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Abstract

Studies based on functional magnetic resonance imaging (fMRI) during the resting state have shown decreased functional
connectivity between the dorsal anterior cingulate cortex (dACC) and regions of the Default Mode Network (DMN) in adult
patients with Attention-Deficit/Hyperactivity Disorder (ADHD) relative to subjects with typical development (TD). Most
studies used Pearson correlation coefficients among the BOLD signals from different brain regions to quantify functional
connectivity. Since the Pearson correlation analysis only provides a limited description of functional connectivity, we
investigated functional connectivity between the dACC and the posterior cingulate cortex (PCC) in three groups (adult
patients with ADHD, n = 21; TD age-matched subjects, n = 21; young TD subjects, n = 21) using a more comprehensive
analytical approach – unsupervised machine learning using a one-class support vector machine (OC-SVM) that quantifies an
abnormality index for each individual. The median abnormality index for patients with ADHD was greater than for TD age-
matched subjects (p = 0.014); the ADHD and young TD indices did not differ significantly (p = 0.480); the median
abnormality index of young TD was greater than that of TD age-matched subjects (p = 0.016). Low frequencies below
0.05 Hz and around 0.20 Hz were the most relevant for discriminating between ADHD patients and TD age-matched
controls and between the older and younger TD subjects. In addition, we validated our approach using the fMRI data of
children publicly released by the ADHD-200 Competition, obtaining similar results. Our findings suggest that the abnormal
coherence patterns observed in patients with ADHD in this study resemble the patterns observed in young typically
developing subjects, which reinforces the hypothesis that ADHD is associated with brain maturation deficits.
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Introduction

Attention Deficit/Hyperactivity Disorder (ADHD) is a highly

prevalent disorder in childhood and adolescence [1] contributing

to substantial lifetime impairment [2]. It is a heterogeneous

syndrome characterized by excessive inattention, hyperactivity

and impulsivity [3] that tend to persist into adulthood. Until

recently, most neurobiological studies in ADHD were performed

during childhood/adolescence.

Based on the observations of executive dysfunctions in ADHD

[4,5], convergent data from functional neuroimaging studies have

supported the involvement of fronto-striatal and mesolimbic

circuitry in the pathophysiology of ADHD [6,7]. Specifically,

hypoactivation of the dorsolateral prefrontal cortex, inferior

prefrontal cortex, dorsal anterior cingulate cortex, basal ganglia,

thalamus and the particular regions of the parietal cortex were

detected in ADHD compared to control subjects [8]. Although

most fMRI studies focus on identifying brain regions which

respond to certain stimuli, and in quantifying their relative

activations, it is well established that even simple behaviours are

products of interactions between nodes of complex and intercon-

nected neural networks [9]. Thus, the comprehension and

description of functional connectivity within the brain are crucial

to enhance our understanding of cognitive processing or abnormal

behaviour. Using simple correlation analysis, Biswal et al. [10]

showed that intrinsic activity in different motor areas has similar

time-courses, highlighting that such areas are functionally

connected, even during resting state acquisitions. Based on
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consistent observations of deactivation during externally oriented

cognitive tasks and activation during rest, Raichle et al. [11,12]

and Buckner & Vincent [13] described the brain’s Default Mode

Network (DMN), which has become the most frequently studied

intrinsic connectivity network, particularly in clinical populations.

Specifically, functional connectivity magnetic resonance imag-

ing (fcMRI) has been used to investigate Alzheimer disease,

depression, autism, epilepsy in comparison to subjects with typical

development [14]. Resting state fcMRI can be acquired simply

and can be obtained with relatively rapid protocols. In adults with

ADHD, resting state fcMRI studies have suggested reduced

connectivity in the DMN [15,16]. In 2008, Castellanos et al. [16]

proposed a new locus of dysfunction in ADHD, that had been

implicated in attention lapses [17], by showing that patients with

this disorder presented decreases in functional connectivity

between the anterior cingulate and precuneus/posterior cingulate

cortex (PCC) regions relative to subjects with typical development.

Most neuroimaging studies exploring functional connectivity

are based on extracting Pearson or Spearman correlation

coefficients between the signals from different brain regions.

Correlation coefficients can be useful as an index of synchronous

BOLD signal fluctuations measured in distinct areas. On the other

hand, they may be strongly influenced by artifacts and do not take

into account the temporal-scale of the dependence, i.e., short/long

term or frequency features. Spectral coherence analysis (SCA)

[18,19] is a more informative approach in the sense that it is a

dependence measure in the frequency domain. SCA makes it

possible to measure the dependence between two time series at

different frequencies, and thus, it provides a set of coefficients (in

contrast to a single coefficient from correlation) which better

describe the relationship between brain regions.

Pattern recognition methods based on machine learning

algorithms have been successfully applied to fMRI datasets

[20,21,22,23], and one of the key features of this approach is

that they are suitable for multivariate data. Unsupervised pattern

recognition analysis consists of training a classifier with the data

from a single group of subjects (usually the control group). This

approach can be used to discriminate observations that do not

belong to the same population from which the trained data was

sampled. The one-class support vector machine (OC-SVM) was

introduced by Schölkopf et al. [24] and Tax & Duin [25], and is

founded on the structural risk minimization criteria [26]. This

approach is suitable for medical research because it can be used to

define statistical norms, and thus, to develop tools to support

clinical diagnostic evaluation. In a recent study, Sato et al [27]

illustrated how to build a normative database based on functional

connectivity measures. Extending this approach, Mourão-Miran-

da et al. [28] applied OC-SVM to show that patient classification

might be dealt as an outlier identification problem. In addition,

OC-SVM can be used to obtain an index of how atypical an

observation is, compared to a set of other observations. This

feature might be useful in characterizing brain dysfunction, since

this index can measure how abnormal a particular subject is when

compared to a control group.

In this paper, considering that SCA provides a multivariate

characterization (at different frequencies) of functional connectiv-

ity, we introduce a combination of SCA and OC-SVM to

demonstrate that the functional connectivity between the posterior

cingulate cortex (PCC) and dorsal anterior cingulate cortex

(dACC) is not only different but abnormal in ADHD patients

compared to subjects with typical development (TD). Moreover,

we show that the functional connectivity patterns of patients with

ADHD are more similar to those of young TD subjects, which

reinforces the hypothesis that ADHD is related to abnormalities in

brain maturation.

Materials and Methods

2.1 Subjects
Data from 21 patients with ADHD (16 males, mean age 36.5

years, SD = 7.1, range 27–49 years), 21 age-matched TD subjects

(10 males, mean age of 35.5 years, SD = 9.9, 20–50 years) and 21

young TD subjects (13 males, mean age of 16.7 years, SD = 4.1, 9–

22 years) were used in this study. Patients were recruited from the

New York University (NYU) School of Medicine Adult ADHD

Program and controls were recruited through local media

advertisements (as described in greater detail in Castellanos et al.

[16]). To be included, patients had to meet ADHD lifetime criteria

for Combined Type ADHD. To rule out Axis I psychiatric

disorders, the Structured Clinical Interview for DSM-IV (SCID)

and a semi-structured clinical interview were administered in

patients and healthy controls, respectively. Both groups were also

screened with the Symptom Checklist-90-Revised (SCL-90-R)

[29] and were excluded if they reported: 1) lifetime or current

history of psychotic, mood, or substance use disorders; 2) current

history of anxiety disorders; 3) previous treatment with psycho-

tropics except stimulants (for ADHD group only); or 4) history of

any neurological or chronic organic illness. All subjects (or

guardians) provided written informed consent prior to participat-

ing, as approved by the ethics committees of New York University

(NYU) and the NYU School of Medicine. No statistical differences

were found for age (p = 0.606, Mann-Whitney test) or sex

(p = 0.112, Chi-square test with continuity correction) between

the ADHD and TD age-matched groups. The average score of

ADHD patients on the ADHD Self Report Scale [30] was 30.00

(s.d. = 9.14) and on the Adult ADHD Clinical Diagnosis Scale

(ACDS) [31] was 7.58 (s.d. = 1.60). Stimulants were discontinued

for at least 1 day before scanning for those patients who were

taking medication.

The data used in this study are publically available via the 1000

Functional Connectomes Project database (http://www.nitrc.org/

projects/fcon_1000/). Data from 20 ADHD patients and six TD

age-matched subjects were included in the sample described by

Castellanos et al. [16].

2.2 fMRI Acquisition
All subjects underwent a resting state scanning session, with

instructions to relax with eyes open. One hundred ninety seven

contiguous whole-brain EPI volumes were acquired in a Siemens

3.0 Tesla Allegra (TR = 2000 ms; TE = 25 ms; flip angle = 90, 39

slices, matrix = 64664; FOV = 192 mm; voxel size = 36363 mm,

total scanning time of 6.58 minutes). A high resolution anatomical

MRI was also acquired.

2.3 Image Preprocessing
The data was preprocessed using routines of FSL toolbox (www.

fmrib.ox.ac.uk/fsl/). The images were processed for motion

correction (using MCFLIRT routines, http://www.fmrib.ox.ac.

uk/fsl/mcflirt/index.html), spatial normalization (MNI152 tem-

plate, using FLIRT routines, http://fsl.fmrib.ox.ac.uk/fsl/flirt/,

12 degrees-of-freedom), spatial smoothing (Gaussian kernel,

FWHM = 5 mm), temporal filtering (high-pass, 100 s cut-off,

using SUSAN routines, http://www.fmrib.ox.ac.uk/fsl/susan/

index.html). Further analyses were carried out using R platform

(www.r-project.org). VAR modeling for coherence estimation was

carried out using the ‘‘ar’’ routines of the ‘‘base’’ package and OC-

Abnormal Brain Connectivity Patterns in ADHD
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SVM training was done using the ‘‘svm’’ routines in the ‘‘e1071’’

package.

2.4 Region-of-interest Selection
Based on previous studies in literature, PCC and dACC were a

priori defined as regions-of-interest (ROIs). The PCC ROI was

defined using a spherical ROI of radius 7.5 mm centered at MNI

coordinates (25; 249; 40), based on Biswal et al. [32]. Similarly,

dACC coordinates were (8; 7; 38), based on Weissman et al. [17].

Figure 1 depicts the ROI locations. All time series were

normalized to mean zero and variance one.

2.5 Coherence Analysis
Functional connectivity between ROIs was quantified using

spectral coherence analysis (SCA) [18,19]. The reason for using

SCA instead of conventional Pearson correlations are: i) SCA is

more informative than correlation since it decomposes the

correlation into different frequencies, ii) resting state networks

have different spectral signatures, iii) correlation is univariate and

coherence is multivariate (a vector of observations). In addition,

SCA is a well established measure in signal processing literature

and its properties and limitations are well known.

For each subject, SCA was calculated at each ROI (average

time series of all voxels in a region as representative) over the

whole resting state session, estimating the parameters of a vector

autoregressive model (parametric SCA estimation), given by:

xt~b1xt{1z:::zbpxt{pzc1yt{1z:::zcpyt{pzu1t

yt~d1xt{1z:::zdpxt{pze1yt{1z:::zepyt{pzu2t

where xt and yt are the signals measured at time t at the PCC and

dACC, respectively, bi’s, ci’s, di’s and ei’s (i~1,:::, p) are

coefficients and u1t and u2t are white noise random errors. The

lag order of the model was chosen by applying the Akaike

Information Criterion [33,34] independently for each subject.

This selection is based on fitting VAR models of different orders

(in this study, from 1 to 10) to the data, and then using the AIC

formula. Based on this criterion, the best model is the one that

minimizes AIC value. The lag order analysis was independently

set for each individual due to the expected inter-subject variability

and heterogeneity. However, the distribution of lag order did not

differ significantly among patients with ADHD, age-matched TD

and young TD subjects (Fisher exact test p = 0.147).

Consider the following matrix:

Zi~
bi ci

di ei

� �
, (i~1,:::, p),

and

A(l)~I{
Xp

r~1
Zrexp({2pirl)

where I is the identity matrix and

H(l)~A{1(l)~½ h1(l) h2(l) �

The coherence matrix is given by,

C(l)~
ht

1(l)Sh2(l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ht

1(l)Sh1(l))(ht
2(l)Sh2(l))

p
where S is the covariance matrix between u1t and u2t. This is a

symmetric matrix and the SCA measure is given by the off-

Figure 1. ROIs location for PCC and dACC. The coherence values between the BOLD signals from these two areas are used as predictors to the
classifier.
doi:10.1371/journal.pone.0045671.g001
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diagonal values. The VAR model parameters were estimated using

the Yule-Walker approach [19] and estimates for coherence were

obtained. Coherence was sampled in 125 equally spaced

frequencies l from zero to 0.25 Hz (which is the maximum

frequency band range that can be analyzed in this study,

considering the temporal sampling rate).

2.6 One-class Support Vector Machines
The foundations of the one-class support vector machine were

developed by Schölkopf et al. [24], based on the statistical learning

theory of Vapnik [26]. Support vector machine (SVM) classifiers

are part of a set of methods for pattern recognition based on

structural risk minimization, which theoretically yields high

generalization power. The generalization power refers to the

ability, once a training dataset is given, to extract some key

features from this data in order to make predictions on new

observations. One of the main advantages of SVM based

approaches compared to other pattern recognition methods are

their robustness in cases when each observation is composed of a

large number of variables, even exceeding the sample size.

Detailed information about SVM theory is described in Vapnik

[26] and Schölkopf & Smola (2002) [35].

In the current study, we applied one-class SVM (OC-SVM),

developed for the main purpose of defining normative classifica-

tion rules in cases where the number of variables is large. By

normative rules, we mean defining a target population and then

predicting whether a new observation belongs to the population or

not. The intuition behind OC-SVM is that ‘‘all positive examples

are alike and each negative example is negative in its own way’’ (cf.

first sentence of Leo Tolstoy’s Anna Karenina). In the univariate

case, the implementation of general normative rules is intuitive,

since it can be based on building confidence intervals (not for the

mean, but for an observation from the random variable of

interest). The confidence interval can be obtained parametrically

by assuming a probability distribution (e.g., Gaussian) or non-

parametrically by using empirical quantiles. On the other hand, in

cases where the number of variables is large (even greater than the

sample size), the definition of these ‘‘multivariate quantiles’’ is not

simple, and must be founded on mathematical and probability

theory. Since the application of OC-SVM is not based on

assuming two-classes a priori (e.g., controls and patients) but uses

only the target group as the training data, it is considered an

unsupervised classifier. Basically, the main idea of OC-SVM is to

find a partition or subset based on the training data, such that the

probability that a new observation (test data) is not contained by

this subset is p. This parameter is defined a priori within the

interval from 0 to 1. Note that p is the rejection rate for

observations from the same population of the training data, and

thus, from a clinical normative definition perspective, it is the

expected false positive rate.

Actually, there are infinite ways to define multivariate quantiles,

and thus, in order to establish the uniqueness of the solution, the

rule is chosen by considering the solution providing the minimum

probability volume. In the current study, we applied OC-SVM

based on the radial basis function (RBF) kernel, which projects the

data into a hypersphere, and OC-SVM works by classifying the

data from the origin. In addition, one of the key features of OC-

SVM is that it can provide a score, given by.

f (X )~R2{K(X ,X )z2
X

j
ajK(Xj ,X ){

X
j,k

ajakK(Xj ,Xk),

where X is the set of predictor features (in this case, the coherence

values), the coefficients aj are obtained during the training of the

classifier, R is the radius of the hypersphere and K(.,.) is the

kernel function. The closer the observation is to the center of the

hypersphere in feature space (the center is the most typical

observation from the target) the higher is this score, and thus, the

higher the probability that this observation belongs to the target

population. Due to its complexity, the computational and

mathematical foundations of OC-SVM formulations are not

presented here. Further details about mathematical foundations

and implementation can be found in the referenced literature.

The OC-SVM approach has been relatively well described in

the machine learning literature and applications to neuroimaging

databases can be found in Hardoon et al. [22], Song et al. [36],

Sato et al. [37] and Mourão-Miranda et al. [28]. In this study, we

applied OC-SVM to define an abnormality index for each subject.

Since f (X ) can be interpreted as a score function with higher

values for typical observations, we define the abnormality index of

a subject with features X as A(X )~{f (X ). By definition, high

values of A(X ) indicate abnormal observations, when compared to

the target population.

Finally, it is important to mention that although two-class and

multi-class SVM Vapnik [26] have been successfully applied in

fMRI analyses, they are not suitable for identifying or quantifying

abnormal multivariate patterns. These approaches are focused on

classification and defining discriminative patterns and not on

outlier or abnormality detection. This limitation was one of the

main reasons that motivated the development of OC-SVM by

Schölkopf et al. [24].

2.7 Processing Steps
The main idea in this study was to use OC-SVM to obtain an

abnormality index of each subject to compare the dACC-PCC

coherence measures between adult patients with ADHD, TD age-

matched controls and young TD. Basically, the subjects of two

groups (e.g., ADHD and TD age-matched controls) were assumed

to be from the same single population. OC-SVM was trained

using this mixed sample, the abnormality index was obtained for

each subject from this sample and the distribution of this index was

compared between the two original groups. These procedures

guarantee that there is no systematic bias in the analysis, in favor

of a specific group. Since OC-SVM was applied in a sample which

is the mixture of two groups of the same size (21 subjects in each),

the quantile parameter p was set to 0.5 for all analyses. To avoid

overfitting, the RBF kernel gamma parameter was not automat-

ically tuned and was set to 1/125 (125 is the number of variables,

i.e., the coherence at different frequencies), which is a standard

heuristic [38].

The following steps were conducted:

N Step 1) Preprocessing of the EPI images of all subjects;

N Step 2) Extraction of the mean BOLD signal of each ROI, as

representative time-series;

N Step 3) Calculation of coherence between the ROI signals;

N Step 4:

N 4A) Train an OC-SVM classifier using the coherence of

ADHD patients and TD age-matched controls as a single

group. Obtain the abnormality index for all subjects;

N 4B) Train an OC-SVM classifier using the coherence of TD

age-matched controls and young TD subjects as a single

group. Obtain the abnormality index for all subjects;

N 4C) Train an OC-SVM classifier using the coherence of

ADHD patients and young TD controls as a single group.

Obtain the abnormality index for all subjects;

Abnormal Brain Connectivity Patterns in ADHD
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N Step 5) For each of the three classifiers in step 4, apply a

Mann-Whitney test to assess the statistical significance of the

difference of index values between groups. Since the

hypothesis is that patients with ADHD will be abnormal

(compared to TD subjects), which implies higher values of the

abnormality index, the test is one-tailed (median of ADHD

indices , median of TD indices). For comparison purposes,

the evaluation between TD age-matched controls and young

TD was also one-tailed.

2.8 Identification of Discriminative Frequencies
As described previously, the proposed abnormality index could

be used to evaluate the coherence values of any given subject. Still,

it does not provide any information as to why some subjects were

identified as more abnormal than others. Thus, further analyses

were carried out focusing on identifying frequencies which were

more influential (regarding discrimination) in the analyses

comparing ADHD patients vs TD age-matched controls and

TD age-matched controls vs young TD subjects. All OC-SVM

procedures of step 4 described in the previous section were

repeated in a complementary analysis, in which the subjects’

abnormality indexes were recalculated, assuming a training set

excluding each frequency at a time. We define the relevance

coefficient of each frequency as.

Relevance(l)~
1

Dg(l){h(l)D

where g(l) and h(l) are the medians of the abnormality indices for

the two groups being evaluated, when the respective coherence

value at frequency l is not included in OC-SVM training. This

procedure allowed the measurement of the effects of each

frequency on the ability to discriminate the groups based on the

influences of the abnormality indices. If this relevance coefficient

increases when the coherence value at frequency l is excluded

from analysis, this is evidence that this variable contains

discriminative information to separate the groups.

2.9 Application of the Method to the ADHD-200 Sample
Although the main focus of the current study is the investigation

of connectivity patterns and abnormality index in adults, we also

performed the proposed analysis using the data of publicly released

at the ADHD-200 Sample (http://fcon_1000.projects.nitrc.org/

indi/adhd200/). The preprocessed data was released by The

NeuroBureau (http://neurobureau.projects.nitrc.org/

ADHD200/) and is available at the referred website. The

preprocessing of fMRI data was performed using routines from

the packages AFNI (afni.nimh.nih.gov/afni), FSL (www.fmrib.ox.

ac.uk/fsl/) and processed at the Athena computational cluster at

Virginia Tech’s ARC (www.arc.vt.edu). Data processing was based

on: exclusion of the first four EPI volumes (in order to achieve MR

steady-state), slice timing correction, deoblique dataset, reorienta-

tion of the volumes to RPI, correction for head motion (first

volume as reference), masking the volumes to exclude voxels at

non-brain regions, averaging the EPI volumes to obtain a mean

functional image, co-registration of mean image to corresponding

anatomic image of the subject, spatial normalization to standard

space, removing effects of WM, CSF, motion and trend using

linear multiple regression, temporal band-pass filter

(0.009,f,0.08 Hz), spatial smoothing using a Gaussian kernel

(FWHM = 6 mm). BOLD time series from dACC and PCC were

extracted from ROIs at the same coordinates of the adult

experiment as described in subsection 2.4. The ROIs were defined

using the CC400 parcellation provided by the NeuroBureau.

Since the aim of this replication is a validation of the proposed

approach, we calculated the abnormality index based on

coherence and OC-SVM using exactly the same parameters

described in subsection 2.4, 2.6 and 2.7. Similar to the adults

analysis, the data was split in three subsamples: ADHD patients

older than 15 years old (36 children; mean age = 17.25 years,

s.d. = 1.58), age-matched typical developing children (87 children;

mean age = 17.65 years, s.d. = 1.61), and young typical developing

children (131 children; age between 12 and 15 years old; mean

age = 13.47 years, s.d. = 0.87). The abnormality index of the

subjects were calculated independently for each pairwise combi-

nation between the three groups, by following the approach

described in subsection 2.7. All research carried out by ADHD-

200 contributing sites was conducted under local IRB approval.

The data was fully anonymized in compliance with HIPAA

Privacy Rules.

Results

Figure 2 depicts the median coherence (and 75% quantile) of

each group. The abnormality indices from subjects for each

combination of the two groups are also presented in Figure 2. Note

that there is strong evidence that the median index of patients with

ADHD is greater than in TD age-matched subjects (p = 0.014),

there is no difference between ADHD and young TD indexes

(p = 0.480), and the median index of young TD is greater than TD

age-matched subjects (p = 0.016). Although some studies suggest

that sex may not affect resting state fMRI metrics [39], we also

assessed the potential confounding effect of sex on our findings.

Mann-Whitney tests were performed to assess sex effects and

quadratic regression (with age as a predictor and abnormality

index as a response) to test age effects. No significant effects of sex

(p = 0.143) or age (p = 0.589) were found.

The relevance of each frequency in group discrimination is

shown in Figure 3. This figure suggests that although OC-SVM

uses the information of all frequencies in an unsupervised fashion,

low frequencies below 0.05 Hz and around 0.20 Hz are the most

relevant for discriminating between ADHD patients from TD age-

matched controls and between the older and younger TD. This

result supports reinforces the conclusion that patients with ADHD

and young TD have a more similar pattern, since both groups

share the same features that differentiate them from the TD age-

matched controls.

Figure 4 shows the results from the application of the proposed

approach to the ADHD-200 sample. Note that the results is

analogous to the ones obtained in the adult sample: ADHD

patients present abnormal connectivity pattern when compared to

age-matched TD (p = 0.009), age-matched TD and young TD

patterns are different (p = 0.001), and ADHD and young TD have

a more similar patern (p = 0.368). Furthermore, low frequencies

around 0.05 Hz are the most relevant for discriminating between

ADHD patients from TD age-matched controls.

Discussion

This is the first study using OC-SVM and spectral coherence

measures to demonstrate that resting state functional connectivity

between PCC and dACC is abnormal (and not only different) in

patients with ADHD when compared to TD age-matched controls

and that these abnormal coherence patterns of ADHD patients are

more similar to the patterns observed in young subjects with

typical development. To address these questions, we introduced a
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multivariate approach to define an abnormality index for any

subject.

We note that this was not an exploratory study using massive-

multivariate classifiers with the objective of obtaining maximum

accuracy in discriminating groups. The aims of this study were

threefold: i) to demonstrate that ADHD patients have abnormal

dACC-PCC coherence patterns (in a multivariate sense); ii) to

identify the abnormal frequencies; and iii) to obtain evidence

addressing the brain maturation hypothesis of ADHD.

Our finding of abnormal PCC/dACC coherence between

ADHD patients and TD age-matched controls provides

supports the use of this approach as a potential tool for

investigating ADHD. Until recently, most neurobiological

studies of ADHD investigated brain regions encompassing the

prefrontal–striatal and mesolimbic circuits involved in executive

functions and inhibitory control [6,7]. However, beyond

inhibitory control dysregulation, patients with ADHD also

present substantial impairments in attentional performance

[40], which suggests alternative brain circuits may also be

involved in the pathophysiology of ADHD. There are indica-

tions showing that deficits in deactivation of the default-mode

network underlie lapses in attention [17]. In this regard, ADHD

Figure 2. Typical development and ADHD patients’ median coherence (and 75% quantiles – dotted lines) and boxplots of the
abnormality indexes of pairwise comparisons between groups. These indexes show that ADHD patients have a similar pattern of young TD
and both differ from TD-matched controls.
doi:10.1371/journal.pone.0045671.g002
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has been reported to be associated with dysfunction in fronto-

default-mode networks [16]. Specifically, the functional connec-

tivity between dACC and posterior components of the default-

mode network was decreased in 20 adults with ADHD

compared to 20 healthy volunteers [16].

Interestingly, we did not observe any statistically significant

difference in the coherence index of ADHD patients compared to

young TD subjects. Whether ADHD is a disorder related to a

delay in brain maturation or whether it represents a frank

derangement of typical development has remained an unsettled

question since its earliest descriptions [41]. Several neuroimaging

studies have found similarities in functional brain patterns between

patients with ADHD and younger TD controls [42,43]. Interest-

ingly, the NIMH longitudinal study support both types of

conclusions. In comparing 223 children with ADHD and 223

typically developing controls, Shaw et al. [44] found that cortical

thickness maturation trajectories were similar in both groups.

However, children with ADHD reached peak thickness later than

typically developing controls in most areas of the brain [44].

However, in an earlier analysis with nearly the same data, Shaw et

al. [45] reported that overall cortical thickness was significantly

reduced in the group with ADHD, on average, compared to

healthy controls. Our results are qualitatively consistent with the

concept that ADHD is characterized by a delay in brain

maturation rather than a frank derangement of typical develop-

ment. In addition, Figure 2 (top, right) suggests that the variability

of the index in the ADHD group is larger than in TD age-matched

controls, showing that the patient group is more heterogeneous.

This finding is also in agreement with other studies in the

literature, which show that the variability of neuropsychological

and neurophysiological measures is larger in patients with ADHD

[46,47]. In addition, similar findings are found when applying the

proposed approach to the ADHD-200 children sample. All these

results are complementary and emphasize that ADHD is related to

deviations during neurodevelopment.

A limitation of the proposed approach is that it was developed

to deal only with two regions of interest, in this case, dACC and

PCC. Technically, the method could be extended to the case of

three or more brain regions by considering the coherence between

all pairwise combinations of ROIs as features in OC-SVM.

However, in practice, this would lead to a massive increase in the

number of variables. Since the samples for most fMRI studies are

relatively small (less than 100), the inclusion of too many variables

would decrease the performance of OC-SVM, due to the ‘‘curse’’

of dimensionality and the presence of irrelevant variables. In

addition, the successful application of OC-SVM is strongly

dependent on the signal-to-noise ratio of the observations. This

was the main reason for using the ROI average signal as regional

representative, before calculating coherence values. Actually, this

is a limitation of using an unsupervised classifier, since all variables

are assumed to have the same relevance in the calculation of the

abnormality index. However, it is the unsupervised nature of the

Figure 3. Discriminative relevance of each frequency in groups comparison. The frequencies below 0.05 and around 0.20 Hz contain most
discriminative information.
doi:10.1371/journal.pone.0045671.g003

Abnormal Brain Connectivity Patterns in ADHD

PLOS ONE | www.plosone.org 7 September 2012 | Volume 7 | Issue 9 | e45671



classifier which ensures that the analysis of the abnormality index

would not be biased by the selection of the target population (ex: if

only the control group was chosen as the target), since both

ADHD and TD groups are mixed in a single group, before

extracting the indexes of each subject.

The results of this study suggest that low frequencies below 0.05

and around 0.20 Hz are most relevant to ADHD. This frequency

characterization was relevant to show that the features that led

ADHD patients to be classified as abnormal compared to TD age-

matched controls, were the same features that were abnormal in

young TD. However, the neurophysiological meaning of this

finding is still an unanswered question. Although there are some

studies investigating changes in the amplitude of low frequency

fluctuations [48], there are few studies with systematic investiga-

tion into the frequency domain features of functional connectivity

in ADHD [49].

Future studies should explore and describe the frequency

properties of functional connectivity in ADHD and also evaluate

the proposed approach in other samples of ADHD patients. The

inclusion of patients with different psychiatry disorders would also

be important to investigate whether these findings would be

specific for ADHD.

Figure 4. ADHD-200 Sample: Boxplots of the abnormality indexes of pairwise comparisons between groups at different ages.
Bottom-right: relevance of each frequency in discriminanting ADHD patients from TD age-matched controls. These findings are very similar to the
ones obtained in the adults dataset.
doi:10.1371/journal.pone.0045671.g004
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