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Abstract

Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited
insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox
proportional hazard regression and Random resampling) to apply random resampling and clustering methods in identifying
gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data
analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor
prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a
sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis
factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene
expression datasets (TCGA and REMBRANDT), recapitulating the fact that loss of one copy of chromosome 10 (which
harbors the tumor suppressor PTEN) is linked to poor survival in glioblastoma patients. SCoR also identified prognostic
genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this
disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene
expression signatures.
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Introduction

Multiple prognostic gene expression signatures have been

identified in the past decade for breast cancers [1–7] and some

are now used to predict patient outcome and assist treatment

decisions. For example, the NKI 70-gene signature [1], [2]

(Mammaprint, Agendia) and OncotypeDX signature [8] (Recur-

rence Score, Genomic Health) became commercially available and

commonly used in the clinics. Yet, two questions remain. First,

there is little overlap among numerous prognostic signatures

generated from different studies [9]. Second, most signatures

generated by approaches without using prior knowledge from gene

ontology failed to provide us with clear biological meanings as why

these prognostic signatures (e.g. the 70-gene signature) may affect

patient outcome. As a result, the clinical application of such

prognostic signatures is still under debate [10], [11].

A study by Liat Ein-Dor et al pointed out that the NKI 70-gene

signature was not a unique gene expression signature and many

other 70-gene signatures could be generated from the same dataset

and behave similarly in predicting breast cancer outcome [9],

suggesting previous methods were not reaching the real prognostic

signature but merely finding surrogates. Similarly, Michels et al

found the prognostic gene lists generated from microarray studies

were highly unstable and strongly dependent on the selection of

patients in the training sets [12]. These findings may explain why

different prognostic signatures did not match one another and why

they did not provide biological insight into the disease. Although

lack of overlap in signature genes does not necessarily mean there

is no commonality in captured biology [13], [11], identification of

authentic gene expression signatures that are most related to the

causal genes of the diseases is always desired.

In this study, we developed a novel algorithm named SCoR

(Survival analysis using Cox proportional hazard regression and

Random resampling) and demonstrated that using resampling and

clustering techniques could help reduce overfitting artifacts and

produce prognostic gene expression signatures with apparent

biological functions matching the pathologic phenotypes of the

diseases. By applying SCoR to a panel of breast cancer gene

expression datasets, we repeatedly found overexpression of the cell

division cycle genes a common poor prognostic signature in breast

cancers. Likewise, we identified increased expression of chromo-

some 10 genes (indicative of absence of PTEN LOH on

chromosome 10) a good prognostic signature for glioblastoma

patients in two different datasets. In addition, we demonstrate that
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SCoR has the ability to pick only a few genes on chromosome Y

and X in a lung adenocarcinoma dataset, suggesting that patient

gender may be used as a prognostic parameter in lung

adenocarcinoma patients.

Methods

Public Gene Expression Datasets and Data Processing
Breast cancer datasets were downloaded from the NCBI GEO

website (http://www.ncbi.nlm.nih.gov/geo) and for the NKI-295

dataset from http://microarray-pubs.stanford.edu//wound_NKI/

explore.html. Glioblastoma datasets were downloaded from TCGA

and RAMBRANDT websites (http://tcga-data.nci.nih.gov/tcga/

findArchives.htm and https://caintegrator.nci.nih.gov/rembrandt).

Lung adenomcarcinoma datasets were downloaded from the NCBI

GEO website and for the DCC2008-MI dataset downloaded from

website listed by the authors [14]. A brief summary of the datasets

used in this study is listed in supplementary Table S1. All Affymetrix

based CEL files from one dataset were RMA normalized using the

‘‘affy’’ package from the R software (available at http://www.

bioconductor.org and http://www.r-project.org). Normalized gene

copy numbers for TCGA glioblastoma samples were generated from

MSKCC array CGH level 3 data. Briefly, log2 values representing

1N, 2N, and 3N chromosomal segments for each tumor were

determined and used to scale level 3 log2 values to the same level

with log2 values of 21, 0, and 0.585 representing 1N, 2N, and 3N

chromosomal segments, respectively. For PTEN copy number calls,

PTEN gene with log2 values below 20.7 were called as copy loss,

and below 21.5 called as deletion, otherwise called as normal.

SCoR Analysis
Normalized micoarray data were filtered to remove low

variance probesets based on median absolute deviation (MAD)

with the bottom 20% of probesets discarded (,30% for HT-

HG_U133A platform, which comprised of a background peak).

Survival analysis was performed using Cox proportional hazards

regression model (coxph function from the R ‘‘survival’’ package)

on each probeset on a randomly chosen subset of samples

representing 75% of all patients. Any probeset with a coxph

p value of ,0.01 was considered positive. The above procedure

was repeated 400 rounds without replacement of sample subsets

and results merged together to calculate frequency for each

probeset to be positive among all runs. Positive probesets with

frequency above a threshold (typically 75%, subjected to change)

were collected as top candidates. All parameters (e.g., percentage

of patient subset, coxph p value cutoff, and frequency cutoff) could

be tuned for a particular dataset based on the size and quality of

the dataset. An unsupervised clustering was done using Cluster

and TreeView software from Michael Eisen’s lab (http://www.

eisenlab.org/eisen) on gene expression data from top candidate

probesets from all patient samples. The parameters used were

hierarchical cluster, Spearman rank correlation, and average

linkage clustering.

Patient Stratification and Kaplan Meier Analysis
Gene expression data for a particular prognostic signature is

collected and normalized by first median centering and then

dividing by MAD for each probeset. A multi-gene score was

calculated for each patient as the averaged sum of normalized

expression values from good prognosis probesets minus those from

the poor ones, similar to the Relapse Score and Gene expression

Grade Index (GGI) described before [5], [6]. The formula is:

Multi-Gene Score = gxi 2 gxj, where i and j include good and

poor prognostic gene probesets, respectively. The patients were

divided into two groups mathematically (with high and low scores)

based on their multi-gene score values using the ‘‘kmeans’’

function from the R software. Kaplan Meier plots were drawn

using the ‘‘survival’’ package from the R software.

Gene Enrichment in Prognostic Gene Expression
Signature

To examine whether a particular gene set was enriched in

SCoR identified prognostic gene list, we performed a Fisher exact

test on number of genes of particular function (e.g. chromosome

10 genes) within the prognostic gene list compared to those found

in background (all other genes not in the prognostic gene list). The

enrichment fold was calculated as percentage of genes of particular

function inside the prognostic list over that in the background.

Results

SCoR Analysis Outline
We developed a method named SCoR (Survival analysis using

Cox proportional hazard regression and Random resampling) on

top of the Cox proportional hazard regression method (Coxph)

that is commonly used in survival analysis (Fig. 1a). Briefly, after

filtering off background probesets using an arbitrarily set median

absolute deviation cutoff (see materials and methods), we

performed a univariant Coxph test for each probeset on a subset

of patient data, which is comprised of typically 75% of all patients.

Probesets passed a Coxph p value cutoff (default,0.01) were

collected as candidate prognostic probesets. This procedure was

repeated up to 400 times with the patient subset randomly reset for

each new run with no replacement. Results from all individual

runs were then merged and probesets passed an arbitrarily set

frequency threshold were selected as top prognostic candidate

probes (typically at 75%, i.e., any probesets passed 3 out 4 times in

all random Coxph tests were considered as prognostic). As shown

in Fig. 1b, the number of top prognostic candidate genes selected

became saturated when resampling rounds reached about 200.

Therefore, most of our analyses were based on 200 resampling

runs. We also performed an internal validation procedure on

Coxph identified candidate probesets in the remaining 25% or so

patients that were not directly used in SCoR runs. The overall

percentage of probesets passed this validation procedure was low

and usually less than 10%. However, this percentage was increased

to .40% in probesets that were selected by SCoR, arguing that

the SCoR procedure had the ability to effectively enrich real target

prognostic genes (Fig. 1c). Top candidate prognostic genes were

further analyzed by unsupervised clustering of their expression

from all patient samples to identify any groups of genes having

similar expression patterns, hence might function in the same

pathway to affect tumor survival.

SCoR Identified a Common Poor Prognostic Gene
Expression Signature Comprised of Cell Division Genes
from Different Breast Cancer Datasets

We applied SCoR to eight breast cancer gene expression

datasets (supplementary table S1). This yielded varied numbers of

candidate prognostic genes, from as low as 53 genes at a SCoR

frequency cutoff of 50% in GSE2990, to as high as 651 genes at

the 90% frequency cutoff in NKI-295 (Table 1, Fig. 1b).

Remarkably, significant overlap between results from different

datasets could be observed. For example, up to 40% of candidate

genes found in GSE3494 could also be found in SCoR results from

either GSE1456 or GSE11121 (Fig. 1d). A top overlap signature

was therefore compiled from all SCoR results (Table 1), comprised

SCoR: A Novel Survival Analysis Algorithm
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of 85 genes, each having been found at least 3 times in any of the

eight datasets. Notably, the majority of these genes are associated

with poor prognosis, and 58 out of 85 genes had known function in

direct regulation of cell division.

When unsupervised clustering of candidate SCoR genes was

performed for each dataset, we observed a clear enrichment of top

overlap cell division cycle (CDC) genes at the center of poor

prognostic gene clusters (Fig. 2). Expression levels of these genes

are highly correlated to one another, suggesting that these genes

might be under a same transcriptional control (e.g. FOXM1,

which is also among the top overlap gene list). Poor prognostic

signatures generated from the cluster centers of different datasets

again displayed a uniform composition of CDC genes. In

GSE1456 and GSE11121, based on gene ontology analysis and

literature search, 100% genes within the selected core signatures

are involved in cell cycle regulation (Fig. 2). These signatures were

highly similar, though not exactly the same. This similarity could

be found in six out of eight datasets (Fig. 2 and 3, Table 1), and

can be appreciated even when a low number of SCoR candidates

were identified (e.g. Fig. 2, GSE12093). Thus, we demonstrate that

a common prognostic gene expression signature could be

identified from different datasets using one identical method

(SCoR) in a completely unbiased manner.

Comparing SCoR Generated Prognostic Signature with
NKI 70-gene Signature and Cross Validation of CDC
Signatures

To compare our SCoR candidates with the renowned NKI 70-

gene signature [1], [2] (MammaPrintH), we paid more attention to

results generated from the NKI-295 dataset, which included

samples used to generate the NKI 70-gene signature. Notably,

data from this dataset were generated using a rather old

microarray platform (Rosetta human 25K). Also, the NKI 70-

gene signature was generated using 78 samples having extreme

survival length and metastasis status in a supervised manner, while

we used all 294 patient samples and performed SCoR analysis in a

unsupervised manner. Still, we were able to identify the CDC gene

signature at the center of the poor prognostic gene cluster (Fig. 3a).

In addition, we identified ER, Bcl-2, Myb, and GATA3 at the

center of the good prognostic gene cluster, which matched

perfectly with the known clinical and pathologic roles of these

molecules in breast cancer [15–18]. This particular distribution

pattern of established prognostic factors such as proliferation

Figure 1. Outline of SCoR procedure and output results on breast cancer datasets. (a) outline of SCoR procedure (b) number of candidate
prognostic genes generated by SCoR using different resampling rounds (c) percent of candidate prognostic probesets passed the internal validation
using remaining samples not used in SCoR (d) Venn diagram showing overlapping genes found by SCoR in three breast cancer datasets.
doi:10.1371/journal.pone.0045894.g001
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Table 1. top overlapping prognostic genes identified from different breast cancer datasets.

GSE 1456
GSE
2034

GSE
2990

GSE
3494

GSE
7390

GSE
11121

GSE
12093 NKI 295

SCoR freq cutoff 75 75 50 75 50 75 50 90

no. candidate
prognostic genes

495 249 53 247 101 429 63 651

genes in top 85
overlapping genes

65 29 5 54 7 58 12 61

no. top overlap
genes

GSE
1456

GSE
2034

GSE
2990

GSE
3494

GSE
7390

GSE
11121

GSE
12093

NKI
295

freq. prog. function

1 CREBL2 1 1 1 1 4 good tumor suppressor

2 CRIM1 1 1 1 3 good

3 SPARCL1 1 1 1 3 good

4 GLTSCR2 1 1 1 3 good tumor suppressor

5 PDS5B 1 1 1 3 good tumor suppressor

6 CD302 1 1 1 3 good

7 FBLN1 1 1 1 3 good tumor suppressor

8 KIAA0494 1 1 1 3 good

9 N4BP2L1 1 1 1 3 good

10 SPTAN1 1 1 1 3 good

11 CCNB2 1 1 1 1 1 5 poor proliferation

12 NUSAP1 1 1 1 1 1 5 poor proliferation

13 PRC1 1 1 1 1 1 5 poor proliferation

14 RACGAP1 1 1 1 1 1 5 poor proliferation

15 STMN1 1 1 1 1 1 5 poor proliferation

16 CDKN3 1 1 1 1 1 5 poor proliferation

17 KIF23 1 1 1 1 4 poor proliferation

18 MELK 1 1 1 1 4 poor proliferation

19 MYBL2 1 1 1 1 4 poor proliferation

20 PTTG1 1 1 1 1 4 poor proliferation

21 RAD51 1 1 1 1 4 poor proliferation

22 SPAG5 1 1 1 1 4 poor proliferation

23 UBE2C 1 1 1 1 4 poor proliferation

24 BUB1 1 1 1 1 4 poor proliferation

25 CCNA2 1 1 1 1 4 poor proliferation

26 CENPF 1 1 1 1 4 poor proliferation

27 DLGAP5 1 1 1 1 4 poor proliferation

28 H2AFZ 1 1 1 1 4 poor

29 NEK2 1 1 1 1 4 poor proliferation

30 SQLE 1 1 1 1 4 poor

31 GINS2 1 1 1 1 4 poor proliferation

32 RRM2 1 1 1 1 4 poor proliferation

33 CIAPIN1 1 1 1 1 4 poor

34 NCAPG 1 1 1 1 4 poor proliferation

35 MLF1IP 1 1 1 1 4 poor proliferation

36 CTTN 1 1 1 1 4 poor proliferation

37 ESPL1 1 1 1 1 4 poor proliferation

38 ZWINT 1 1 1 1 4 poor proliferation

39 CCNE2 1 1 1 1 4 poor proliferation

40 CDC25A 1 1 1 3 poor proliferation

41 EXO1 1 1 1 3 poor proliferation

42 FEN1 1 1 1 3 poor proliferation

SCoR: A Novel Survival Analysis Algorithm
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Table 1. Cont.

GSE 1456
GSE
2034

GSE
2990

GSE
3494

GSE
7390

GSE
11121

GSE
12093 NKI 295

43 FOXM1 1 1 1 3 poor proliferation

44 KIF2C 1 1 1 3 poor proliferation

45 MCM6 1 1 1 3 poor proliferation

46 NCAPH 1 1 1 3 poor proliferation

47 ACOT7 1 1 1 3 poor

48 C16orf61 1 1 1 3 poor

49 C20orf24 1 1 1 3 poor

50 CCNB1 1 1 1 3 poor proliferation

51 GOT1 1 1 1 3 poor

52 TACC3 1 1 1 3 poor proliferation

53 DTL 1 1 1 3 poor proliferation

54 KPNA2 1 1 1 3 poor proliferation

55 SHCBP1 1 1 1 3 poor proliferation

56 C16orf80 1 1 1 3 poor

57 COG4 1 1 1 3 poor proliferation

58 SNRPA1 1 1 1 3 poor

59 CDC20 1 1 1 3 poor proliferation

60 DDX39 1 1 1 3 poor

61 DHFR 1 1 1 3 poor

62 KIF20A 1 1 1 3 poor proliferation

63 CIAO1 1 1 1 3 poor proliferation

64 KIAA0101 1 1 1 3 poor proliferation

65 TOP2A 1 1 1 3 poor proliferation

66 TIMM17A 1 1 1 3 poor

67 PPFIA1 1 1 1 3 poor

68 APRT 1 1 1 3 poor

69 NOL3 1 1 1 3 poor proliferation

70 EBP 1 1 1 3 poor proliferation

71 H2AFX 1 1 1 3 poor proliferation

72 KIFC1 1 1 1 3 poor proliferation

73 MAD2L1 1 1 1 3 poor proliferation

74 NDUFS6 1 1 1 3 poor

75 SNRPC 1 1 1 3 poor

76 SPC25 1 1 1 3 poor proliferation

77 AURKA 1 1 1 3 poor proliferation

78 TMPO 1 1 1 3 poor proliferation

79 GTSE1 1 1 1 3 poor proliferation

80 CENPM 1 1 1 3 poor proliferation

81 GINS1 1 1 1 3 poor proliferation

82 KIF11 1 1 1 3 poor proliferation

83 TAF11 1 1 1 3 poor

84 CDC2 1 1 1 3 poor proliferation

85 MKI67 1 1 1 3 poor proliferation

‘‘1’’ denotes that the gene is found by SCoR in this dataset. (a), Kaplan Meier plot of patient survival stratified by gender in stage II/III lung adenocarcinomas (top) or
stage I lung adenocarcinomas (bottom) in GSE4716. (b), same as (a) except using data from GSE13213. (c), Kaplan Meier plot of lung adenocarcinoma recurrence
stratified by patient gender using data from GSE25326. (d), Fisher exact test of patient survival vs. gender using a 262 contingency table and data from GSE28582.
doi:10.1371/journal.pone.0045894.t001
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genes, ER, and Bcl-2 in the SCoR cluster heatmap argues that

survival analysis may yield both ‘‘real’’ prognostic genes as well as

‘‘passengers’’ whose expression closely matched the expression of

real ones. This is a plausible explanation why real signatures may

reside in the center of the cluster as surrounding ‘‘passengers’’ are

mathematical by-products of the analysis. Based on this idea, we

constructed a 69-gene signature using core cluster genes from both

poor and good prognostic gene clusters based on SCoR results

from NKI-295 (37 CDC genes plus 32 genes inside the ER/Myb/

Bcl-2 cluster). Among the top 651 probes identified by SCoR, 25

matched those from the NKI 70-gene signature (marked in Fig. 3).

Only 3 NKI-70 genes were found inside the core CDC gene

signature (CENPA, MELK, PRC1) and none inside the ER/

Myb/Bcl-2 core cluster (Fig. 3a). Using a multigene score

algorithm (see methods and materials), we stratified patients based

on either NKI 70-gene signature or our SCoR derived 69-gene

signature to compare their abilities to predict clinical outcome.

The result was quite comparable from two signatures, with an

overall agreement of 84% on patient stratification (Fig. 3b).

However, the 69-gene signature bears more biological meanings

and clinical relevance. The SCoR cluster effectively separated

breast cancer patients into groups enriched in ER-negative, basal

and luminal B tumors versus ER-positive and luminal A tumors

(Fig. 3a). When applied to other breast cancer datasets, the 69-

gene signature overall performed slightly better than the 70-gene

signature (supplementary Table S2). We further cross validated the

Figure 2. Identification of a common poor prognostic gene expression signature in breast cancer. Top, cluster heatmap of gene
expression using SCoR generated prognostic genes from GSE1456 dataset with a blowup of genes inside the center of the poor prognosis gene
cluster (yellow box), genes matching top overlap genes from Table 1 were marked in black lines on the right side of the heatmap. Bottom panels,
similar to top but only show the gene symbols from the center cluster. All genes involved in cell division cycle regulation are in black, otherwise are in
grey.
doi:10.1371/journal.pone.0045894.g002

SCoR: A Novel Survival Analysis Algorithm
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core CDC signatures generated from SCoR analysis on individual

datasets (supplementary Table S2). This demonstrated that CDC

signatures (26 or 27-gene) from GSE1456, 2034, and 3494, though

not exactly the same, can effectively separate patients into good

and poor prognostic groups in all breast cancer datasets tested,

even in GSE2990 and 7390 where SCoR failed to identify such

CDC signatures as prognostic gene expression signatures. The top

overlap 85-gene signature was also validated in all datasets and

seemed to have the best performance among all signatures.

SCoR Identified T/B Cell Markers as Favorable Prognostic
Factors in Highly Proliferative Breast Cancers

We further used CDC gene signature to stratify patients into

high and low proliferation groups and performed SCoR analysis

on different patient populations. This identified in GSE2034

dataset both B- and T-cell specific markers as favorable

prognostic genes in highly proliferative breast cancers. SCoR

could also independently identify a similar B-cell signature in

GSE11121 (supplementary Fig. S1). Both GSE2034 and

GSE11121 contain lymph node negative patients. Signatures

Figure 3. Comparision of NKI 70-gene signature with SCoR derived 69-gene signature. (a), cluster heatmap of gene expression using SCoR
generated prognostic probes from NKI-295 dataset with blowup views of genes inside the center of poor and good prognosis gene clusters, probes
matching the NKI 70-genes were marked in black lines on the right side of the heatmap. Patient survival is marked in blue (.5yr), red (dead in 2yr), or
otherwise cyan. ER status is marked in red (ER-) or cyan (ER+). Molecular subtypes are marked in blue (luminal A), green (luminal B), red (basal), ERBB2
(pink), or cyan (normal-like). NKI 70-gene prediction is marked in red (poor prognosis) or cyan (good prognosis). (b), Kaplan Meier plots of patient
survivals stratified by either the NKI 70-gene signature or the SCoR 69-gene signature.
doi:10.1371/journal.pone.0045894.g003

SCoR: A Novel Survival Analysis Algorithm
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generated from GSE2034, especially the T-cell signature, could

be cross validated in other datasets such as GSE3494,

GSE7390, and GSE11121, and had a tendency to discriminate

patients survival in GSE1456 and GSE12093 (supplementary

Table S3). These signatures were not validated in NKI295

dataset when patients were stratified by a CDC signature.

However, when we performed SCoR on ER-negative patients

from NKI295, which composed mainly of highly proliferative

basal and HER2 subtype breast cancers, we also identified a T-

cell signature in patients with better survival (supplementary Fig.

S1). The overlap among T- and B-cell signatures generated

from GSE2034, GSE11121, and NKI295 were not significant

on the gene level except for the presence of immunoglobulin

genes (IGH/IGL genes). However, on the functional level,

many of these SCoR generated genes clearly pointed to B-cell

and T-cell involvement. The ability of SCoR to identify

common theme prognostic signatures in this sequential analysis

adds proof to the validity of our approach. These findings are

supported by several reports from the literature [19], [7], [20].

Figure 4. Identification of a common good prognostic gene expression signature in glioblastomas. (a) cluster heatmaps of gene
expression using SCoR generated prognostic genes from TCGA and REMBRANDT datasets with annotated genes and chromosomal locations on
selected good prognostic gene clusters. Patient survivals were plotted in blue (.600 days) or red (,180 days) representing top and bottom quartile
survivals. PTEN copy numbers are plotted in white, green, and red, representing normal copy number, copy loss, and deletion, respectively.
‘‘topSCoR’’ tumors, representing a group of samples having highest expression from good prognostic genes, were marked in dark blue. (b)
distribution of SCoR generated prognostic genes on all chromosomes, plotted in percentage. (c) cluster heatmap using 791 chromosome 10
probesets and 188 glioblastoma patients. PTEN copy numbers were plotted in white, green, and red, representing copy number calls of 2N, 1N, and
0N, respectively. ‘‘topSCoR’’ tumors marked positions of same tumors found by SCoR in panel (a). (d). histogram of percentage of chromosome 10
genes found in individual SCoR runs, blue line marked the median of these percentages and red line marked the percentage of chromosome 10
genes found by SCoR.
doi:10.1371/journal.pone.0045894.g004

SCoR: A Novel Survival Analysis Algorithm
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SCoR Identified a Good Prognostic Gene Expression
Signature Comprised of Chromosome 10 Genes in
Glioblastomas

We next extended our study to glioblastoma, a type of

malignant brain tumor with rather poor prognosis among all

cancers. In two glioblastoma datasets (TCGA and RE-

MBRANDT), SCoR repeatedly found enrichment of chromo-

some 10 genes within prognostic candidates, which constituted

nearly one third of all prognostic candidates identified (8.4-fold

enrichment and Fisher exact test p value 1.45e-12 for TCGA

samples, Fig. 4A, B). However, there was little overlap between

these two sets of chromosome 10 genes (only one gene overlap,

CTBP2). Also, the locations of these genes are not restricted to

any particular chromosomal locus but rather scattered on the

whole chromosome, suggesting an overall expression level

change on chromosome 10. Since it is known that the tumor

suppressor gene PTEN (located on chr10q23) is frequently

inactivated in glioblastomas through mechanisms including

partial or entire loss of chromosome 10 [21] we reasoned that

increased expression of genes on chromosome 10 might be an

indication of the intactness of chromosome 10, reflecting the

absence of PTEN LOH. Indeed, when PTEN gene copy

numbers were aligned to SCoR clusters, we observed an

enrichment of tumors with normal (2N) PTEN copy number

inside the SCoR cluster with increased chromosome 10 gene

expression (Fig. 4a). To further confirm this hypothesis, we

performed an unsupervised clustering on expression from all

791 chromosome 10 probesets from 188 glioblastomas (Fig. 4c).

This recapitulated the findings from SCoR analysis. It identified

a cluster of patients having elevated chromosome 10 gene

expression, which was associated with normal PTEN copy

numbers and highly enriched in long survival samples identified

by SCoR (Fig. 4c). Based on PTEN copy number alone (normal

vs. loss/deletion of PTEN) we could readily stratify glioblastoma

patients into good and poor prognosis groups (Coxph

p = 0.000568, data not shown). These results demonstrate the

ability of SCoR analysis to infer prognostic gene copy number

alterations from gene expression data. It also demonstrates the

robustness of our method to identify prognostic signature

associated with only a small percentage of patients (around

12% in TCGA glioblastomas). The result was repeatable on

recently updated TCGA datasets having 437 glioblastomas

(supplementary Fig. S2). These results further demonstrated the

effectiveness of SCoR in reducing noises. If one considers

chromosome 10 genes as real glioblastoma prognostic genes,

then the median percentage of chromosome 10 genes found in

all individual Coxph runs is 12.5% (ranging from 3.7% to

26%), whereas the percentage in the final SCoR result topped

30% (Fig. 4d).

Identifying Patient Gender as a Prognostic Factor in
Stage T1 Non-small Cell Lung Adenocarcinomas

We applied SCoR to four lung adenocarcinoma datasets [14].

Interestingly, in one dataset (DCC2008-MI) the SCoR generated

patient cluster was largely correlated with expression from three

out of a total of 55 top candidate prognostic genes (Fig. 5a), two on

chromosome Y (DDX3Y, RPS4Y1) and one on chromosome X

(XIST). Since chromosome Y genes are only expressed in males,

and the XIST transcript which is involved in X chromosome

inactivation is only expressed in females, this result strongly argues

that patient gender is related to patient survival. This was readily

confirmed by Kaplan Meier analysis using clinical data on patient

sex (Fig. 5, coxph p = 0.000425). When SCoR frequency cutoff was

lowered to 50%, 5 chromosome Y genes could be picked up, out of

overall 15 highly expressed chromosome Y genes found within this

dataset. This demonstrates the sensitivity of our method to

accurately identify only a small number of survival related genes.

While we observed clear association of gender with survival in the

DCC2008-MI dataset, we could not establish such a relationship

using other three lung adenocarcinoma datasets from the same

study [14]. To this end, we examined the difference in clinical data

between DCC2008-MI and other three datasets and found that

DCC2008-MI had a much higher percentage of patients with

small sized tumors. We therefore further stratified DCC2008-MI

patients based on both sex and AJCC tumor T stages. As shown in

Fig. 5c, the effect of patient gender on survival could only be

established in stage T1 tumors (size ,3 cm, Coxph p = 8.537e25),

and there is no statistically significant difference in survival

between male and female when tumor sizes exceeded 3 cm in

stages T2, T3, T4 tumors (Coxph p = 0.7603) even within the

DCC2008-MI dataset. These results are supported by previous

reports [22–24] and are further supported by results from

analyzing additional lung adenocarcinoma datasets (see supple-

mental Fig. S3), and again highlighted the importance to use

compatible patient cohorts in survival analyses.

Discussion

By incorporating random resampling (‘‘jackknifing’’) and

unsupervised clustering techniques into traditional Coxph survival

analysis, we developed the SCoR method which is more flexible

and accurate in the survival analysis of large-scale microarray gene

expression data. SCoR does not rely on a single, fixed training set,

where we know results may be highly unstable, biased, and may

sometimes miss real signals [12]. Instead, SCoR uses multiple

training sets from jackknifing. Over the extensive resampling runs,

overfit false positives generated from each run on individual

training sets are diluted, whereas real signals are accumulated and

enriched, making the output more accurate (e.g., Fig. 1c, 4d).

Setting up of a frequency filter makes it more flexible to withstand

system errors and noises. For example, a real prognostic gene may

not be 100% times tested as prognostic when examined in a

particular subset of patients. Also, microarray probes have

different efficiency in gene detection, and microarray data quality

may be sometimes poor and filled with more noise. In our

experience, lowering the frequency filter to as low as 50% (i.e. half

times to be prognostic in all runs) could still identify real signals

(Table 1, Figs. 2, 4). Although lowering the filter will definitely

introduce noise, this could be diluted out by the resampling

procedure as discussed above.

A previous study by Liat Ein-Dor et al has pointed out that in

breast cancer many genes are correlated with survival and the

differences between these correlations are small [9]. Thus, even

after hundreds of prognostic candidates are identified, it remains a

challenge to properly rank these candidates, to distinguish noise

from signals, and real signals from correlated surrogates (i.e.

biological targets vs. biomarkers). Ranking based on p values or

correlation coefficients is not convincing. Instead, we used

unsupervised clustering to reveal any intrinsic structures associated

with prognostic candidate gene expression, assuming subset

samples with differential survival properties might have differential

activation of signaling pathways and transcription programs that

affect a group of genes. The validity of this approach is supported

by the results in which top overlapping CDC genes from all SCoR

runs on breast cancer datasets, which is likely to comprise a real

prognostic signature, are highly enriched within the center of each

SCoR gene cluster (Fig. 2).

SCoR: A Novel Survival Analysis Algorithm

PLOS ONE | www.plosone.org 9 September 2012 | Volume 7 | Issue 9 | e45894



Microarray studies are often aimed to find new biomarkers to

assist known clinical parameters (e.g. tumor size, stage, sex) in

predicting patient outcome. In fact, measurement of some of these

factors, such as patient gender, ER level, or even gene copy

number changes, could be recorded by microarray and therefore

may appear as positive controls in survival analysis. However, few

studies have reported such direct confirmations. Here, based on

gene expression analysis alone, we identified ER/PR and Bcl-2

genes as good prognostic genes in one breast cancer dataset, sex

related gene expression in one lung adenocarcinoma dataset, and

elevated chromosome 10 gene expression (correlated with normal

PTEN copy number) in two glioblastoma datasets. These results

not only re-confirm the roles of ER/Bcl-2, sex, and PTEN copy

number in breast cancer, lung cancer, and glioblastoma patient

survival, respectively, but also serve as good validations of our

analysis approach.

While the composition of various prognostic gene expression

signatures for the same disease may differ, they may have similar

prognostic power and utility in clinic [9], [25]. However, the

functions of genes in the prognostic signature may relate to the

biology of the disease at different levels, with the real prognostic

gene expression signature faithfully reflects the biology of the

disease. For example, an RB1 mutation related gene expression

signature is the real signature behind retinoblastoma, and a p53

mutant related gene expression signature with changes in direct

p53 transcriptional targets may be behind multiple cancer types

caused by p53 mutation. Identifying such gene expression

signature rather than the surrogates could help us understand

the disease, find new therapeutic targets, and eventually improve

patient survival. Our repeated finding of cell proliferation genes

instead of the estrogen receptor gene as prognostic markers argues

that targeting cell cycle division genes may be more beneficial in

improving breast cancer patient survival.

The SCoR method can not only be used to analyze microarray

data but also applied to any other high dimensional datasets, and

to study association problems other than patient survival as well.

For example, we have successfully used SCoR to analysis RNAseq

data and identified existence of prognostic tumor subtypes using

TCGA data (data not shown).

During the past decade, a large number of gene expression

datasets were generated for many diseases using microarray

technology and more data are being produced now on newer

Figure 5. Identification of sex as a prognostic factor in one lung adenocarcinoma dataset. (a) cluster heatmap of gene expression using
SCoR generated prognostic genes from DC2008-MI dataset annotated with gene symbols and chromosomal locations. (b) and (c) Kaplan Meier plot
of patient survivals stratified by patient gender in all patients (b), and in stage T1 patients, stage T2, T3, T4 patients (c).
doi:10.1371/journal.pone.0045894.g005
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platforms such as RNAseq. Here we introduce a novel survival

analysis method that is mathematically rigorous and more likely to

offer biological insights into the disease. A revisit of existing gene

expression databases and exploration of new generation of gene

expression data using SCoR will greatly enhance the chance to

make new discoveries.

Supporting Information

Figure S1 Identification of B-cell and T-cell markers as
favorable prognostic signatures in highly proliferative
breast cancers. Cluster heatmaps of gene expression from

SCoR generated prognostic genes were shown for subpopulations

from GSE2034, GSE11121 (CDC-high), and NKI-295 (ER-

negative). Blowup images show signatures containing B-cell

marker genes (GSE2034, GSE11121) and T-cell marker genes

(GSE2034, NKI295).

(PDF)

Figure S2 Identification of chromosome 10 genes as
good prognostic candidates in 437 glioblastoms from
TCGA. (a), cluster heatmaps of gene expression from SCoR

generated prognostic genes with blowup box displaying chromo-

somal location, gene symbols. Patient survivals were plotted in

blue or red (top and bottom quartile survivals in length). PTEN

copy numbers were plotted in white, green, and red, representing

normal copy number, copy loss, and deletion, respectively. (b),

Kaplan Meier plot of patient survivals stratified by PTEN copy

number status.

(PDF)

Table S1 Gene expression datasets used in this study.

(DOCX)

Table S2 Cross-validation of prognostic gene expres-
sion signatures in different breast cancer datasets.
Different gene expression signatures were used to stratify patients

and Coxph analysis p values were listed.

(DOCX)

Table S3 Cross-validation of B- and T-cell gene expres-
sion signatures in different breast cancer datasets. B-

and T-cell signatures were used to stratify patients and Coxph

analysis p values were listed.

(PDF)
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