage number (L1, L2 and L3) awaiting for a formal

morphological description, although we were not, so far, able to

distinguish them morphologically. Even if these lineages can be

discriminated morphologically, the forms synonymized with P.

notabilis (listed in [2]) will have to be checked, along with the DNA

barcoding of populations from their type localities. This approach

could possibly lead to the restoration of some of the synonyms as

valid species names.

Meanwhile, the adoption of the provisory naming proposed

here for lineages could allow their consistent use and

characterization in various disciplines. This is critical as these

lineages could potentially represent distinct species with different

ecological and biological traits. Indeed, from the many examples

in the literature showing discordance for pH preference [23],

response to pesticides [15,19], industrial pollution and heavy

metal [20,21,15,18,22], the ecological homogeneity of the P.

notabilis complex could have already been questioned. Actually,

because of this overlooked situation, a considerable amount of

information has been accumulated on P. notabilis, which turns

out here to be a chimeric species composed of several distinct

genetic entities. A similar situation has also been stressed in

earthworms [57]. Awaiting for a better knowledge of the spatial

and ecological distribution of the different lineages agglomerated

in this complex, the previous results obtained so far for the

nominal species P. notabilis should be considered with caution as

they potentially bear on different lineages (see ‘Geographical

structuration’ section). In the worst-case scenario one single study

could have involved several lineages at the same time as some

of them were found to be sympatric in our dataset (Table 1).

Further studies, identifing the different genetic lineages previ-

ously to experimentation, will help correcting this confusion by

accumulating consistently information on the ecological and

biological characteristics of these different genetic entities. In

this respect, the provisional naming proposed here could

facilitate such an initiative.

Figure 3. Neighbor-joining K2P distance tree for 28S (Bootstrap support values showed on the branches. Upper and lower side of the
triangle represent the maximum and minimum of genetic distances within a species).
doi:10.1371/journal.pone.0046056.g003
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Geographical Structuration
The distribution of P. notabilis lineages in Europe, beside some

cases of sympatry, shows a clear geographical pattern of mostly

parapatric distribution of lineages (Fig. 1). Parisotoma notabilis L0,

the ‘‘true’’ P. notabilis, is restricted to Northern Europe; P. notabilis

L1 is largely distributed in Southern Europe, and P. notabilis L2

mostly in the Alpine-Carpathic mountains range. This pattern

suggests that the P. notabilis cited in regional studies of soil ecology

may correspond to different lineages in different European

regions. But such geographical structuration is not found in

Northern America: in contrast with our European dataset, where

sympatry is less frequent, the dataset at hand for this region shows

that three different lineages are present in the same small and

ecologically poorly diversified area of Eastern Canada (Table 1).

Only one of the lineages, P. notabilis L3, has not been detected in

North America so far, suggesting potential ecological or biological

differences affecting its invasion capacity [58]. Further systematic

sampling associated to DNA barcoding across the whole

distribution area is needed to confirm and complete the observed

geographical distributions, and to evaluate the spatial patterns of

sympatry of the different lineages.

Cryptic Diversity and Morphological Stasis
Due to the increasing use of molecular taxonomy tools, the

number of publications on cryptic diversity has grown in the

literature during the last ten years (Fig. 4). The number of cases

reported in invertebrates experienced a fast increase

[59,60,61,62,63,64,65,66,56,67]. Often, either morphological ex-

amination initially failed to distinguish several good species within

a nominal one, or the observed variability was considered as

polymorphism. A broad survey revealed that cryptic diversity

phenomenon is evenly distributed among major metazoan taxa

and biogeographic regions when corrected for species richness and

study intensity [68]. As most organisms surveyed do not dwell in

extreme conditions, such a homogeneous distribution of the

phenomenon marginalizes the hypothesis of strong environmental

constraints driving morphological stasis [69] as a general

explanation for cryptic diversity. In this respect, the P. notabilis

complex uncovered here is a good example as none of its

components dwell in highly constraining habitats.

An alternative hypothesis to explain cryptic diversity is that

animals currently use chemical and auditory signals for sexual

recognition, preventing morphological taxonomy based solely on

visual observations to delineate accurately species [69]. But this

does not apply here as P. notabilis is parthenogenetic with the

exception of a Swedish population exhibiting rare male occurrence

[70].

Parthenogenetic Species
The parthenogeny of this species implies that the cryptic

lineages found here are also potential parthenogenetic species.

Our findings support this notion described in Bdelloid rotifers

[71,72] and Oribatid mites [73]. As predicted for such species

[72], we found discrete clusters, reciprocally monophyletic for

both nuclear and mitochondrial genes in P. notabilis. One of the

main drivers of the asexual speciation is the diversifying selection

due to niche adaptation [71]. The case of P. notabilis will have to be

investigated in this respect, as the strong ecological discrepancies

described in literature and the sympatric distributions of some of

the lineages suggest that such a mechanism is likely responsible for

the origin of this complex.

Conclusion
This study established the evidence of multiple species-level

lineages within one of the most ubiquist species of European

Collembola. Most species of widespread European Collembola has

Figure 4. Bibliographic survey on cryptic diversity over the last 30 years (Source: Web of Knowledge).
doi:10.1371/journal.pone.0046056.g004
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been suspected to be complexes of closely related forms [56], and

this has already been proved for some of them [54]. Our results

support this assumption for P. notabilis, and advocate for a

comprehensive molecular survey of the main species of Collem-

bola currently used as models in various fields of investigations.
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