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Abstract

Macrophages play a key role in obesity-induced inflammation. Omega-3 polyunsaturated fatty acids (v-3 PUFAs)
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert anti-inflammatory functions in both humans and animal
models, but the exact cellular signals mediating the beneficial effects are not completely understood. We previously found
that two nutrient sensors AMP-activated protein kinase (AMPK) and SIRT1 interact to regulate macrophage inflammation.
Here we aim to determine whether v-3 PUFAs antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway.
Treatment of v-3 PUFAs suppresses lipopolysaccharide (LPS)-induced cytokine expression in macrophages. Luciferase
reporter assays, electrophoretic mobility shift assays (EMSA) and Chromatin immunoprecipitation (ChIP) assays show that
treatment of macrophages with v-3 PUFAs significantly inhibits LPS-induced NF-kB signaling. Interestingly, DHA also
increases expression, phosphorylation and activity of the major isoform a1AMPK, which further leads to SIRT1 over-
expression. More importantly, DHA mimics the effect of SIRT1 on deacetylation of the NF-kB subunit p65, and the ability of
DHA to deacetylate p65 and inhibit its signaling and downstream cytokine expression require SIRT1. In conclusion, v-3
PUFAs negatively regulate macrophage inflammation by deacetylating NF-kB, which acts through activation of AMPK/SIRT1
pathway. Our study defines AMPK/SIRT1 as a novel cellular mediator for the anti-inflammatory effects of v-3 PUFAs.
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Introduction

Chronic inflammation has emerged as one of the key

physiological mechanism linking obesity to insulin resistance/type

2 diabetes [1]. Obesity-associated chronic inflammation features

increased production of pro-inflammatory cytokines and activation

of the inflammatory pathways in key metabolic tissues [1]. It is

increasingly recognized that adipose tissue plays a key role in

obesity-induced inflammation [1]. Further studies provided solid

evidence that adipose tissue in obesity displays increased

infiltration of macrophages, and that a major source of the

adipose inflammation comes from infiltrated macrophages [2,3].

The role of macrophages in obesity-induced inflammation and

insulin resistance has been extensively investigated in a number of

genetic models [4,5,6,7]. For instance, targeted deletion of IKK-b
in myeloid lineage cells protected mice from high-fat (HF) diet-

induced inflammation and insulin resistance [4]. Similarly, JNK1

deletion in hematopoietic cells including macrophages also

ameliorated obesity-induced inflammation and insulin resistance

in mice [5]. In contrast, myeloid specific deletion of peroxisome

proliferator activated receptor-c (PPAR-c) increased systemic

inflammation and impaired insulin sensitivity in mice [6,7]. These

genetic studies demonstrate that altered macrophage inflammation

plays a critical role in obesity-induced inflammation and thereby

leads to systemic insulin resistance in obesity. Therefore, searching

for novel agents that can antagonize macrophage inflammation

may represent a therapeutic strategy for the prevention and

treatment of insulin resistance and type 2 diabetes.

v-3 polyunsaturated fatty acids (v-3 PUFAs) have shown potent

anti-inflammatory effects in disease models featuring chronic

inflammation [8,9](see reviews [10,11,12]). The mechanisms

underlying v-3 PUFAs’ anti-inflammatory functions have received

investigation. Several plausible theories have been advanced to

explain the ability of v-3 PUFAs to antagonize inflammation and

include competitive inhibition of conversion of arachidonate to

pro-inflammatory lipid intermediates, serving as endogenous

ligands for PPARc, generation of anti-inflammatory lipid medi-

ators such as resolvins and protectins, and activation of GPR120

[11,13,14,15,16,17,18]. However, the cellular signals mediating v-

3 PUFAs’ anti-inflammatory effects are not completely under-

stood.

We previously found that two nutrient sensors AMP-activated

protein kinase (AMPK) and SIRT1 interact to regulate macro-

phage inflammation [19]. Indeed, AMPK activation deacetylates

NF-kB, which acts through SIRT1, and therefore leads to

inhibition of NF-kB signaling and cytokine expression [19]. Our
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observations raise an interesting question as to whether the anti-

inflammatory effects of v-3 PUFAs may be through activation of

the AMPK/SIRT1 pathways. To address this hypothesis, we

measured cytokine expression, and examined NF-kB signaling in

v-3 PUFA-treated macrophages using luciferase reporter assays,

electrophoretic mobility shift assays (EMSA) and Chromatin

immunoprecipitation (ChIP) assays. We also examined the effects

of v-3 PUFAs on AMPK expression, phosphorylation and activity,

and SIRT1 expression in macrophages. We further tested the

ability of v-3 PUFAs to deacetylate the NF-kB subunit p65 and

determined whether SIRT1 is required for v-3 PUFAs to inhibit

NF-kB signaling and its downstream cytokine expression in

SIRT1-knockdown macrophages.

Results

v-3 PUFAs suppress LPS-induced cytokine expression in
macrophages via antagonizing NF-kB pathway

We first determined the ability of v-3 PUFAs to antagonize

macrophage inflammation. We found that pre-treatment of

Raw264.7 macrophages with v-3 PUFA mixture EPA/DHA

(50 mM each) significantly suppressed LPS-induced expression of

pro-inflammatory genes including TNF-a, IL-6, IL-1b, and iNOS

(Fig. 1). This is consistent with the findings we and others have

previously reported in macrophages [20,21,22]. To explore

whether v-3 PUFAs acts on the NF-kB pathway to antagonize

cytokine expression, we established a NF-kB reporter system

where 293T cells were transiently transfected with expression

vectors for TLR4 and its cofactor MD-2, together with NF-kB

luciferase reporter constructs. Cells were then pre-treated with

EPA/DHA mixture (50 mM each) overnight and stimulated with

LPS (100 ng/ml). Fig. 2A shows that v-3 PUFAs significantly

suppressed NF-kB luciferase reporter activity induced by LPS in

293T cells transfected with TLR4 and MD-2 expression vectors.

To further determine whether v-3 PUFAs antagonize the NF-kB

signaling in macrophages with endogenous TLR4 and its signaling

machinery, Raw264.7 cells were transfected with NF-kB luciferase

reporter constructs alone. In consistence, pre-treatment of v-3

PUFAs inhibited LPS-induced NF-kB luciferase reporter activity

in macrophages (Fig. 2B). We next determined what step(s) in the

TLR4 signaling cascade v-3 PUFAs act on to antagonize NF-kB.

Raw cells were transfected with expression vectors of constitutively

active (CA) form of MyD88, an immediate adaptor protein of

TLR4. We found that v-3 PUFAs were still able to inhibit NF-kB

reporter activation induced by CA-MyD88 (Fig. 2C), suggesting

that v-3 PUFAs likely act on the downstream signal(s) of TLR4 to

inhibit NF-kB. We then performed EMSA to further confirm the

inhibitory effect of v-3 PUFAs on endogenous NF-kB signaling in

macrophages. As shown in Fig. 2D, treatment of Raw cells with

v-3 PUFAs prevented NF-kB DNA binding stimulated by LPS

(100 ng/ml). We next performed chromatin immunoprecipitation

(ChIP) assays to examine the NF-kB subunit p65 binding to the

consensus sequence of the IL-6 promoter. Similarly, v-3 PUFAs

blocked LPS-induced p65 DNA binding to the IL-6 promoter

(Fig. 2E, left panel). Using SYBR Green PCR to quantitate the

immunoprecipitated DNA from the ChIP assays, we further

confirmed the inhibitory effects of v-3 PUFAs on p65 DNA

binding to the IL-6 promoter (Fig. 2E, right panel). These data

suggest that the anti-inflammatory effect of v-3 PUFAs is mainly

mediated via inactivation of NF-kB signaling.

v-3 PUFAs activate AMPK and enhances SIRT1 expression
in macrophages

We previously found that two nutrient sensors AMP-activated

protein kinase (AMPK) and SIRT1 interact to regulate macro-

phage inflammation [19]. Therefore, we determined whether v-3

PUFAs antagonize macrophage inflammation via activation of

AMPK/SIRT1 pathways. We found that treatment of Raw264.7

macrophages with the v-3 PUFA DHA for 24 hours significantly

stimulated AMPK phosphorylation and a1AMPK activity (Fig. 3A
and 3B). DHA treatment also increased a1AMPK protein levels

(Fig. 3A), which may contribute to the increased AMPK

phosphorylation and activity. AMPK and SIRT1 show striking

similarities in sensing nutrient supply and regulating metabolic

pathways and are likely to interact to perform these functions. We

previously demonstrated that activation of AMPK increases

SIRT1 expression in macrophages [19]. Here we determined

whether activation of AMPK signaling by v-3 PUFAs increases

SIRT1 expression. Using macrophages with a1AMPK knock-

down by lentiviral ShRNA [19], we found that DHA treatment

significantly enhanced SIRT1 protein levels, while DHA was

unable to do so in a1AMPK knockdown cells (Fig. 3C),

suggesting that the ability of v-3 PUFAs to stimulate SIRT1

expression requires AMPK.

SIRT1 is required for v-3 PUFAs to deacetylate NF-kB and
antagonize its signaling in macrophages

We have previously shown that SIRT1 antagonizes NF-kB

(p65) activity by deacetylating its lysine 310 in macrophages [19].

We tested whether v-3 PUFAs are also capable of deacetylating

NF-kB in macrophages, which requires SIRT1. Using macro-

phages with SIRT1 knockdown by lentiviral ShRNA [19], we

found that in control cells, treatment of the v-3 PUFA DHA

substantially blocked acetylation of p65 at lysine310 induced by

p300 (Fig. 4A), an acetyltransferase widely used to acetylate p65

[19]. Quantitation of the blot showed that p300 transfection

stimulated a 3.5-fold increase of p65 acetylation, while DHA

treatment significantly blocked this stimulation by more than 50%

(p,0.05, Fig. 4B). In contrast, DHA failed to fully deacetylate

p65 at lysine310 in SIRT1 knockdown cells (Fig. 4A). In SIRT1

knockdown cells, p300 transfection markedly increased p65

acetylation by 5.1 folds. However, DHA treatment failed to

prevent the stimulation of p65 acetylation by p300 in knockdown

cells (p = 0.2, Fig. 4B). We further determined whether SIRT1 is

required for v-3 PUFAs to antagonize NF-kB signaling. DHA

treatment substantially blocked LPS-stimulated NF-kB reporter

activity in control macrophages, whereas DHA failed to exert the

same action in SIRT1 knockdown macrophages (Fig. 5). We

finally measured the downstream target genes of NF-kB. In

parallel, DHA significantly suppressed LPS-induced expression of

pro-inflammatory genes including TNF-a, IL-1b, and iNOS, in

control cells, but not in SIRT1-knockdown cells (Fig. 6).

Therefore, these data indicate that SIRT1 mediates the anti-

inflammatory effects of v-3 PUFAs in macrophages.

Discussion

This study was designed to test the hypothesis that v-3 PUFAs

antagonize macrophage inflammation through activation of

AMPK/SIRT1 pathways. The plausibility of this hypothesis was

driven by several prior findings on v-3 PUFAs’ anti-inflammatory

effects and AMPK and SIRT1 as novel cellular mediators linking

nutrient metabolism and inflammation. First, we and others have

previously shown that v-3 PUFAs antagonize macrophage

inflammation [20,21,22]. However, the cellular mechanisms

v-3 PUFAs Inhibit Inflammation via AMPK/SIRT1
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underlying the anti-inflammatory effects of v-3 PUFAs are not

completely understood. Second, we recently demonstrated that

two nutrient sensors AMPK and SIRT1 negatively regulate

macrophage inflammation [19]. It would be interesting to know

whether these two nutrient sensors also respond to v-3 PUFAs, a

group of beneficial nutrients commonly seen in supplementation

(fish oil) and dietary sources (e.g. fish), and mediate their anti-

inflammatory effects. Indeed, we found that v-3 PUFAs activate

AMPK and SIRT1 pathways that in turn deacetylate the NF-kB

subunit p65 and down-regulate its signaling, leading to suppression

of pro-inflammatory gene expression.

The most significant finding in our study is that the anti-

inflammatory effect of v-3 PUFAs may be mediated through

activation of AMPK/SIRT1 pathways, which results in down-

regulation of NF-kB signaling by deacetylating its subunit p65. We

previously demonstrated that AMPK and SIRT1 can detect excess

nutrients in diet-induced obesity and serve as negative regulators

of nutrient stress-induced inflammation [19]. We found that

Figure 1. v-3 PUFAs suppress LPS-induced pro-inflammatory gene expression. Raw264.7 macrophages were pre-treated with v-3 PUFA
mixtures EPA/DHA (50 mM each) for 24 hours and then treated with LPS (100 ng/ml) in the presence or absence of v-3 PUFA for additional 4 hours.
The expression of pro-inflammatory genes was measured by real-time RT-PCR and normalized to cyclophilin. All data are expressed as mean 6 SE,
n = 6. Statistical significance is indicated by the presence of different superscripts. Groups labeled with the same superscripts are not statistically
different from each other. Groups labeled with different superscripts are statistically different from each other. A.U.: Arbitrary Units.
doi:10.1371/journal.pone.0045990.g001

Figure 2. v-3 PUFAs antagonize NF-kB signaling in macrophages. (A) v-3 PUFAs suppress TLR4/NF-kB signaling in transfected 293T cells.
293T cells were transfected with TLR4/MD-2 expression vectors, and NF-kB luciferase reporter constructs. Transfected cells were pre-treated with v-3
PUFA mixtures EPA/DHA (50 mM each) for 24 hours and then stimulated with LPS (100 ng/ml) in the presence or absence of v-3 PUFA for additional
24 hours. NF-kB luciferase activity was measured using a Dual-Luciferase Reporter Assay. A.U.: Arbitrary Units. (B) v-3 PUFAs suppress the NF-kB
signaling in macrophages. Raw264.7 macrophages were transfected with NF-kB luciferase reporter constructs alone. The treatment is the same as
described in (A). (C) v-3 PUFAs act on the downstream signal(s) of TLR4 to inhibit NF-kB. Raw264.7 macrophages were transfected with CA-MyD88
expression vectors and NF-kB luciferase reporter constructs. (D) v-3 PUFAs blocks NF-kB DNA binding. EMSA was conducted to examine the NF-kB
DNA binding and was conducted as described in Materials and Methods. (E) v-3 PUFAs blocks the NF-kB subunit p65 binding to the IL-6 promoter.
ChIP assays were conducted to examine p65 DNA binding and were conducted as described in Materials and Methods. SYBR Green quantitative PCR
was used to quantitate the immunoprecipitated DNA. For (A)–(C), all data are expressed as mean 6 SE, n = 6. Groups labeled with the same
superscripts are not statistically different from each other. Groups labeled with different superscripts are statistically different from each other.
doi:10.1371/journal.pone.0045990.g002
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AMPK signaling in adipose tissue and macrophages are substan-

tially down-regulated by inflammatory stimuli LPS and in diet-

induced obesity [19]. To test whether the down-regulation of

AMPK signaling might be physiologically significant and contrib-

utes to obesity-induced inflammation, we explored the role of

AMPK in regulation of macrophage inflammation in both gain-

and loss- of function studies. We showed that AMPK activates

SIRT1 to suppress macrophage inflammation [19]. The under-

lying mechanism includes the ability of AMPK and SIRT to

deacetylate NF-kB, whose acetylation status affect NF-kB activity

and signaling [23]. Based on these observations, we determined: 1)

whether AMPK/SIRT1 not only detects excess unhealthy

nutrients (e.g. saturated lipids) associated with obesity, but also

responds to healthy nutrients (e.g. v-3 PUFAs) beneficial for

prevention and treatment of obesity-associated metabolic disor-

ders; and 2) whether activation of AMPK/SIRT1 in response to

v-3 PUFAs antagonizes macrophage inflammation via antago-

nism of NF-kB signaling by deacetylating p65. We found that v-3

PUFAs increase expression, phosphorylation and activity of the

major isoform a1AMPK in macrophages, which further leads to

SIRT1 over-expression. Our data suggest that AMPK indeed

responds to v-3 PUFAs. It is noteworthy that other anti-

inflammatory/anti-oxidants such as polyphenols can also activate

AMPK [24]. It appears that both inflammatory and anti-

inflammatory signals converge on AMPK that in turn exerts its

actions to regulate inflammation. To study the consequence of

AMPK/SIRT1 activation by v-3 PUFAs, we examined the NF-

kB acetylation and signaling. We found that the v-3 PUFA DHA

mimics the effect of SIRT1 to deacetylate NF-kB, and SIRT1

mediates the effect of DHA in deacetylation of NF-kB and

inhibition of its signaling. v-3 PUFAs’ anti-inflammatory functions

have been extensively investigated and a number of potential

mechanisms have been proposed. For instance, v-3 PUFAs can

competitively inhibit the conversion of arachidonate to pro-

inflammatory lipid intermediates [16,17]. v-3 PUFAs have also

been shown to serve as endogenous ligands for PPARc [18], a

known signal that has anti-inflammatory function. Serhan’s and

his colleagues have also identified the anti-inflammatory lipid

mediators such as resolvins and protectins that mediate v-3

PUFAs’ effects [13,14,25]. More recently, Olefsky’s group has

Figure 3. v-3 PUFAs activate AMPK and enhances SIRT1
expression in macrophages. (A) v-3 PUFAs increasesa1AMPK
protein levels and phosphorylation. Raw264.7 macrophages were
treated with DHA (100 mM) for 24 hours. a1AMPK protein and AMPK
phosphorylation (Thr172) was measured by immunoblotting with
specific antibodies. (B) v-3 PUFAs increase a1AMPK activity. Raw264.7
macrophages were treated with DHA (100 mM) for 24 hours. a1AMPK
activity was measured using an immunocomplex assay with SAMS
peptide as described in Materials and Methods. Data are expressed as
mean 6 SE, n = 6. Groups labeled with the same superscripts are not
statistically different from each other. Groups labeled with different
superscripts are statistically different from each other. (C) DHA
enhances SIRT1 protein levels in control but not in a1AMPK knockdown
cells. Macrophages with a1AMPK knockdown were treated with DHA
(100 mM) for 24 hours. SIRT1 protein was measured by immunoblotting
with specific antibody.
doi:10.1371/journal.pone.0045990.g003

Figure 4. SIRT1 knockdown reduces the ability of v-3 PUFAs to
deacetylate NF-kB in macrophages. A representative blot was
shown in (A), and the blots were quantitated with a Li-COR Odyssey
Infrared System (B). The SIRT1 knockdown or control macrophages were
transfected with expression vectors for p65 or p300, and were then
treated with DHA (100 mM) for 24 hours. Acetylation of p65 at lysine310
and SIRT1 protein were measured by immunoblotting with specific
antibody. Groups labeled with the same superscripts are not statistically
different from each other. Groups labeled with different superscripts are
statistically different from each other.
doi:10.1371/journal.pone.0045990.g004

Figure 5. SIRT1 knockdown reduces the ability of v-3 PUFAs to
antagonize NF-kB signaling in macrophages. The SIRT1 knock-
down or control macrophages were transfected with NF-kB luciferase
reporter constructs. Transfected cells were pre-treated with DHA
(100 mM) for 24 hours and then stimulated with LPS (100 ng/ml) in
the presence or absence of v-3 PUFA for additional 24 hours. NF-kB
luciferase activity was measured using a Dual-Luciferase Reporter Assay.
Data are expressed as mean 6 SE, n = 6. Groups labeled with the same
superscripts are not statistically different from each other. Groups
labeled with different superscripts are statistically different from each
other. A.U.: Arbitrary Units.
doi:10.1371/journal.pone.0045990.g005
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reported a novel G-protein coupled receptor GPR120 that

mediates the potent anti-inflammatory actions and insulin

sensitizing effects of v-3 PUFA. It is not clear how v-3 PUFA

regulation of AMPK/SIRT1 would fit and interact with the other

pathways to regulate inflammation. It is possible that these

pathways may be intertwined. For example, as a ligand, v-3

PUFAs can activate PPARc that has been shown to activate

AMPK [26,27]. It is also noteworthy that although we demon-

strate that anti-inflammatory effect of v-3 PUFAs is mediated

through antagonism of NF-kB signaling, we do not exclude the

possibility that v-3 PUFAs may also act on other inflammatory

pathways such as JNK and iKK, which appears to be down-

regulated by v-3 PUFAs in previous reports [9,15]. It is

conceivable that all these pathways may not be mutually exclusive,

and probably have crosstalk.

In summary, we first demonstrate that v-3 PUFAs suppress

LPS-induced cytokine expression in macrophages. The anti-

inflammatory effect of v-3 PUFAs is likely mediated through

antagonism of NF-kB signaling. We then demonstrate that

AMPK/SIRT1 pathways are downstream signals that mediate

v-3 PUFAs’ anti-inflammatory effects. v-3 PUFAs activates

AMPK signaling by increasing its protein levels, which further

leads to increased SIRT1 protein expression. More importantly,

DHA mimics the effect of SIRT1 on deacetylation of NF-kB, and

the full capacity of DHA to deacetylate NF-kB and inhibit its

signaling and downstream cytokine expression requires SIRT1.

We conclude that v-3 PUFAs negatively regulate macrophage

inflammation by deacetylating NF-kB, which acts through

activation of AMPK/SIRT1 pathway. AMPK and SIRT1, two

classic energy sensors that play key roles in regulating energy

metabolism, may serve as novel cellular mediators for the anti-

inflammatory effects of v-3 PUFAs.

Materials and Methods

Antibodies and Reagents
Phospho-AMPK (Thr172) and acetyl-p65 (lysine-310) were

purchased from Cell Signaling (Beverly, MA). Rabbit polyclonal

antibodies against SIRT1 and a1AMPK were obtained from

Upstate (Lake Placid, NY). Rabbit polyclonal antibodies against

p65 and goat polyclonal antibodies against actin were from Santa

Cruz (Santa Cruz, CA). EPA and DHA were purchased from

Sigma-Aldrich (St. Louis, MO).

Cell culture
Raw264.7 macrophages were purchased from American Type

Culture Collection (ATCC, Manassas, VA) and cultured in

Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10%

heat-inactivated FBS.

AMPK activity
Cell lysates (50 mg) were immunoprecipitated with specific

antibodies (Upstate) against the a1 subunit bound to protein-G

sepharose beads. The kinase activity of the immunoprecipitates

was measured using ‘‘SAMS’’ peptide and [c-32P]ATP.

Plasmid constructs and transfection
Murine TLR4, MD-2, and MyD88-CA expression vectors were

described previously [20]. Raw264.7 macrophages or 293T cells

were transfected with expression vectors using a SuperFect

Transfection Reagent kit (Qiagen, Valencia, CA).

Luciferase reporter assay
pNFkB-Luc and pRL-SV40 vectors were purchased from BD

Biosciences-Clontech (Mountain View, CA). Luciferase activity

was measured using a Dual-Luciferase Reporter Assay kit

(Promega, Madison, WI).

Lentiviral ShRNA knockdown
SIRT1 and a1AMPK lentiviral ShRNA knockdown were

conducted as we previously described [19]. The SIRT1 and

a1AMPK lentiviral ShRNA vectors were purchased from Open

Biosystems (Huntsville, AL). The ShRNA lentivirus was generated

according to the instructions. Briefly, the ShRNA or control

lentiviral vectors were co-transfected with the packaging plasmid

(pCMV-dR8.91, the Broad Institute, Cambridge, MA) and the

envelope plasmid (VSV-G, the Broad Institute) into 293T cells.

Medium containing the lentivirus was harvested and filtered, and

was used to infect Raw264.7 cells. The infected cells were selected

with puromycin (8 mg/ml) for 8 days, and the surviving cells were

pooled and used for experiments.

Chromatin immunoprecipitation (ChIP) assay
ChIP was conducted using a ChIP assay kit (Upstate) as we

previously described [19]. Briefly, cells were fixed with 1% of

formaldehyde and then harvested in cell lysis buffer (5 mM PIPES,

85 mM KCl, and 0.5% NP-40, supplemented with protease

inhibitors, pH 8.0). The lysates were sonicated to shear genomic

Figure 6. SIRT1 is required for v-3 PUFAs to suppress LPS-induced expression of pro-inflammatory genes in macrophages. The SIRT1
knockdown or control macrophages were treated with DHA (100 mM) for 24 hours and then treated with LPS (100 ng/ml) in the presence or absence
of v-3 PUFA for additional 4 hours. The expression of pro-inflammatory genes was measured by real-time RT-PCR and normalized to cyclophilin. All
data are expressed as mean 6 SE, n = 6. Statistical significance is indicated by the presence of different superscripts. Groups labeled with the same
superscripts are not statistically different from each other. Groups labeled with different superscripts are statistically different from each other. A.U.:
Arbitrary Units.
doi:10.1371/journal.pone.0045990.g006

v-3 PUFAs Inhibit Inflammation via AMPK/SIRT1

PLOS ONE | www.plosone.org 5 October 2012 | Volume 7 | Issue 10 | e45990



DNA to an average fragment length of 200–1000 bp. Lysates were

centrifuged, and the supernatants were collected. The superna-

tants underwent overnight immunoprecipitation, elution, reverse

cross-link, and protease K digestion. A mock immunoprecipitation

with normal serum IgG was also included as a negative control for

each sample. The DNA recovered from phenol/chloroform

extraction was used for SYBR Green quantitative PCR (Strata-

gene, Santa Clara, CA), and the DNA quantitation value of each

sample was further normalized with the DNA quantitation of

individual input control.

Electrophoretic mobility shift assays (EMSA)
EMSA was conducted as we previously described [20]. The

consensus NF-kB oligonucleotides (Promega, Madison, WI) were

end-labeled with [c-32P]-ATP (Perkin Elmer, Boston, MA) using

T4 polynucleotide kinase (Promega). The protein-DNA complexes

were resolved on a Novex 6% DNA retardation gel (Invitrogen,

Carlsbad, CA). Gels were dried and analyzed by a phosphor-

imaging system (Molecular Dynamics, Sunnyvale, CA).

Total RNA extraction and quantitative RT-PCR
Macrophage total RNA was extracted using the Tri Reagent kit

(Molecular Research Center, Cincinnati, OH), according to

manufacturer’s protocol. The expression of genes of interest was

assessed by quantitative RT-PCR (ABI Universal PCR Master

Mix, Applied Biosystems, Foster City, CA) using a Stratagene

Mx3000p thermocycler (Stratagene, La Jolla, CA), as we

previously described [20]. The primer and probe pairs used in

the assays were purchased from Applied Biosystems.

Immunoblotting
Immunoblotting was conducted as we previously described [19].

Briefly, the transferred membranes were blocked, washed,

incubated with various primary antibodies overnight at 4uC, and

followed by Alexa Fluor 680-conjugated secondary antibodies

(Invitrogen) at room temperature for 2 hrs. The blots were

developed with a Li-COR Odyssey Infrared Imager system (Li-

COR Biosciences, Lincoln, NE).

Statistics
All data are expressed as mean6SEM. Data were evaluated for

statistical significance by one way ANOVA, and statistical

significance for comparison of means of different groups was

calculated by the least-significant-difference test using the SPSS

software package version 11.5. p,0.05 was considered significant.
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