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Abstract

The association of lung cancer with changes in microRNAs in plasma shown in multiple studies suggests a utility for
circulating microRNA biomarkers in non-invasive detection of the disease. We examined if presence of lung cancer is
reflected in whole blood microRNA expression as well, possibly because of a systemic response. Locked nucleic acid
microarrays were used to quantify the global expression of microRNAs in whole blood of 22 patients with lung
adenocarcinoma and 23 controls, ten of whom had a radiographically detected non-cancerous lung nodule and the other
13 were at high risk for developing lung cancer because of a smoking history of >20 pack-years. Cases and controls differed
significantly for age with a mean difference of 10.7 years, but not for gender, race, smoking history, blood hemoglobin,
platelet count, or white blood cell count. Of 1282 quantified human microRNAs, 395 (31%) were identified as expressed in
the study’s subjects, with 96 (24%) differentially expressed between cases and controls. Classification analyses of microRNA
expression data were performed using linear kernel support vector machines (SVM) and top-scoring pairs (TSP) methods,
and classifiers to identify presence of lung adenocarcinoma were internally cross-validated. In leave-one-out cross-
validation, the TSP classifiers had sensitivity and specificity of 91% and 100%, respectively. The values with SYM were both
91%. In a Monte Carlo cross-validation, average sensitivity and specificity values were 86% and 97%, respectively, with TSP,
and 88% and 89%, respectively, with SYM. MicroRNAs miR-190b, miR-630, miR-942, and miR-1284 were the most frequent
constituents of the classifiers generated during the analyses. These results suggest that whole blood microRNA expression
profiles can be used to distinguish lung cancer cases from clinically relevant controls. Further studies are needed to validate
this observation, including in non-adenocarcinomatous lung cancers, and to clarify upon the confounding effect of age.
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Introduction

Lung cancer contributes to more cancer deaths annually in the
United States than colorectal, breast and prostate cancers
combined [1]. Recent advances in the clinical management of
lung cancer have led to only small improvements in overall
survival for the disease, in part because a majority of the cases are
identified only after the cancer has advanced to a more malignant
stage. Screening of individuals at a higher risk of developing lung
cancer to diagnose the disease at an earlier stage therefore has the
potential to improve clinical outcome of the disease. This is
supported by results of the National Lung Cancer Screening Trial
that show an approximately 20% improvement in lung cancer-
related mortality with annual low-dose computerized tomographic
screening [2]. However, in the trial, 96% of the pulmonary
abnormalities seen were benign lesions. Periodic radiological tests
for screening may also expose individuals to a significant level of
radiation, the impact of which is unknown but possibly harmful. In
routine clinical practice, the incidence of pulmonary nodules
detected in chest radiography ranges from 0.09% to 0.2% and is
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higher in more advanced radiological examinations [3,4]. The
chance of such a nodule being malignant varies widely from 1% to
70% [3,5], and depends on a number of factors such as the size of
the nodule and the clinical setting. The detection of a lung nodule
in a radiological examination can thus not only cause patient
anxiety but lead to tests such as positron emission tomography and
biopsy that can be invasive, often expensive, and likely of no
benefit for a large proportion of individuals. A non-invasive (e.g.,
blood-based) biomarker assay for the presence of lung cancer that
can complement or replace radiological examination during
screening or routine clinical visits can therefore be useful in
identifying subjects that are most likely to have a malignant lesion
in the lung that requires further investigation.

At least 18 non-invasive, blood-based studies have examined
microRNA expression profiles to identify microRNA biomarkers
for diagnosis of lung cancer. Most of them have quantified
microRNAs in the non-cellular serum (e.g., [6,7,8]) or plasma (e.g.,
[9,10,11]) fractions of blood. Although all these studies, except one
using plasma microRNA expression [12], have shown promising
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results, the use of serum or plasma RNA for microRNA biomarker
discovery has some limitations. The yield of RNA from human
serum and plasma is estimated to be in the range of 2.5-120 ng/
ml (e.g., [13,14,15]) and this limits unbiased biomarker discovery
by affecting reliable and accurate detectability of microRNAs in
global expression profiling assays. Isolation of serum or plasma
also involves additional steps, and microRNA expression patterns
can be sensitive to minor variations during these processing steps
(e.g., [12,16]). Furthermore, because cellular microRNAs are
overwhelmingly more in amount than extracellular ones, even a
very small degree of contamination of the isolated serum or plasma
samples with blood cells significantly alters their microRNA
expression profiles (e.g., [16,17]).

The mechanistic basis for the alterations in serum or plasma
microRNAs consequent to the presence of lung cancer is not clear.
It could be that tumors themselves release microRNAs into
circulation, as is suggested by the findings of some studies (e.g.,
[18,19]). However, it is unlikely that it is so for at least a majority
of the altered microRNAs [20]. It is believed that microRNAs are
released into blood circulation by all cells of the body [21] and not
just tumors which typically constitute only a very small fraction of
the body’s cellular mass. No microRNA is exclusively expressed by
cancer cells, and the fold-changes in microRNA expression levels
that occur in cancer tissues relative to normal ones are usually very
modest (e.g., [22]). It is therefore possible that the changes in
microRINA expression seen in serum or plasma reflect the body’s
systemic response to the presence of cancer, including changes in
microRNA expression in circulating blood cells [17]. Such a
response may be exhibited in whole blood microRNA expression.
Indeed, a number of recent studies have shown changes in
microRNA expression profiles of peripheral whole blood in
patients with various malignancies, such as brain [23], breast
[24], ovary [25], and pancreas [26], as well as in non-malignant
diseases [27,28,29].

The goal of this study was to examine the potential of whole
blood microRNA profiling to distinguish patients with lung
adenocarcinoma, which accounts for about a half of lung cancer,
from clinically relevant controls. Whole blood mRNA expression
changes have been associated with presence of lung cancer [30],
and four studies so far have identified whole blood microRNA
biomarkers associated with the presence of lung cancer
[31,32,33,34]. Three of these four studies were published while
the work described here was in progress.

Materials and Methods

Ethics Statement
This study was approved by the Institutional Review Board of
University of Pennsylvania (study identification number 806390).

Study Population and Blood Collection

Study participants included 22 patients with lung adenocarci-
noma (cases) and 23 patients without lung cancer (controls) who
were evaluated at the University of Pennsylvania between
November 2007 and October 2010. Peripheral blood (2.5 ml)
was collected from the participants during clinical visits in a
PAXgene™ Blood RNA tube (Qiagen®, Valencia, CA), which
was then frozen at —20°C within 2 hours and then transferred to
—80°C within a day for long-term storage. None of the case
subjects received any treatment for cancer prior to blood
collection. Ten controls underwent surgery for a suspicious lung
nodule or mass that on pathological evaluation later was found to
be benign. The remaining 13 controls were older than 50 years
with a smoking history of >20 pack-years. White blood cell (WBC)
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and platelet counts, and blood hemoglobin values at time-points
closest to the time of blood collection for RNA isolation were
collated from medical records. These were identified before
surgery in all but one case for which the values were obtained
immediately after surgery. For controls, blood counts and
hemoglobin values could be obtained for 17 (74%) subjects; for
six of them, the values were determined >90 days before blood
had been collected for RNA isolation.

Isolation of RNA from Blood

Total RNA including small RNA was isolated from blood
collected in PAXgene™ Blood RNA tubes using the PAXgene ™
Blood miRNA kit (Qiagen®) as per the protocol supplied by the
manufacturer. RNA was collected in 80 ul of the BR5 buffer
provided with the kit. Concentration and quality of RNA was
assessed by absorbance spectrometry on NanoDrop™ 2000
(Thermo®, Waltham, MA) and imaging of ethidium bromide-
stained RNA electrophoresed on an agarose gel.

MicroRNA Quantification by Locked Nucleic Acid
Microarray

This work was performed as a commercial service by Exiqon®
(Vedback, Denmark). The miRCURY™ microRNA Power
Labeling kit (Exiqon®) was used to 3'- or 5'-end label 0.5 pg of
a sample or a human ‘universal reference’ total RNA (Ambion®,
Austin, TX; product number AM6000) with the Cy3-like Hy3™
or the Cy5-like Hy5™ (Exiqon®) dye, respectively, before they
were co-hybridized overnight to 5th generation miRCURY™
locked nucleic acid microarrays (Exiqon®) [35]. After washing,
microarrays were scanned and analyzed using ImaGene® software
(version 9; BioDiscovery®, Los Angeles, CA). Manual and
automated examinations of the scans and analyses of microarray
signals for 52 spiked-in synthetic, small RNAs showed that all
labeling reactions and hybridizations were of good quality. The
arrays had more than 1890 locked nucleic acid probes for multiple
RNAs of human, mouse, rat, and some viruses printed in
quadruplicate on randomly distributed spots of 105 um diameter
and 250 um inter-spot distance. A total of 1305 probes on the
arrays targeted 1282 human microRNAs, including 376 propri-
etary ones (miRPlus™, Exiqon®), and 23 non-microRNA human
small RNAs of <200 nucleotides, including the 55 ribosomal RNA
and the two RNU6 small nucleolar U6 RNAs. Except for RNU6-1
(U64), every RNA was recognized by only one of the 1305 probes.
Only eight of the 1268 probes against human microRNAs and one
of the 24 against human non-microRNAs recognized more than
one species of RNA. In this study, the multiple RNAs recognized
by such probes are enumerated individually even though the
analyses of microarray signals considered each probe and not each
microRNA as a separate variable. Raw and pre-processed
microarray data are available online in the Gene Expression
Omnibus database [36] with accession number GSE27486.

Pre-processing of Microarray Data

Hy3™ and Hy5™ signal values from the 45 hybridizations
were processed together using the limma [37] Bioconductor
package (version 3.6.9) and custom code in R (version 2.12). Raw
values were corrected for background noise using the convolution
model-based normexp method [38] with an gffset of 10, and then
normalized, first within array by the global loess regression
method [39] with a span of 1/3, and then between arrays by the
limma Rquantile method to achieve identical distributions of
Hy5"™ values among all hybridizations. Microarray signal values
were then identified as summarized Hy3™ values which were the
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means of values from the multiple probe-spots when the maximum
was <1.5x of the minimum, or the medians if otherwise. At this
point, data from probes that did not recognize human RNAs was
removed. RNAs recognized by probes for which the microarray
signal values were >3x that of probe-less empty microarray spots
in at least a quarter of the 45 hybridizations were considered as
expressed. There were 548 probe-less empty spots on each array,
and the mean and range of signal values from all such spots on all
45 arrays were 11.0 and 8.6-12.4, respectively. Microarray signal
values for the expressed RNAs were used for further analyses.

Analyses of Microarray Signals

Differential expression analyses were performed using empirical
Bayes-moderated t-statistics with the limma Bioconductor pack-
age. Differentially expressed RNAs were identified as those with
false discovery rates of <3% as per the Benjamini-Hochberg
method. Classification analyses of microarray signals for expressed
microRNAs were done in R using the CMA [40] Bioconductor
package (version 1.8.1) for the support vector machines (SVM;
linear kernel) method, and the tspair [41] Bioconductor package
(version 1.8) for the top-scoring pairs (T'SP) method [42]. Internal
validation was performed using the leave-one-out and Monte
Carlo cross-validation methods (LOOCV and MCCV, respec-
tively). In LOOCYV, training sets of 44 samples consisted of all but
the one sample that formed the test set. In MCCV, the 45 samples
of the study were randomly assigned to training and test sets of 36
and 9 samples, respectively, in 1000 iterations. For cross-validation
using SVM, a nested three-fold cross-validation loop was used to
choose from 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 and 50 the best value for
the kernel parameter cost, and the maximum number of
microRNA variables was 15, with variable-filtering based on
differential expression using limma’s moderated t-statistics. For
cross-validation using TSP, the microRNA pair with the best TSP
score constituted the variables.

MicroRNA Quantification by Reverse Transcription-PCR
(RT-PCR)

TaqMan® microRNA assays [43] from Applied Biosystems®
(Foster City, CA) were used to quantify microRNAs let-7¢, miR-22,
miR-30a-5p, miR-185, miR-210, and miR-423-5p (assay identifica-
tion numbers of 2406, 398, 417, 2271, 512, and 2340,
respectively). Briefly, TaqMan® microRNA reverse transcription
kit (Applied Biosystems®) was used to reverse transcribe 15 ng of
RNA using a microRNA-specific oligonucleotide. PCR with real-
time fluorometry was performed on RT reactions in triplicate in a
7900HT thermocycler. SDS software (version 2.4; Applied
Biosystems®) was used to identify quantification cycle (C,) values
and the mean C, values for the triplicate PCRs were used for
analysis. MicroRNA quantification of all RNA samples were
performed in the same experiment. Negative control reactions,
without any RNA, had undetectable C values.

Other

All analyses were done in the Mac OS X 10.6 operating system.
Annotated codes used in R for data processing, and differential
expression and classification analyses are provided in text SI.
Graphical plots were generated using R or Prism® (GraphPad
Software®, La Jolla, CA; version 5.0d). Unless otherwise specified
or implicit, all statistical tests were two-tailed, assumed equal group
variances, and had a threshold of 0.05 for P value to identify
significance. Receiver-operator characteristic curves were gener-
ated and areas under curves (AUC) determined using Prism® or R.
Comparison of curves was performed online using StAR [44].
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Analysis of differential expression using the Wilcoxon rank sum
(Mann Whitney) test, and of hierarchical clustering of samples
using logo-transformed microarray signals for expressed micro-
RNAs, with Pearson correlation coefficient for distance metric and
average linkage for inter-cluster distance, and with leaf-ordering of
either the sample tree or the gene tree optimized, were done in
TM4 [45] MultiExperiment Viewer (version 4.6 or 4.8). Processed
microRNA expression data from the studies of Keller, et al. [31]
and Leidinger, et al. [34] were obtained from the Gene Expression
Omnibus database with accession numbers GSE17681 and
GSE24709, respectively, and used directly for differential expres-

sion analyses.

Results

Clinical Characteristics of Cases and Controls

Clinical and demographic features of the 22 cases and 23
controls are summarized and detailed in tables 1 and SI,
respectively. All cases had lung adenocarcinoma with pathological
stage varying from IA to IIIB and were treated with surgical
resection. Two cases had a second cancer, one with a synchronous
lung cancer and the other with small lymphocytic lymphoma. The
23 controls were chosen for clinical relevance. Ten (43%)
underwent surgical resection for a suspicious lung nodule or mass
that was later found to be benign on pathological evaluation. The
remaining 13 controls were at high risk for developing lung cancer
because of age (>50 years) and a cigarette smoking history of >20
pack-years. There were no significant differences between cases
and controls for gender distribution, smoking status, or blood
hemoglobin level, WBC count or platelet count (table 1).
However, there was a difference in age, with cases an average of
10.7 years older than the controls (P<<0.01). There was no
significant Pearson correlation between age and blood hemoglobin
level, WBC count or platelet count.

Quantification of MicroRNAs in RNA Isolated from Whole
Blood

Whole blood from the 45 cases and controls was collected in
PAXgene™ Blood tubes, and total RNA isolated using the
PAXgene™ Blood miRNA kit. The widely used PAXgene™
system incorporates cell lysis, RNA stabilization, and treatment
with deoxyribonuclease for reproducible RNA purification and
quantification [46], although some studies indicate that other
blood collection and RNA isolation methods perform better
[47,48,49]. Cases and controls did not differ for the pg of RNA
isolated from 2.5 ml of blood, with overall mean being 2.65
(range = 1.25-5.26, standard deviation [SD] = 0.95). The mean of
ratio of absorbances of the RNA isolates at 260 nm and 280 nm
was 2.48 (range =2.19-3.04, SD=0.21), and of that at 260 nm
and 230 nm was 0.21 (range = 0.09-0.44, SD = 0.08). There was
no significant difference between cases and controls for the three
parameters. There was no significant Pearson correlation between
RNA yield and age, or blood hemoglobin, WBC count or platelet
count.

A two-color, oligonucleotide [35] microarray platform from
Exiqon® was used to quantify levels of 1282 human microRNAs
and 23 human non-microRNAs of <200 nucleotides in the RNA
isolated from whole blood specimens. As per version 18 of the
miRBase microRNA repository [50], 1921 mature human
microRNAs have been identified as of November 2011. The
415 RNAs deemed as expressed in >25% of the 45 samples of the
study were used to generate the final microRNA expression
profiles analyzed here. The 415 expressed RNAs included 20
(87%) of the 23 non-microRNAs, and 395 (31%) of the 1282
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Table 1. Demographic and clinico-pathologic characteristics of the study population.

Variable Cases Controls P value®
Number 22 23
Mean Age (Range, SD°) 70.6 (50-85, 7.7) 59.9 (36-74, 9.1) <0.01
Gender (% Male) 55 52 1.00
Race (% Caucasian) 100 100 1.00
Tobacco Use (% Positive) 91 83 0.67
Cancer Stage 1A 9 (41%)

IB 5 (23%)

1B 2 (9%)

A 3 (14%)

[111:] 3 (14%)
Histology Adenocarcinoma 22 (100%)

Granuloma 1 (4%)

Hamartoma 7 (30%)

Fibrosis 1 (4%)

Amyloid 1 (4%)

Normal (No nodule) 13 (57%)
Blood parameters (mean, SD) White Blood Cell (x1000/pl) 6.7 (1.8) 7.7 (2.7) 0.17

Platelets (x1000/pl) 233.9 (81.1) 263.4 (68.8) 0.24

Hemoglobin (g/dl) 135 (1.4) 13.5(1.3) 0.93

PStandard deviation.
doi:10.1371/journal.pone.0046045.t001

microRNAs, including 75 (20%) of the 376 miRPlus™ (Exiqon®)
proprietary microRNA sequences, that were quantifiable with the
microarrays. Descriptive statistics for the microarray signal values
for the 415 RNAs are provided in table S2. About 57% and 87%
of them were considered expressed in all and >50% of the 45
samples, respectively, as per the aforementioned criterion. The
microarray signal values for the RNAs varied by about 9 logy units
though the 25th and 75th percentiles were about 2°° and 27,
respectively. There was no difference between cases and controls
for the microarray signal value distributions (figure S1I).

Validation of Microarray-based MicroRNA Quantifications
Using RT-PCR

To check the accuracy of the microRNA expression data-set
generated using microarrays, eight randomly selected microRNAs
mm RNA samples from 11 randomly selected subjects were
quantified using RT-PCR-based TagMan® microRNA assays
[43]. Six of the eight microRNAs, let-7¢, miR-22, miR-30a-5p, miR-
185, miR-210, and miR-423-5p, were detectable in more than half
of the samples, and demonstrated significantly good Pearson
correlation (|r| >0.6) between logs-transformed microarray signal
and RT-PCR C, values, indicating validity of the microarray-
based microRINA quantification (figure 1). An examination of the
ranges of the quantifications showed that for five microRNAs the
inter-sample difference was amplified 1.4-3.3x in the RT-PCR
method compared to the microarray method; it was slightly
diminished (0.9x) for miR-185. Such a generally wider signal
distribution in the TagMan® microRNA RT-PCR assay com-
pared to the Exiqon® locked nucleic acid microarray assay has
been reported previously [51].
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“Fisher’s exact test for categorical variables; two-tailed t tests assuming equal group variances for continuous variables.

Changes in Whole Blood MicroRNA Levels in Patients
with Lung Adenocarcinoma

Unsupervised hierarchical clustering using Pearson correlation
measures of the quantification values for the set of 395 expressed
microRNAs showed that there was a good clustering of the cases
and controls, indicating presence of lung cancer-specific informa-
tion in the microRNA expression profiles (figure 2A). This was
supported by results of differential expression analyses. With the
non-parametric Wilcoxon rank sum (Mann Whitney) test with P
values adjusted for multiple testing by the Benjamini-Hochberg
method for a false discovery rate of 5%, 122 (29%) of the 415
expressed RNAs, that included the 395 expressed microRNAs,
were differentially expressed between cases and controls. Using
empirical Bayes-moderated t-statistics calculated by the limma
Bioconductor package [37], 104 (25%) of the 415 expressed RNAs
were found to be differentially expressed with false discovery rate
of <5% after Benjamini-Hochberg correction for multiple testing
(table S2). Of the 104 RNAs, 102 (98%) were also identified as
differentially expressed with the Wilcoxon test. The ratios of mean
value for cases to that of controls (fold-change values) for the 104
differentially expressed RINAs that included 96 microRNAs
ranged from 0.54 to 1.59. Among the 96 differentially expressed
microRNAs, the expression of 47 was lower in cases compared to
controls. Lists of 12 each of the differentially expressed RNAs with
the most over- and under-expression values are shown in table 2.
The relative expression of the 43 microRNAs whose expression
was altered >25% in either direction in the cases compared to the
controls is depicted as a heat map in figure 2B. Among the 23
controls, differential expression between those with pulmonary
nodules and those without was seen for 198 (50%) of the 395
expressed microRINAs.
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Figure 1. Correlation between microRNA quantification by reverse transcription-PCR (RT-PCR) and microarray. The scatter-plots show
RT-PCR quantification cycle (Cq) values and log,-transformed microarray signal values for microRNAs let-7e, miR-22, miR-30a-5p, miR-185, miR-210, and
miR-423-5p (n=11). Pearson correlation coefficients (r) and their 95% confidence intervals and associated P values, and best fitting (least squares)
lines are also shown.

doi:10.1371/journal.pone.0046045.g001
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Figure 2. Whole blood microRNA expression in lung adenocarcinoma cases and controls. A. Unsupervised clustering of the 45 samples of
this study by log,-transformed microarray signal values of all 395 expressed microRNAs. The numbers indicate identities of the 45 subjects, with cases
(n=22) and controls (n=23) shown in black and grey, respectively. The sample tree with optimized leaf-ordering is drawn using Pearson correlation
for distance metric and average linkage for cluster-to-cluster distance, and the scale for it represents node-heights. B. Supervised clustering of
microRNAs by their log,-transformed microarray signal values. The heat-map, with the pseudo-color scale underneath, shows log,-transformed
microarray signal values of the 43 microRNAs whose expression is altered >25% in either direction in the cases compared to the controls. The gene
tree is drawn as in A.

doi:10.1371/journal.pone.0046045.9g002
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Table 2. Twelve differentially expressed small RNAs each that
are most over- or under-expressed in cases compared to
controls.

Mean Expression (sd)?

Cases (n=22) Controls (n=23) Fold-Change
Overexpressed RNAs
miRPlus-E1016 211.82 (129.47) 133.2 (53.13) 1.59
SNORD2 277.69 (156.92) 185.25 (36.39) 1.50
SNORD44 132.65 (65.03) 91.02 (17.84) 1.46
SNORD3@ 602.26 (261.49) 415.53 (104.4) 1.45
RNU5 750.37 (310.9) 521.01 (111.97) 1.44
RNU6-1 552.41 (184.89) 390.61 (118.08) 141
RNU6-1/RNU6-2° 4037.13 (1552.97) 2878.75 (896.93) 1.40
miRPlus-C1110 31242 (62.17) 224.99 (50.54) 1.39
miRPlus-E1258 86.75 (20.49) 64.07 (11.77) 1.35
miR-720 340.15 (119.55) 252.95 (74.57) 1.34
miR-1290 171.55 (50.99) 128.19 (32.76) 1.34
SNORD13 513.58 (204.28) 384.05 (88.93) 1.34
Underexpressed RNAs
miR-144 143.57 (72.96) 267.88 (119.29) 0.54
let-7f 172.56 (96.41) 312.48 (150.58) 0.55
miR-15a 1067.1 (500.02) 1899.57 (859.99) 0.56
miR-20a 315.49 (215.14) 560.07 (295.46) 0.56
miR-18a 103.44 (62.86) 175.58 (100.54) 0.59
miR-1976 1141.76 (601.13) 1936.79 (853.76) 0.59
miR-93 585.97 (374.69) 980.62 (477.89) 0.60
miR-20b 50.43 (24.24) 83.2 (43.62) 0.61
miR-320c 207.32 (83.05) 339.03 (172.55) 0.61
miR-17 604.37 (343.17) 975.14 (443.34) 0.62
miR-652 126.41 (53.51) 202.94 (75.64) 0.62
miR-18b 44.08 (24.7) 69.15 (38.45) 0.64
*Microarray signal values are shown.
Both ANUG-1 and RNU6-2 RNAs are detected by the same microarray probe.
doi:10.1371/journal.pone.0046045.t002

Ability of Whole Blood MicroRNA Expression Profiles to

Distinguish Lung Adenocarcinoma Cases from Controls
Classification analyses with internal cross-validation were
performed to determine if it was possible to distinguish cases from
controls using whole blood microRNA expression profiles. Two
different classification methods were employed: SVM with linear
kernel, which has the advantage that there is only one adjustable
kernel parameter (cost) to tune, and TSP, which is computationally
simple, uses only two variables, is relatively unaffected by
normalization methodology, and does not require differential
expression of RNAs [42]. For SVM, variable filtering was done to
use the 15 most differentially expressed microRNAs determined
using limma’s moderated t-statistics, and an internal three-fold
cross-validation was first performed to select the optimal value for
cost to avoid biasing classification by adjusting this parameter on
the test set [52]. In LOOCV, a classifier was generated using a
training set of 44 samples and tested on the one remaining test
sample, for a total of 45 possibly different classifiers and 45
predictions. In MCCYV, the training and test sets had 36 and 9
samples, respectively, and the sets were randomly generated 1000
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times, for a total of 1000 possibly different classifiers and 9000
predictions.

Using TSP, the prediction accuracy, sensitivity, and specificity
determined in LOOCYV were 96%, 91%), and 100%, respectively.
MicroRNAs miR-630 and miR-1284 formed the best top-scoring
pair and thus the classifier in all 45 iterations of LOOCV. A
scatter-plot of the microarray signal values for the two micro-
RNAs, of which only miR-1284 is differentially expressed (table
S2), shows the clear separation of cases and controls based on the
ratios of these two microRNAs (figure S2). In MCCV, the means
(and ranges and SDs) of prediction accuracy, sensitivity, specificity,
were 92% (22-100, 13), 86% (0-100, 19), and 97% (0-100, 13),
respectively. Thirty-five different microRNAs constituted the two-
microRNA classifiers obtained in the 1000 iterations. MicroRNAs
miR-630 and miR-1284, also identified in the LOOCV analysis,
were present in 947 and 918 of the classifiers, respectively, while
the next most common microRNA was present in only 23. As
expected, changing the sizes of training and test sets affected
classifier performance (e.g., the mean accuracy increased from
75% at a training set-size of 12 to 95% at 42; figure S3).

Using SVM, the prediction accuracy, sensitivity, and specificity
values determined in LOOCV were all 91%. Twenty-four
microRNAs were present in one or all of the 45 15-microRNA
classifiers, eight (including miR-1284) of which were present in all.
In MCCV, the means (with range and SD) of prediction accuracy,
sensitivity, and specificity were 88% (44-100, 11), 88% (25-100,
17), and 89% (0-100, 16), respectively. Eighty-seven different
microRNAs constituted the 15-microRNA classifiers obtained in
the 1000 iterations. MicroRNAs miR-190b, miR-942 and miR-1284
were present in all of them. Changing the sizes of training and test
sets affected classifier performance, though not as much as seen for
TSP. For instance, increasing the training set size from 18 to 42
resulted in only a modest increase in mean accuracy, from 82% to
87% (figure S3). Overall, the two classification methods, SVM and
TSP, identified four microRNAs (miR-190b, miR-630, miR-942,
and miR-1284) that were present in a majority of the classifiers that
were generated in the cross-validation analyses. The expression of
these four microRNAs among the cases and controls is shown in
figure 3.

Effect of Age on MicroRNA Expression Profiles

Because of the significant difference in age between cases and
controls (table 1), its effect on microRINA expression profile and its
diagnostic utility was examined. The median age of the study
population was used to separate it into cohorts of 22 young (age
<68 years; 4 cancer cases and 18 controls) and 23 old (age =68
years; 18 cancer cases and 5 controls) subjects. Using limma’s t-
statistics as described above, 65 (16%) of the 395 expressed
microRNAs were identified as differentially expressed between the
young and the old. Fifty-one (78%) of the 65 are among the 96
microRNAs differentially expressed between the lung cancer cases
and controls, suggesting that age may have had a significant effect
on the identification of microRNA expression differences between
the cancer cases and controls.

In Pearson correlation analyses of age and microarray signal
values, though a significant correlation (|r|>0.4) between
microarray signal values and age was seen for only 22 (6%) of
the 395 expressed microRNAs, 20 (91%) of the 22 were
differentially expressed between cancer cases and controls, and
12 (55%) of the 22 were among the 24 microRNAs present in one
or all of the 45 15-microRNA classifiers obtained in LOOCYV with
the SVM method. In contrast, expression of 132 (33%) of the 395
expressed microRNAs, with 35 (27%) of the 132 among the 96
microRNAs differentially expressed between cancer cases and
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microarray signal values for the 22 cases (black) and 23 controls (grey) are shown for the four microRNAs that are present in a majority of the classifiers
generated in internal cross-validation analyses using the linear support vector machines and top-scoring pairs classification methods.

doi:10.1371/journal.pone.0046045.9003

controls, correlated with the WBC count with |r|>0.4. For blood
hemoglobin and platelet count, and for age if its values were
resampled to simulate a random value distribution, |r|>0.4 was
seen for 1.5%, 3% and 1.3% of the 395 expressed microRNAs,
respectively (figure 4B).

To evaluate the effect of age further, receiver-operating
characteristics analysis was used to determine if age could
distinguish between cases and controls. Unlike blood parameter
values for which AUCs were not significantly higher than 0.5, the
AUC for age was 0.82 (figure 4A). This suggests that age has the
potential to distinguish between cancer cases and controls.
However, the AUC of 0.82 was significantly less (P<<0.05 in the
DeLong AUC comparison test [53]) than the AUC values of 0.95
and 1 seen respectively for ratios of microarray signal values for
miR-630 and miR-1284, the best top-scoring pair identified by the
TSP method in the set of all 45 samples, and the probability values
for being a case determined using a linear kernel SVM identified
for the 45 samples (figure S4). Whether consideration of age along
with microRNA expression data would improve classification was
examined by receiver-operating characteristics analysis of the
probability values obtained in LOOCYV using the SVM method.
The AUC without age being considered was 0.939 and it
decreased slightly to 0.937 when age was included as a variable
along with microRNA expression. Further, the prediction
accuracy, sensitivity, and specificity, also declined slightly, by
2.2, 0, and 4.3 percentage units, respectively. This analysis,
however, does not suggest that the diagnostic power in the
microRNA expression profiles was uninfluenced by age because
microRNA expressions were themselves affected by age.

Binary classification analysis with the TSP method in LOOCV
showed that the microRNA expression profiles could be used to
classify subjects into young (<68 years) or old with accuracy,
sensitivity and specificity of 73%, 70% and 77%, respectively.
With the SVM method, the values were 67%, 70% and 64%,
respectively. As detailed earlier, prediction accuracy, sensitivity
and specificity were all >90% for classification of subjects into
cancer cases and controls. This suggests that the microRNA
expression profiles, though likely influenced by age, had informa-
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tion content that could be used to separate cases and controls by
their lung cancer status.

Discussion

Changes in whole blood microRNA expression profiles because
of diseases have been noted for both non-malignant conditions,
such as myocardial infarction [28] and sarcoidosis [29], and
cancers of tissues such as breast [24] and ovary [25]. This study
sought to examine if such changes also occur in lung cancer. As
referenced earlier, at least 14 studies have documented microRNA
alterations in serum or plasma in lung cancer. The biological basis
of such alterations remains unclear, and it is possible that it lies to
at least some degree in the body’s systemic response and/or
genetic susceptibility to cancer. If so, it might be manifested in
changes in whole blood microRNA expression patterns. Com-
pared to serum or plasma, whole blood is easier to collect and has
200-1000x more RINA content, which facilitates reliable and
accurate global microRNA expression measurements using less
clinical material. It should be noted that mature red blood cells
(RBCs), whose cell concentration in blood is about 500 higher
than that of WBCs and whose cellular mass per volume of blood is
about 200 x higher than that of platelets, bear a majority of whole
blood microRNAs. MicroRNA concentration in mature RBCs is
estimated to be similar to that in nucleated cells [54], and some
microRNAs, such as miR-16 and miR-451 are present at more than
a million-fold higher level in RBCs than plasma [55].

In this study, whole blood microRNA expression in lung cancer
cases was compared to that in controls who did not have the
disease but were clinically relevant because they had radiograph-
ically detected pulmonary nodules or were at high risk of
developing lung cancer because of a significant smoking history
(tables 1 and S1). Such types of subjects are commonly
encountered in routine clinical practice and lung cancer screening
programs. All the cases of this study had lung cancer of
adenocarcinoma histology at pathologic stage IA-IIIB, and were
similar to controls for history of smoking, gender, ethnicity, and
blood hemoglobin levels, WBC and platelet counts (tables 1 and
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S1). Cigarette smoking is known to alter expression of circulating
microRNAs [56], and changes in blood cell counts reflecting
anemia, leukocytosis and thrombocytosis are frequently seen in
lung cancer (e.g., [57,58,39]).

Significant differences in expression of 96 microRNAs were
observed between the lung cancer cases and controls (figure 2B,
and tables 2 and S2). These microRNAs included miR-21 and
miR-210, but not miR-30a, miR-31, miR-126, miR-145, or miR-
182, all of which have been shown in multiple studies as
differentially expressed between normal and cancerous lung
tissues [60]. This discrepancy between microRNA expression
changes in cancer tissues and in the circulating blood in lung
cancer has been noted before [9,61], and suggests that many of
the differentially expressed microRNAs seen in this study do not
originate from lung tissue. The changes in their levels likely
reflect a systemic response or susceptibility to cancer. The 96
differentially expressed microRNAs of this study included
microRNAs such as miR-17 [9] and miR-574-5p [62], but not
miR-27b [8] or muR-155 [11], serum or plasma levels for all of
which have been associated with presence of lung cancer. This
observation can be expected from the difference in the types of
cells that contribute to microRNA expression in whole blood and
in extracellular circulation.

In unsupervised clustering analysis of the whole blood
microRNA expression profiles, the cases and controls in this study
segregated to a good degree (figure 2A). The biomarker potential
of microRNA expressions to diagnose lung cancer was examined
with internal cross-validations in classification analyses using two
different methods (SVM and TSP), which yielded accuracy,
sensitivity and specificity values ranging from 86% to 100%. Age
was identified as a confounder for these results. The controls in this
study were significantly younger than the cases (tables 1 and S1).
The young and old subjects differed for the expression of 65
microRNAs, 78% of which were also identified as differentially
expressed between cancer cases and controls. Of the 22
microRNAs whose expression had good correlation with age
(figure 4B), 91% were differentially expressed between cancer
cases and controls. However, in receiver-operating characteristics
analyses, microRNA expression performed better at discerning
cancer than age, with AUC values of 0.94 and 0.82 (figure 4A),
respectively, and microRNA expression could classify lung cancer
better than age in LOOCYV analyses, with accuracy values of 91%
and 67%, respectively. It thus appears that in spite of the effect of
age, whole blood microRNA expression could be used to
distinguish the lung cancer cases from the controls.

Four other studies have shown the association of changes in whole
blood microRNA expression with lung cancer. However, there is
minimal overlap between the significant microRNAs identified in
these studies. For example, let-7a expression, identified as reduced in
whole blood of lung cancer cases in the study of Jeong, et al. [33] was
not significantly different between cases and controls in the current
study and two otherstudies [32,34]. Similarly, only eightand 10 of the
differentially expressed microRNAs of the current study are also
differentially expressed as per the studies of, respectively, Leidinger, et
al. [34] and Keller, et al. [31]. MicroRNAs miR-190b, miR-630, miR-
942, and miR-1284, the most frequent constituents of the classifiers
generated in the current study, are not differentially expressed
between cases and controls in the data-sets of either Keller, et al. or
Leidinger, et al. as per the limma-based test used in the current study.
Neither has been any of these microRNAs reported as differentially
expressed between lung cancer cases and controls in a recent
transcriptome sequencing study of whole blood microRNAs [32].
Thislow discordance between the findings of this study and the others
could be a result of the different microRNA quantification platforms
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used in the studies, or could be because clinical and demographic
profiles of the case and control cohorts vary significantly among these
studies. For instance, the controls in the study of Keller, et al. are
significantly younger than the cases whereas cases and controls are of
similar age in the study of Jeong, et al. Similarly, the controls used in
the Leidinger study were selected from a cohort of chronic
obstructuve pulmonary disease patients while the controls in the
study of Keller, et al. were all healthy.

Many of the controls in the current study did not undergo
radiological investigations like computerized tomography whereas
all the cases did. Radiation exposure, even at low dosage, has been
shown to significantly affect levels of microRNAs in blood
[63,64,65]. It is therefore possible that some of the changes in
microRNA expression noted here are actually consequent to
radiation exposure. Similar differences between the cases and
controls for other environmental factors such as use of medica-
tions, many of which have been shown to influence blood
microRNAs [66,67], may also underlie the observations of this
study. Blood microRNA expression profiles appear to reflect the
physiological state of the body as well, as suggested by studies that
have examined their correlations with age [68], blood pressure
[66], diurnal state [69], gender [56], mental anxiety [70], physical
stress [71], etc.

It is clear that one has to judge with good temperance the
association of blood microRNAs with lung adenocarcinoma that is
noted in this investigation, which is beset with small sample-size,
significant age difference between cases and controls, and use of
two types of controls. Additional studies with large sample sizes,
and case and control cohorts matched for important variables such
as age, gender, smoking status, and blood cell counts are required
to confirm the association of whole blood microRNA changes with
lung cancer. Identification of specific microRNA biomarkers for
clinical utility will require the use of an appropriate and precisely
defined control population. Comparison of microRNA expression
before and after tumor resection may also be useful in identifying if
these biomarkers can detect the presence of lung cancer or predict
individual susceptibility.

Supporting Information

Figure S1 Scatter-plot of mean microarray signal values
of expressed RNAs in the two cohorts. Means for each of the
407 probes for which the target RNAs are considered expressed
for the 22 cases are plotted against the means for the 23 controls
(black dots). Some probes recognize multiple species of RINAs. Error
lines indicating the standard deviations for the case and control
cohorts are shown in red and green, respectively. The grey line
represents x =y. Axes are on a logy scale.

(TIF)

Figure S2 Expression of miR-630 and miR-1284. Micro-
array signal values for miR-630 and miR-1284 that constitute the
best top-scoring pair (I'SP) in TSP analysis of microRNA
expression profiles of the 22 cases (black) and 23 controls (grey)
are plotted.

(TTF)

Figure S3 Effect of training-set size on performance of
classifiers in Monte Carlo cross-validation analyses.
Mean and 95% confidence interval values for accuracy, sensitivity,
specificity, and positive and negative predictive values of varying
training-set sizes in Monte Carlo cross-validation analyses using
the top-scoring pairs (75P) or support vector machines (SVAM,
linear kernel) classifier methods are shown along the left 1" axis.
The total number of microRNAs constituting the 1000 classifiers
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generated for each training-set size is shown along the right 1 axis.
Analyses were performed as described in the Material and methods
section for the particular case of a training-set size of 36.

(TIF)

Figure S4 Receiver operating characteristic curves for
top-scoring pairs (TSP) and support vector machines
(SVM) classifier methods. On left, the curve shows the
association with the presence of lung adenocarcinoma of the ratio
of microarray signals for miR-630 and miR-1284 that constitute the
best pair of expressed microRNAs identified by the TSP method in
the 45 samples of the study. On right, the variable is the
probability for membership in the class of lung adenocarcinoma
cases calculated from the best linear kernel SVM determined using
all 45 samples of the study. Areas under curve (AUC) are also
shown.

(TTF)

Table S1
details.

(PDF)

Case-specific demographic and clinico-pathologic
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