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Abstract

Identification of discrete states is a common task when studying biological systems on microscopic scales. Here, we present
a novel step detection algorithm that is ideally suited to locate steplike features separating adjacent plateaus, even if they
are smooth and hidden by noise. It can be adjusted to detect very low or narrow steps that cannot be recognized by
conventional methods. We demonstrate the applicability of the technique on various experimental data and show strong
evidence of sub-10-pN steps in atomic force spectroscopy measurements performed with living lymphocytes.
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Introduction

Experimental data obtained by observing a biological system at

microscopic scales often reflects multiple discrete states, e.g. the

disruption of intermolecular bonds [1,2], the unfolding of proteins

[3,4], or the stepwise movement of a molecular motor [5,6,7]. The

study of such phenomena requires highly sensitive single-molecule

techniques like optical/magnetic tweezers or atomic force

microscopy. They are common tools to examine the kinetics of

molecular bonds or enzymatic activity [8], because their spatial

and force resolution is sufficient to analyze events on a nm and pN

scale, respectively. In contrast to ensemble measurements, they

allow revealing the mechanical properties of individual proteins

and resolving conformational changes. For example, observation

of the unbinding of membrane tubes pulled from living cells would

not be possible without single-molecule techniques. However, the

measured signal is impaired by thermal fluctuations, electronic

noise and vibrations, as the disturbances are generally of the same

order of magnitude. To analyze such data, an automated method

to identify the steps marking the transitions between the discrete

states of the investigated system is necessary. In a comparison of

existing detection algorithms, an iterative fit procedure (‘‘x2

method’’) proposed by Kerssemakers et al. [9] combined with a

moving average filter showed the best overall performance [10].

The window size of the mean filter can be optimized for the types

of steps to be recognized.

It is obvious that any information about the steps, such as their

average width or signal-to-noise ratio (SNR), i.e. the ratio between

height and the standard deviation of the noise, can be used to

increase the probability of successful detection. In practical

applications, these properties are often very similar for all steps,

and their approximate heights and widths are usually known. The

noise level can generally be determined from the measured data.

Here, it is demonstrated that significantly higher detection rates

can be obtained by a novel moving step fit (MSF) algorithm, which

makes use of this information. In contrast to other methods

optimized to identify changes between a small number of identical

states [11], MSF is intended to reveal transitions between arbitrary

discrete states. It allows the identification of low steps hidden in

experimental data, which have been unrecognized before due to

very low SNRs. By adjusting its fit window size, steps can be

detected within two extreme cases: low and wide steps with heights

far below the noise amplitude, as well as higher, but very narrow

steps separated by only a few data points.

Materials and Methods

x2 method
In contrast to the original approach by Kerssemakers et al. [9],

a windowed mean filter replacing each data point in the middle of

2lz1 consecutive points with their average value was applied to

the noisy data beforehand, because that has been shown to

increase the detection rate [10]. Then, a single step is fitted to

every possible position of the time trace, and the data is partitioned

at the location corresponding to the smallest x2 sum. The

procedure is repeated iteratively with both resulting parts until

the x2 sum has been determined for every data point. Values

below a threshold correspond to possible step positions. The

original Matlab implementation provided by the authors [9] was

used after adding the mean filter (The Mathworks, Natick, MA).

MSF algorithm
Initially, the noisy data yi sampled at time or space intervals xi is

pre-processed by convolution with a Gaussian kernel [12] with

standard deviation s. Thereby, both the source signal and the

noise are smoothed, but continuous parts, such as plateaus

between steps, are preserved. Then, a step of height hi is fitted at

position i in the middle of a moving window of size 2w

(wƒivN{w). Here, a piecewise linear fit function
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At each position the residual sum of squares (RSS) is calculated

for fi and gi. The term
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only takes on high values if the step function fi fits better than the

continuous function gi. Multiplication by the step height hi is

optional and assures that large steps are more likely to be detected.

Therefore, qi is an indicator for the probability of i to be a

potential step position. Consequently, local maxima exceeding a

threshold significantly above the statistical fluctuations of q can be

regarded as steps. If the number of steps, S, is known a priori, the

S highest local maxima define the step positions instead.

Generation of the test signals
Different types of test signals were used to evaluate the x2 and

MSF method (see table 1 and fig. S1):

Data set A consists of curves with S~2 steps of height one

separated by a variable distance (see example in fig. 1a).

For data set B, artificial force spectra were generated by Monte

Carlo simulations (see example in fig. 1b). They contain a given

number of steps, S, with randomly determined positions and

heights. In brief, for N~8192 tether extensions zi sampled at

small time intervals Dt~zN=Nv, the rupture probability

pi~koffDt was calculated from the force-dependent off-rate [13]

koff Fið Þ~k0
off exp

Fiw

kT

� �
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using the force
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k2zi
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exerted by a Kelvin body representing a single tether [14]. Each pi

is compared with a random number ri in the range ½0,1½ and the

first occurrence of piwri is considered a rupture event, i.e. Fj is set

to zero for ivjvN. To obtain curves with multiple steps, the

procedure is repeated and the forces Fi are summed up. The

experiment-specific parameters were chosen to mimic real single-

molecule force spectroscopy data obtained with biological cells

[14,15]: k1 = 1.6 pN/mm, k2 = 260 pN/mm, g = 5.9 mNs/m,

k0
off = 0:1 s{1, w = 1.8 A, T = 36uC, zN = 16.0 mm, v = 3.4 mm/

s. As it is common practice, forces are plotted with reversed sign.

To allow for a quantification of force resolution, data set C was

designed to contain steps with discrete heights – as opposed to the

continuous distribution of step heights resulting from the Monte

Carlo simulations. Exactly four steps with randomly chosen

heights (5, 10, 20, or 40 pN) were placed at fixed positions (2, 6,

10, and 14 mm). To resemble data set B, linear plateaus with slope

k1 were created between the steps.

The signals of data set A were contaminated with additive white

Gaussian noise. The artificial force curves of data sets B were

superimposed by normal-distributed random noise with a

frequency spectrum measured on a Nanowizard II atomic force

microscope (JPK, Berlin, Germany), and both types of noise were

applied to data set C.

White Gaussian noise was created by a Box-Muller transform

[16] of uniformly distributed random numbers generated by the

Mersenne Twister algorithm [17]. To reproduce unlimited

amounts of the instrumental noise, force signals free of sample-

specific effects were recorded with the atomic force microscope

and de-trended by subtraction of a linear baseline. Their average

spectral distribution was calculated by fast Fourier transform using

a block size of 28 and a Hann window to reduce spectral leakage.

Noise signals of various amplitudes were generated by inverse

Fourier transforms of this spectrum with uniformly distributed

random phase shifts.

Evaluation of the step detection algorithms
To evaluate the step detection performance of the algorithms

described above, their efficiencies are quantified to localize the

steps contained in the noisy test signals. The problem of finding an

estimate for the true number of steps, S, is excluded from the

analysis, because a wrong number would affect the results, so that

an unbiased comparison of the actual detection performance

would not be possible.

Both detection methods generate a measure for the estimated

probability (‘‘significance’’) of any data point to be a step. The S
highest local maxima of this indicator define the (potentially false)

identified step positions (fig. 1e and f). A detected step is rated a

false-positive if the deviation from its true position is greater than

Step Detection
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64 data points, and a true step is rated a false-negative if the

deviation from its detected position is greater than 64 data points.

Since S step candidates are tested, each missed true step implies

the false detection of a non-existent step and vice versa. Hence, the

numbers of false-positives and false-negatives are equal for each

test signal. The numbers of false detections were recorded and the

rate of successful detections was calculated according to the

formula

detection rate :¼:
S{number of false detections

S
ð11Þ

For each noise-free test signal, detection method, and noise

level, the evaluation was repeated at least 100 times with distinct

random noise.

The method-specific parameters were chosen to maximize

detection rates for the average SNRs and widths of the steps

contained in the test signals. This is only possible, because these

properties are a priori known. In practical applications, optimal

settings must be determined either manually or calibrated by

simulated data (see section ‘‘Parameter optimization’’). Data

evaluation was done with Matlab and Python.

Calculation of the step heights
Linear fits

fleft xð Þ~mleftxztleft ð12Þ

fright xð Þ~mrightxztright ð13Þ

were performed over up to 2048 data points to the left and to the

right of the identified step positions xstep, but no further than to the

neighboring detected steps. The step heights were determined

from the difference of the values of both fit functions at the

positions of the steps:

Table 1. Test signals used for the evaluation of the step detection algorithms.

data set description

A 2 steps with constant plateaus separated by a variable distance superimposed by additive white Gaussian noise of variable amplitudes (100 curves
for each step distance and noise level with N = 4200 data points)

B Monte Carlo simulations of force curves obtained by atomic force spectroscopy with a variable number of steps (1 to 100) at random positions
superimposed by instrumental noise of variable amplitudes (100 curves for each number of steps and noise level with N = 8192 data points)

C artificial force curves containing 4 steps at fixed positions (2, 6, 10, and 14 mm) with randomly selected heights (5, 10, 20, or 40 pN) superimposed
by white or instrumental noise with a standard deviation of 10 pN (1000 curves with N = 8192 data points)

doi:10.1371/journal.pone.0045896.t001

Figure 1. Evaluation of the MSF algorithm. a: Synthetic test signal containing two steps of height one separated by a defined distance (data set
A). b: Artificial AFM spectrum generated by Monte Carlo simulations mimicking an idealized (noise-free) force-distance curve typically obtained by cell
adhesion measurements (data set B). c: Clean signal superimposed by normal-distributed white noise. d: Clean signal superimposed by random AFM
noise with a standard deviation of 20 pN. e, f: Indicator of possible step positions calculated from the noisy signals by the MSF algorithm (blue). Local
maxima are used to identify the steps (see methods). Orange lines mark the true step positions, black dots correct detections, the green dot a false-
positive, and the red dot a false-negative.
doi:10.1371/journal.pone.0045896.g001

Step Detection
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Recording of the AFM spectra
A Nanowizard II atomic force microscope (JPK, Berlin,

Germany) was deployed to measure force-distance curves of b1

integrin-deficient Jurkat A1 lymphocytes with re-substituted b1

integrin [18] interacting with the VLA-4 ligand VCAM-1 as

Figure 2. Detection rates vs. noise amplitudes of the MSF and the x2 method applied to synthetic test signals. Every marker represents
the average rate over 100 curves with distinct random noise, with error bars indicating the standard errors. a: Two steps of height one separated by a
variable distance (data set A, see example in fig. 1c). The last plot shows the average detection rates over 33 step distances between 40 and 1000 data
points. Detection parameters were optimized for the constant SNRs and distances of the steps. b: Artificial force curves generated by Monte Carlo
simulations with varied number of steps (data set B, see example in fig. 1d). Parameter optimization was performed for each noise level and number
of steps. The last plot shows the average detection rates over the range of 2, 3, …, 50 steps.
doi:10.1371/journal.pone.0045896.g002
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described by Schmitz et al. [14]. A VCAM-1 concentration of

2 mg/ml and a constant approach/retract velocity of 3.4 mm/s

were used.

Results and Discussion

Step detection performance
To render a quantitative evaluation of correct and false

detections possible, the step positions must be a priori known.

For that reason, the step detection performance of MSF is

compared with the x2 method [9] by means of synthetic test signals

(fig. S1 in the Supporting Information). The x2 method was chosen

as reference, because it has been shown to perform best among

other highly efficient techniques [10].

Two different types of signals were analyzed (table 1): First,

simple curves with two steps of height one separated by a variable

distance were deployed (data set A, see example in fig. 1a, c) to

study the influence of the SNR and of the distance between

successive steps on the detection rates. The clean signals were

contaminated by additive white Gaussian noise. Second, artificial

force-distance curves mimicking single-molecule force spectrosco-

py experiments with living cells were created by Monte Carlo

simulations and superimposed by the characteristic instrumental

noise of a JPK Nanowizard II AFM (data set B, see example in

fig. 1b, d). Such experiments are highly relevant to understand

cell-surface or cell-cell adhesion and cellular force sensing [14].

Every simulated curve contains a predefined number S of steps at

random positions. Since the x2 method requires a manual selection

of the number of steps to be detected, a comparison how

accurately S can be determined is not possible. Thus, the number

of steps was assumed to be known, i.e. both algorithms were

configured to detect the S most significant steps. As a

consequence, the numbers of false-positives and false-negatives

are equal and need not be compared separately. For practical

applications, an automatic selection of S might be required.

Therefore, the MSF algorithm can also be deployed with a given

detection sensitivity, i.e. any steps with a significance exceeding a

given threshold are detected (see methods).

The efficiencies of both step detection methods depend not only

on the signal and noise characteristics, but also on the choice of

parameters: The x2 algorithm can be optimized by varying the

window size l of the moving average filter and MSF by varying

the width of the smoothing kernel s and the half window size w

(see methods). As optimal parameters in the sense of maximum

detection rates depend on the SNRs and widths of the steps in a

complex way, they were determined numerically by evaluating test

signals with pre-defined characteristics and a priori known step

positions (see section ‘‘parameter optimization’’ below). In doing

so, four scenarios were considered, each for data set A and B: First,

the average SNR and either the average width (for set A) or the

number of the steps (for set B) were assumed to be known and

fairly constant, i.e. both facts were used for parameter selection

(fig. 2a and b). In the second case, very different step widths (or

numbers of steps) can occur, i.e. parameters were optimized for

each noise level (i.e. the constant SNR for data set A and an

average SNR for data set B) and for a broad range of step

distances (fig. S2a and b). Third, parameters were chosen to yield

highest detection rates for an approximately constant SNR and

variable step distances (fig. S2c and d). If neither the SNRs nor the

widths of the steps can be narrowed down, optimization must be

performed for arbitrary step characteristics within a reasonable

range (fig. S2e and f), resulting in constant parameters for all test

signals (s~2, w~30, and l~4).

Generally, attainable detection rates depend on the step

characteristics and on the type of noise. If either the SNRs or

the widths of the steps are similar, detection rates can be highly

improved by MSF in comparison to the x2 method. MSF is

particularly effective for curves with many or narrow steps. Even if

both the heights and the widths of the steps vary, it yields higher

detection rates in many cases for both types of test signals and

shows the best overall performance with about 20% higher

detection rates than the x2 algorithm for data set A and about 30%

for data set B (table 2). The Kerssemakers method combined with

the moving average filter works well with curves containing few

steps. It is less effective in general, because the x2 sum calculated at

a potential step position is increased by other steps, making it a less

sensitive indicator. Only curves with at least 2 steps could be

included in the analysis, as the algorithm fails if the number of

steps to be detected is set to 1. Further, the decay in the beginning

of the artificial force curves of data set B impairs the method and

results in some false-positive detections.

Distribution of false-positives and -negatives
The real AFM measurements modeled by the simulated force

curves typically show a noise level of about 10 pN and no more

than 10 steps. Therefore, any further analysis of data set B is

restricted to curves with 2 to 10 steps and 10 pN AFM noise. On

these conditions, optimal detection rates are obtained by s~3:5,

w~30, l~1. If not stated otherwise, these parameters are used in

the following.

A detected/unrecognized step is rated a false-positive/false-

negative if the deviation from the nearest true position is greater

than 64 data points. Otherwise it is correct by definition. Both

false-positive and false-negative detections decrease with increas-

ing step heights, as higher steps can be identified more reliably.

The number of false-negatives is much lower for MSF than for the

x2 method and the number of false-positives is similar (fig. S3).

Height resolution
To analyze real data, generally not only the step positions, but

also their heights must be determined. The latter process depends

on the former, and both are error-prone. The precision of the

height estimation achievable with MSF and the x2 method is

quantified by the example of data set C, which also models AFM

force curves, but contains exactly 4 steps at 2, 6, 10, and 14 mm

with discrete heights randomly chosen from 5, 10, 20, and 40 pN

(see table 1 and examples in fig. S1). These modifications render it

possible to determine the height resolution limit. Again, the signals

were contaminated by AFM noise of a single amplitude

(snoise~10 pN) and the method-specific parameters were chosen

to maximize the total average detection rates (s~4:7, w~40,

l~4). The curves consist of linear plateaus, so that the estimated

step heights can be calculated from adjacent linear fits of these

plateaus left and right of the steps that have been identified by the

MSF algorithm (see methods).

To resolve the heights of the steps, they must be detected in the

first place. MSF yields more false-positives and less false-negatives

than the x2 method, which does not reproduce the 5 pN peak at

all (fig. S4).

The height calculations were performed according to eq. 12–14

with mleft and mright fixed to the constant slope of the plateaus

(1.6 pN/mm). The total average deviation between true and

estimated heights is (20.2261.20) pN, i.e. systematic errors (e.g.

arising from false-negative detections within the fit range) are

much smaller than the statistical errors resulting from the noise

(fig. 3a). Step heights determined by the x2 algorithm deviate from

Step Detection
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the true values by (27.4566.87) pN. They are considerably

underestimated, because they are calculated from the difference of

the mean force of the left and right edge, and not by linear fits.

As a consequence of the noise-induced errors, the discrete force

distributions are blurred, i.e. the force resolution is reduced. In

case of white noise, the standard error sheight of the heights

determined from the fits decreases with the square root of the fit

length l:

sheight~
ffiffiffiffiffiffiffi
2=l

p
snoise ð15Þ

Thus, the distributions of calculated step heights are expected to

be Gaussians with standard deviation sheight. If their amplitudes

are weighted by the corresponding detection rates, a prediction for

the resulting histogram is possible (gray line in fig. 3b). False-

positive detections cause the wrong step heights below the 5 pN

peak and a reduction of l (see methods), so that the actual peaks

(green) are slightly broader than predicted (sheight&0:3 pN). As

eq. 15 is not valid for AFM noise, the resulting peaks (blue) are also

wider than expected (sheight&0:8 pN). Hence, the height resolu-

tion for this kind of test signals is of the order of a pN. As a

consequence of the underestimated step heights, the histogram

obtained by the x2 method (red) is shifted to lower forces by about

5 pN.

Reproduction of continuous height distributions
Steps heights encountered in real data are generally not

restricted to discrete values, but are continuously distributed. In

practical applications, the recovery of these distributions can be

highly relevant, e.g. for the analysis of force spectroscopy data. To

this end, test signals of data set B with 2 to 10 steps (100 each)

superimposed with AFM noise (standard deviation 10 pN) were

analyzed and the step heights obtained by the x2 method were

compared with an approach based on linear fits left and right of

the step position (see methods). Noise-induced errors impair both

techniques, so that the calculated heights differ significantly from

the true values (fig. S5). The linear fits reproduce the continuous

height distribution well for step heights above 25 pN. The x2

method underestimates all heights, and the shape of the resulting

distribution does not resemble the actual one.

Computational cost
Detection of steps in data with N~8192 samples using a C++

implementation of the MSF algorithm with w~100 requires a

computation time Dt of the order of a millisecond on a current

personal computer. This allows for automated processing of large

data sets. Dt rises linearly with N . The x2 method is about 7000

times slower for the same number of samples, because it is based

on more complex calculations. It performs linear fits over

comparatively large intervals, partially including the same data

points repeatedly [9]. The relative difference in computation time

increases with N (Dt*N1:4).

Analysis of AFM force spectra
Force-distance curves were obtained by atomic force spectros-

copy measurements with membrane tethers pulled from living

human T lymphocytes. The adhesion force of single tubes formed

by the cell membranes when interacting with the integrin VLA-4

ligand VCAM-1 were measured as described by Schmitz et al.

[14]. Bond rupture results in abrupt changes of force exerted on

the cantilever. As a consequence, discrete force states are recorded

(see example in fig. 4a). The steps marking the transitions between

these states were detected by the MSF algorithm with manually

optimized parameters (s~3:0, w~200) and a constant threshold

for the significance of 10000 (blue vertical lines in fig. 4b and c; see

methods). Both MSF parameters are higher than those resulting

from the optimization based on data set B to suppress oscillations

contained in the force signals, which are not modeled by the

artificial AFM noise. For comparison, the Kerssemakers algorithm

was also applied to the example (l~0). If configured to detect the

same number of steps, it does not identify the first one at

<0.25 mm with the lowest significance (red lines in fig. 4c).

However, the fit indicates that it is correct.

The resulting step heights found within a maximum pulling

extension of 1.5 mm show a very symmetric distribution (fig. 4).

The modal of about 23 pN corresponds well to previous AFM

measurements of the same cell type under comparable conditions

[19]. As proven by the evaluation of simulated data, the MSF

algorithm allows recovering steps, which are below the detection

limit for conventional techniques (<10 pN). In fact, the unimodal

symmetric shape of the histogram provides strong evidence, that it

is not substantially distorted by false-positives. An automated

analysis of these data with the Kerssemakers method is not

possible, because the number of steps must be specified manually

for each curve.

Analysis of kinesin motor experiments
Molecular motors constitute another example for a biological

system showing discrete states. Both methods were applied to

resolve the step-like movement of kinesin-2 along microtubules

[20] with manually optimized parameters (MSF: s~100, w~500,

indicator threshold = 22000; Kerssemakers: l~0, 20 steps). They

show similar results, but the Kerssemakers algorithm does not

detect the two potential steps at <2.9 s, which correspond to the

two lowest maxima in the MSF indicator (fig. 5). However, the

rising flank suggests that at least one of them is actually correct.

Table 2. Total average detection rates for the data shown in fig. 2.

data set A data set B

step detection method
absolute detection rate
[%]

relative detection rate
[%]

absolute detection rate
[%]

relative detection rate
[%]

MSF 65.4 119.9 83.6 131.3

x2 54.5 100.0 63.7 100.0

Filter settings were individually optimized for every noise amplitude and step width (data set A)/number of steps (data set B). Relative rates are related to the results
obtained by the x2 method combined with the windowed mean filter.
doi:10.1371/journal.pone.0045896.t002
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Parameter optimization
Independently of a particular detection algorithm, steps with

arbitrarily low SNRs can be recognized if they are wide enough,

and narrow steps if their SNR is high enough. No simple relation

exists between the method-specific parameters and the lateral or

height resolution. Optimal values in terms of efficient detection of

steps depend on their widths and heights (fig. S6). However, for

sufficiently wide and high steps, MSF yields good results for s~2

and w~30, and the x2 method for l~4. Whereas varying l has

only a moderate effect on the results, optimizing the width of the

Gaussian kernel s and the half window size w can highly improve

or impair the detection efficiency, particularly for narrow steps.

Ideal values of w in the sense of maximum detection rates are

approximately inversely proportional to the SNR for large and

intermediate heights (wopt&50=SNR). The optimal s depends on

w and on the step characteristics in a complex way. As a rule of

thumb, a higher w and a lower s increases the height resolution,

and therefore increases detection rates for low steps. If steps are

lying too close together to be separated, w must be decreased. If

false-positives appear within the flanks of the indicator peaks of

correctly identified steps, s must be increased. Thereby, minor

peaks with low prominences are eliminated.

Figure 3. Accuracy of detected step heights. a: Mean deviations between calculated and true step heights of data set C. Only steps correctly
identified by MSF (blue) or the x2 method (red) are included. The error bars indicate the standard deviations. b: Number of steps detected by MSF vs.
calculated step heights for white noise (green) and AFM noise (blue). The results for the x2 method are drawn in red and the predicted histogram for
white noise in gray. Independently of the step height, individual distributions can be clearly verified if they are sufficiently far away from each other
(less than 5 pN for both types of noise). The colored AFM noise results in broader peaks.
doi:10.1371/journal.pone.0045896.g003
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The parameters can also be fine-tuned by comparing actual and

detected steps in simulated signals mimicking the characteristics of

real experimental data (such as noise amplitude or step heights and

widths). By systematically varying the detection parameters,

optimal values can be identified. If the signal characteristics are

not constant, parameters resulting in maximum average detection

rates can be determined by evaluating multiple test signals. This

approach is illustrated using the example of single molecule force

spectroscopy data obtained with living lymphocytes: The number

of steps and their positions are determined by random statistic

processes, which can be mimicked by Monte Carlo simulations.

To create a realistic reproduction, the model parameters must be

fitted to the experimental data [15]. In the next step, the model is

used to create a set of artificial curves with known steps and

random noise (in this example data set B). By comparing actual

and detected step positions for a large batch of simulated data,

Figure 4. Real data measured by atomic force spectroscopy of the interaction of human T lymphocytes with the integrin VLA-4
ligand VCAM-1. a: Force-distance curve showing the typical signature of membrane tether formation. b: Local maxima of the calculated
significance exceeding a threshold (green horizontal line) indicate the rupture of the tethers (blue vertical lines). c: Fitting constant plateaus piecewise
to the sections between the steps yields a clean force-distance curve (black). The Kerssemakers method identifies different step positions (red). d:
Distribution of the calculated step heights resulting from the analysis of about 4200 force curves by MSF.
doi:10.1371/journal.pone.0045896.g004
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optimal parameters for the simulated data can be identified. A

similar procedure was performed with data set A. The optimized

parameters are only valid for the chosen model. An inapplicable

model results in sub-optimal parameters.

Conclusions
An exclusion principle holds for the detection of steps: To be

detected, they must be sufficiently wide if their SNR is small and

their SNR must be sufficiently high if they are narrow. Within

these limits, MSF can be configured to perform a long-range

search for low steps or a locally confined search for narrow steps.

Thereby, it generally obtains better detection rates than the x2

method while needing less computation time. Further, it does not

require the user to specify the number of steps to be detected.

Instead, a detection sensitivity can be chosen. In contrast to the

Matlab implementation of Kerssemakers et al., it is able to detect

single steps, decaying parts do not result in false-positive

detections, and the calculated heights are correct, even if the

flanks between the steps are not constant. The increased height

resolution provides the possibility to detect discrete states in

biological data, which are limited by low SNRs.

Supporting Information

Figure S1 Examples of the three types of test signals
deployed for data analysis (A: constant plateaus sepa-
rated by two steps of height one at a variable distance
contaminated by additive white Gaussian noise, B:
artificial force-distance curves mimicking single-mole-
cule force spectroscopy experiments with living cells
superimposed by AFM noise, C: like B, but exactly 4
steps at 2, 6, 10, and 14 mm with discrete heights
randomly chosen from 5, 10, 20, and 40 pN).
(PNG)

Figure S2 Detection rates vs. noise amplitudes of the
MSF and the x2 algorithm applied to synthetic test
signals for different optimization methods. Every marker

represents the average rate over 100 curves with distinct random

noise, with error bars indicating the standard errors. a, c, e: Results

for data set A with parameters optimized for (a) each SNR of the

steps and variable width, (c) variable SNR and each width, and (e)

for variable SNR and width. The last plot shows the average

detection rates over 33 step distances between 40 and 1000 data

points. b, d, f: Results for data set B with parameters optimized for

(b) each noise level and a variable number of steps, (d) variable

noise level and each number of steps, and (f) for variable noise level

and number of steps. The last plot shows the average detection

rates over the range of 2, 3, …, 50 steps.

(TIF)

Figure S3 True (black) and detected (blue) step posi-
tions found in data set B by MSF (a) and the x2 method
(b). The numbers of false-positives (green) and false-negatives (red)

are significantly lower for MSF.

(TIF)

Figure S4 True (black) and detected (blue) steps as a
function of their true heights resulting from application
of the MSF (a) and the x2 method (b) on data set C. The

numbers of false-negatives (red) are significantly higher for the x2

method. In contrast to MSF, it yields very few false-positives

(green), but also does not reproduce the 5 pN peak at all.

(TIF)

Figure S5 True (black) and calculated (blue) step
heights obtained from data set B by linear fits (a) and
by the x2 method (b). The former does not reproduce low steps,

the latter underestimates all heights.

(TIF)

Figure 5. Application of the MSF method to kinesin motor data. a: Distance vs. time trace obtained by optical tweezers [20]. A polystyrene
bead decorated with kinesin-2 proteins is held in an optical trap at a constant pretension of 1.4 pN, while one of the motor proteins moves along a
surface-attached microtubule. b: The MSF indicator is thresholded (green) to locate the positions of the motor steps (blue). c: The mean values
between these step positions were used to reconstruct the movement of the bead (black). The Kerssemakers method shows similar results, but does
not detect the potential steps at <2.9 s, which correspond to the two lowest maxima in the MSF indicator.
doi:10.1371/journal.pone.0045896.g005
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Figure S6 Influence of the SNRs and widths of steps on
the detection rates and optimal parameters for (a) the
size of the Gaussian kernel s and (b) the half width of the
fit window w. Only one parameter is varied at a time, the other

is held constant (w~30, s~2). Each point represents the detection

rate averaged over 100 curves of data set A with a SNR of 0.5, 1.0,

or 2.0, and a step distance of 40 or 1000 data points. Optimal

values for the varied parameter are marked by the circles.

(TIF)
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