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Abstract

We study the behavior of pathogens on host protein networks for humans and Arabidopsis - noting striking similarities.
Specifically, we preform k-shell decomposition analysis on these networks - which groups the proteins into various ‘‘shells’’
based on network structure. We observe that shells with a higher average degree are more highly targeted (with a power-
law relationship) and that highly targeted nodes lie in shells closer to the inner-core of the network. Additionally, we also
note that the inner core of the network is significantly under-targeted. We show that these core proteins may have a role in
intra-cellular communication and hypothesize that they are less attacked to ensure survival of the host. This may explain
why certain high-degree proteins are not significantly attacked.
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Introduction

Recently, the work of Mukhtar et al. [1,2] mapped protein

interactions from the reference plant Arabidopsis thaliana (hereafter,

Arabidopsis) and two pathogenic effectors. Additionally, the recent

work of Navratil et al. [3] studied a human protein interaction

network and its interactions with 416 viral proteins. In this paper,

we perform k-shell decomposition analysis [4–6] and other

techniques on these networks. In doing so, we are able to identify

several interesting aspects of the behavior of the pathogens with

respect to both species. First, we observe a strong power-law

correlation between the average degree of certain parts of the

network called shells and the average number of pathogen

interactions for each node. This provides us some insight on

which parts of the network are more attacked by the pathogens.

We also show that the proteins most often attacked tend to lie in

the higher numbered shells (i.e. more toward the ‘‘core’’ of the

network). Next, we find that the nature of the attack of the

pathogens is somewhat limited in that an important structural

component - the core - of both networks is significantly under-

attacked. Finally, we also present some species-specific results for

the two protein networks.

Results

Shells of Higher Average-Degree are Targeted by
Pathogens

Here we discuss that certain portions of the protein networks

known as ‘‘shells’’ are more heavily targeted by the pathogens.

The shells are determined using k-shell decomposition analysis.

This procedure systematically divides the networks into sub-

networks called shells (details on this procedure are in the

Materials and Methods section). We show in Figure 1 a strong

power-law correlation between the average degree (kav) and

average number of pathogen effectors per protein (pav) in each

shell for both networks - despite being associated with species from

different kingdoms (for humans, power-law regression produces

pav~0:033:kav
0:744, r2~0:788, p~3:039:10{10, MIC~0:820;

for Arabidopsis, pav~0:012:kav
1:223, r2~0:905, p~9:727:10{4,

MIC~1:0). For cross-validation, we also measure correlation with

the Maximal Information Coefficient [7] (MIC), which does not

assume a linear relationship (for details see the Materials and

Methods section). Our finding suggests that pathogens seem to

target proteins located in the more dense shells of the networks

(shells with a higher average degree). Previous attempts to relate

network measures with the behavior of the pathogens have

provided only weak correlation (e.g. regression analysis correlating

degree to number of pathogen interactions in the human protein

networks gives r2~0:095 as reported by Navratil et al. - we

provide a complete summary of these correlations later in the

paper). With the Arabidopsis, Mukhtar et al. [1] shows that proteins

of degree 50 or greater were often interacted more with the

pathogens, but do not show a correlation - most likely because

many high degree proteins in that network were not significantly

affected by pathogens. This study differs from these previous

attempts in that we focus on layers of the networks as opposed to

individual nodes. We also note that if, based on certain observable

irregularities, we dis-regard a small handful of shells in the human

protein network, that the correlation significantly increases. In the

human protein network, the average degree monotonically

increases with the first 23 shells then becomes irregular. Further,

the average number of pathogen interactions in each shell follows
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a very similar pattern - generally increasing during the first 22
shells before becoming irregular (see Figure 2). Although we are

unsure why this occurs, we do note that if power-law analysis is

performed on the data for the first 23 shells, the correlation

significantly increases (r2~0:927, p~2:078:10{13, MIC~0:999,

the r2 value when all shells are considered is 0:788,

p~3:039:10{10, MIC~0:820).

Can we extend the above analysis to identify highly-targeted

proteins? Unfortunately, as with degree and betweenness (be-

tweenness is defined in the Materials and Methods section), it

appears that the shell number for each node is not correlated with

number of pathogen effectors. However, can we extract a rule

from the data of the form ‘‘if node X is targeted by at least Y
pathogen interactions then it must have a shell number of at least

Z’’? We looked at the minimum shell number targeted by a

certain number of pathogen effectors (or greater) and found that

such rules appear to be true for both datasets we examined.

Figure 3 illustrates this relationship. We normalized the minimum

shell-number, degree and betweenness associated with nodes being

targeted by at least a certain number of pathogen interactions. It is

noteworthy that the results for the human protein-interaction

network, though striking, may actually be understated as the shell

number (85) of the core is significantly higher than the next shell

(which has a shell number of 34).

Core Network Proteins Under-Targeted
The core nodes of the network (the nodes in the inner-most

shell) are consistently less attacked by the pathogens than

expected. The core nodes (a.k.a. network nucleus), are a relatively

small set of densely-connected nodes (a node in the core has many

connections to other nodes in the core) that in other networks were

shown to be associated with a key function of the network [5] and/

or are amplifying the spread of a phenomenon [6]. An example of

such a function could be the spread of information. Hence,

targeting the core nodes does not seem to be part of the pathogen

attack strategy in both humans and Arabidopsis. In the Arabidopsis

network, core nodes are targeted by pathogens about half as

expected based on the power-law correlation. For the human,

these nodes are targeted only about a quarter as expected (the core

nodes are circled in Figure 1). Further, it appears that highly

targeted nodes are not found in the core. Of the top 25 (1%) of

targeted nodes in the Arabidopsis network, only one of them is in the

core. Of the top 100 (1%) of targeted nodes in the human network,

only two are in the core. In Mukhtar et al. [1] the authors examine

nodes with a degree of 50 or greater - a set of 15 nodes referred to

as hub50 in the Arabidopsis network. Five of these are what those

authors consider ‘‘highly targeted’’ and none of them are in the

core. Of the remaining 10 nodes in hub50, six of them are in the

core. Membership in the core appears to correlate with high-

degree nodes not being targeted.

There exists an optimal virulence - the degree of pathogenicity

an infecting microbe has upon its host - that depends upon the

fitness of both the host and the infecting entity [8]. The pathogen

relies upon the host cellular machinery for replication so it impacts

the genetic network involved in the immune response, pathogen

infection process, and gene expression architecture to produce

pathogen offspring. On the route to achieving optimal virulence, a

pathogen may evolve to target the genetic circuits to allow

maximum fitness of both itself and the host [9]. While some highly

connected nodes of a genetic network prove to be lethal when

either knocked down experimentally or perturbed by a pathogen

in nature, the data analyzed herein demonstrates a plethora of

viruses, bacteria, and eukaryotic pathogens target well-connected,

but non-core nodes in both plant and human interactome datasets.

It may be that the step-wise evolution of a pathogen involves the

sampling of different host protein circuits in an effort to ensure

optimum host viability and maximum pathogen replication

[10,11]. The targeting of high density, but non-core proteins

may reflect an evolved strategic solution pathogens have employed

to achieve optimal virulence [12]. The high density of the targeted

nodes may accelerate a pathogen’s ability to adapt to selective

Figure 1. Average degree (kav) vs. average number pathogen
interactions (pav) per node in a shell (log-log scale) with power-
law fits. The core of each network is circled. (A) Human protein
interaction network (B) Arabidopsis protein interaction network.
doi:10.1371/journal.pone.0045154.g001

Figure 2. The average degree of each shell in the human
protein interaction network increases for the first 23 shells
before becoming irregular. The average number of pathogen
interactions for each shell follows a similar pattern.
doi:10.1371/journal.pone.0045154.g002
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pressure by switching to a closely related target or it may simply

reflect the highly connected nature of the targeted suite of proteins

involved with the control of gene expression and cellular

metabolism.

The intra-cellular communication circuits include signals

transduction components between organelle such as the nucleus

and mitochondria as the cell strives to maintain homeostasis.

Many of these communication circuits are involved with host

metabolism and are the same proteins co-opted to construct

pathogen progeny. We now illustrate how nodes in and near the

core can be viewed as superior spreaders of information by

examining the information centrality [13–15] (CI ) of the proteins

in the various shells. Hence, nodes with high information centrality

are thought to be excellent spreaders of information. Information

centrality is more formally defined it the Materials and Methods

section.

In both protein networks explored in this paper, the nodes in

and near the core are superior spreaders of information given the

information centrality of the proteins in various shells. We found a

strong logarithmic correlation between shell depth (d) and

information centrality in both the human and Arabidopsis protein

networks (for humans, the relationship is d~0:586:ln(CI )z0:683,

r2~0:972, p~0:0, MIC~0:999; for Arabidopsis, the relationship is

d~0:354:ln(CI )z0:482, r2~0:897, p~0:0, MIC~0:985, see

Figure 4). In general, nodes toward the more inner shells have

greater information centrality.

Identifying Highly-Targeted Proteins in the Arabidopsis
Network

Within a given shell of the Arabidopsis protein interaction

network, the correlation coefficient (based on Pearson’s r, linear)

for betweenness (CB) and number of pathogen interactions per

node (p) monotonically increased with the average degree of a

given shell (power law regression fit yields r2~0:847, p~0:00327,

MIC~1:0,). This proves to be useful information in identifying

Figure 3. Normalized minimum centrality measure (the centrality measures depicted here are degree, betweenness, and shell
number) of nodes targeted by at least a certain number of pathogen interactions. (A) Human protein interaction network. (B) Arabidopsis
protein interaction network. Betweenness is defined in the Materials and Methods.
doi:10.1371/journal.pone.0045154.g003
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high-targeted nodes as the shell with the highest average degree

(shell 6, the last shell before the core, containing 155 nodes)

appeared to have a correlation for betweenness-number of

pathogen interactions (linear regression fit gives

p~201:299:CB{0:485, r2~0:645, p~2:958:10{36,

MIC~0:493). This is significantly greater than the linear-fit for

the relationship among betweenness-number of pathogen interac-

tions for the entire dataset (r2~0:435, p~0:0, MIC~0:144). The

relationship for this shell is shown graphically in the Figure 5. As

an anecdote, the top 5 attacked proteins in the entire network were

all contained within the top 7 high-betweenness proteins of shell 6.

We note that similar results described in this paragraph can be

derived based on degree-number of pathogen correlations.

However, this is most likely a side-effect of the high correlation

among degree and betweenness within shell 6 of the Arabidopsis

protein interaction network (linear regression r2~0,849,

p~1:024:10{64, MIC~0:901).

Characterizing Attacks on Essential Proteins in the
Human Network

For the human network, we also further examined the

relationship between essential host factors (EHF’s) and the

pathogen interactions. We used a list of 1501 EHF’s from Navratil

et al. [3]. In that work, the authors noted that over 40% of the

EHF’s were within the local neighborhood (within 1 edge or less

distance) from a targeted protein. While this indicated that

pathogens target areas of the protein network near EHF’s, it may

be that the pathogens limit their attack to ensure the survival of the

host (i.e. as with the lower-than-expected attachs of the core

proteins we noted earlier). To examine this issue, we studied the

average and maximum number of EHF proteins that are

neighbors of node attacked by a certain number of pathogen

effectors. We found that the average percentage of EHF neighbors

remained at 0:2 while the maximum decreased as the minimum

number of pathogen interactions increased - see Figure 6.

Figure 4. Shell depth vs. information centrality: (A) human protein interaction network, (B) Arabidopsis protein interaction network.
Information centrality is defined in the Materials and Methods.
doi:10.1371/journal.pone.0045154.g004
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Notes on Essential Host Factors in the Human PIN
We also found some results concerning the relationship between

EHF proteins and network structure. In Figure 7, we show that

there is a linear relationship between the size of a shell and the

number of EHF proteins in that shell (where nj (nEHF
j ) is the

number of nodes (EHF nodes) in shell j the relationship is

nEHF
j ~0:06843:njz9:556, r2~0:932, p~7:649:10{18,MIC~

0:792). We also noticed (in Figure 8) that there is a linear

relationship between the average degree of proteins in a shell and

the average degree of EHF proteins in a shell (the relationship is

kEHF
av ~0:0861:kav, r2~0:956, p~3:322:10{19,MIC~0:999).

Correlation Studies On Node Centrality vs. Number of
Pathogen Interactions Per Node (Negative Result)

We found a negative result on the correlation between node

centrality measures and number of pathogen interactions per

node. In general, there was little correlation found using linear

regression. Similar results were obtained using power-law regres-

sion. On the human protein network, the r2 value associated with

linear regression on degree-pathogen correlation is 0:058

(p~1:298:10{132, note that Navratil et al. report a slightly higher

value - their analysis is most likely based on a power-law

correlation) while MIC~0:0830, for betweenness-pathogen cor-

relation is 0:037 (p~9:412:10{85) while MIC~0:109, and for

shell number-pathogen correlation is 0:030 (p~5:970:10{69)

while MIC~0:067. On the Arabidopsis protein network, the r2

value associated with linear regression on degree-pathogen

correlation is 0:314 (p~8:274:10{220) while MIC~0:098, for

betweenness-pathogen correlation is 0:435 (p~0:0) while

MIC~0:144, and for shell number-pathogen correlation is

0:050 (p~2:889:10{31) while MIC~0:050.

Discussion

We believe these results are exciting as they show that pathogen

effectors seem to attack protein networks of entirely different

organisms in very similar ways. Further, through k-shell decom-

position and regression analysis, we are able to identify high-risk

shells for attack. We are currently looking to extend this work by

creating software tools to extract highly-relevant patterns of

pathogens attacks. Other future work of interest would be to

explore pathogen relationships with host protein networks for

other organisms.

Materials and Methods

The degree of a host protein node in the networks considered is

the number of other host proteins interacting with it. The number

of interacting pathogens for a given protein node (denoted by p in

this paper) is the total number of proteins in all pathogen protein

networks (considered for that host species) which interact with that

protein node.

The k-shell decomposition method can be described as follows.

At the first iteration, all unconnected nodes are removed and are

considered to be in shell 0 (note that we did not consider this shell

in our analysis – as it has been observed that unconnected proteins

were largely unaffected by pathogens [1,3]). Then all nodes

connected to the graph by one edge are removed, they are in shell

1. Upon their removal, there may be other nodes connected to the

Figure 5. Betweenness centrality (CB) vs. number of pathogen
interactions (p) for the nodes in shell 6 of the Arabidopsis
protein interaction network.
doi:10.1371/journal.pone.0045154.g005

Figure 6. Minimum number of pathogen interactions for a given node vs. fraction of EHF neighbors for that node.
doi:10.1371/journal.pone.0045154.g006
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graph by one edge or less - they too are removed and are also

considered in shell number 1 (we then continue removing nodes

from the graph for shell 1 until there are no more nodes connected

by just one edge or less). The process repeats for nodes connected

to the graph with only two edges (they are in shell 2) and so on

until nodes are removed. The nodes in the highest k-shell are

known as the core. We define the term ‘‘shell depth’’ as the

number representing the order in which the shell is determined -

for example if shell number 1 is followed by shell number 3, then

the depth of shell 3 would be 2. We define ‘‘shell size’’ simply as

the number of nodes in a particular shell.

Betweenness centrality, [16], often simply called ‘‘betweenness,’’

is defined as follows. Let sst be the number of shortest paths

between nodes s and t and sst(v) be the number of shortest paths

between s and t containing node v. Betweenness centrality for

node v is then
X

s=v=t

sst(v)

sst

. Intuitively, nodes of high-

betweenness can be thought of as ‘‘bottlenecks’’ as their removal

often results in an increase in shortest path length between node

pairs in the network. The NetworkX package used in our analysis

implements the algorithm of [17] to compute this measure.

Information centrality [13], studies all different paths between

two nodes in a network. In [13], the information value between

two nodes is related to the inverse length of the different paths

between them. For node pair (i,j), they define a square matrix D(ij)

where the number of rows in the matrix is equal to the total

number of paths between i and j. The r,s component of the

matrix, D(ij)
rs , is equal to the number of shared links between the

path specified at row r and row s. Hence, for undirected networks

(as the protein networks used in this paper) the matrix is

symmetric. To define the information between i and j, denoted

Iij , the authors sum the components of the inverse of D(ij). Based

on this calculation, for a network of n nodes, the information

centrality of a given node i (denoted CI (i)) is defined as follows.

CI (i)~
nP

j

1=Iij

ð1Þ

Hence, the information centrality of node i is the harmonic mean

of the information associated with the paths from i to all other

nodes in the network.

The Arabidopsis protein network of Mukhtar et al. [1] consisted

of 5664 interactions among 2661 proteins and 306 interactions

with pathogens. The maximum degree was 222 and excluding

unconnected nodes the network was decomposed into 7 shells.

The human protein interaction network of Navratil et al. [3]

consisted of 65,533 interactions among 10,057 proteins. There

were 1911 interactions with pathogens. The maximum degree was

1012. Decomposed, the human network had 29 shells.

All network analysis was performed using NetworkX (http://

networkx.lanl.gov/) and all statistics were performed using SciPy

(http://www.scipy.org/).

In the power-law regression analysis of the human network,

shell 25 (consisting of three nodes with degrees 25, 26, and 30) was

omitted from the power-law analysis as it was not affected by any

virus. For the high-quality human network, shell 21 (consisting of

one node with a degree of 45) was omitted for the same reason. No

shells were omitted in analysis done with the Maximum

Information Coefficient.

For all linear regression analysis, the p-value (2-tailed unless

specified otherwise) refers to the probability that the slope is zero

(roughly the probability that an uncorrelated system produces

datasets that have an r value greater than or equal to one

reported). For power regression, this refers to the probability that

the scaling exponent is zero.

In addition to the normal regression analysis, we also computed

the Maximal Information Coefficient (MIC) [7] that measures the

correlation of two variables without assuming a linear relationship.

This coefficient is a number in the interval ½0,1� that monoton-

ically increases with correlation. We used the the MINE software

available from http://exploredata.net to compute this quantity.

Note that if we compared two variables, the MIC was computed

on the two original variables (i.e. not the logarithm).

For the results on information centrality, all of our results are on

the greatest connected components of either graph. This is because

information centrality [13–15] is only defined for strongly

connected graphs.

For our EHF results, the set of ‘‘EHF neighbors’’ includes all the

neighbor of a given node and itself. Hence, we assume a self-loop.

For instance, an EHF protein not adjacent to any other EHF

protein has one ‘‘neighbor’’ – itself.
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