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Abstract

Litter decomposition rate (k) is typically estimated from proportional litter mass loss data using models that assume
constant, normally distributed errors. However, such data often show non-normal errors with reduced variance near bounds
(0 or 1), potentially leading to biased k estimates. We compared the performance of nonlinear regression using the beta
distribution, which is well-suited to bounded data and this type of heteroscedasticity, to standard nonlinear regression
(normal errors) on simulated and real litter decomposition data. Although the beta model often provided better fits to the
simulated data (based on the corrected Akaike Information Criterion, AICc), standard nonlinear regression was robust to
violation of homoscedasticity and gave equally or more accurate k estimates as nonlinear beta regression. Our simulation
results also suggest that k estimates will be most accurate when study length captures mid to late stage decomposition
(50–80% mass loss) and the number of measurements through time is $5. Regression method and data transformation
choices had the smallest impact on k estimates during mid and late stage decomposition. Estimates of k were more variable
among methods and generally less accurate during early and end stage decomposition. With real data, neither model was
predominately best; in most cases the models were indistinguishable based on AICc, and gave similar k estimates. However,
when decomposition rates were high, normal and beta model k estimates often diverged substantially. Therefore, we
recommend a pragmatic approach where both models are compared and the best is selected for a given data set.
Alternatively, both models may be used via model averaging to develop weighted parameter estimates. We provide code to
perform nonlinear beta regression with freely available software.
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Introduction

Litter decomposition strongly influences carbon and nutrient

cycling within ecosystems [1]. Therefore, estimating an accurate

decomposition rate is critical to understanding biogeochemical

processes. The most widely used model to describe the rate of litter

mass loss is the single-pool negative exponential model [2]

M(t)~M(0)e{kt, ð1Þ

where M(t) is litter mass at time t, M(0) is initial litter mass, and k is

the litter decomposition rate. Because M(0) is generally known, its

estimation is unnecessary and can even lead to biased estimates of

k, the parameter of interest [3]. Thus, M(t) is best divided by M(0)

and the resulting proportional litter mass loss X(t) modeled as [3]

X (t)~
M(t)

M(0)
~e{kt: ð2Þ

In theory, X(t) is bounded such that 0# X(t) ,1, but in practice

values $1 sometimes result, especially during the early stages of

decomposition.

Often, k is estimated by log-transforming X(t) and using a linear

regression model with mean m and normally distributed errors,

where k is the slope and s2 is the variance

ln½X (t)�*N(m~{kt, s2); ð3Þ

this is similar to the use log-log regression for fitting allometric

power equations [4] and biological power laws [5]. However, [3]

showed that this approach leads to biased k estimates unless errors

are log-normally distributed. Instead, they suggested using

nonlinear regression on untransformed data, again with normal-

ly-distributed errors

X (t)*N(m~e{kt, s2): ð4Þ
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This model was found to give more accurate k estimates in

simulations [3], but it assumes that errors are constant and

normally distributed – a likely invalid assumption (Figure 1).

Indeed, proportional litter mass loss data often shows smaller

variance near bounds (0 and 1), which is typical of bounded data

[6]. In these cases, fitting a model with constant normal errors may

lead to biased k estimates.

One solution could be to model the variance s2 as a function of

t, but this requires additional parameters. An alternative solution

may be to use an error distribution better suited to bounded data,

such as the beta distribution [6]. Like the normal distribution, it

only has two parameters. Unlike the normal distribution, it is

bounded between 0 and 1, and can easily accommodate the type

of heteroscedasticity shown in Figure 1 [6]. Its probability density

function is a function of two scale parameters, a and b

f (x,a,b)~
C(azb)

C(a)C(b)
xa{1(1{x)b{1, ð5Þ

where C(n) is the gamma function C(n)~(n{1)! and 0#6#1. In

the context of regression, the beta distribution is re-parameterized

[6],[7] to a location parameter m (the mean) and a precision

parameter w (the inverse of dispersion)

m~
a

azb
ð6Þ

w~azb: ð7Þ

The variance s2 depends on m and w.

s2~
m(1{m)

(1zw)
: ð8Þ

Consistent with patterns often found in decomposition data

(Figure 1), the numerator shows that s2 is smaller near the bounds

(0 or 1): if w = 1 and m = 0.01 or 0.99, s2 = 0.005; if m = 0.5,

s2 = 0.125. The denominator shows that higher precision w
reduces s2.

In summary, the beta distribution may be better suited than the

normal distribution to model proportional litter mass loss data

because it is bounded between 0 and 1, its s2 is smaller near its

bounds, as with decomposition data (Figure 1), and hence it can

model this type of heteroscedasticity without additional parame-

ters.

Since the beta distribution is bounded between 0 and 1,

proportional litter mass loss data must also be bounded between 0

and 1. However, litter mass loss data often contain values equal to

0 (no mass remaining), or $1 (no decomposition or sample

contamination by soil), so the data, y, must be compressed to the

]0, 1[interval (y99) [6]:

Figure 1. Figure of mean mass remaining versus standard deviation of replicates at each time point for real data. Mean mass
remaining versus standard deviation of replicates at each time point for (A) Long-term Intersite Decomposition Experiment Team (LIDET) data, (B)
Hobbie data; (C) EL data; and (D) HG data.
doi:10.1371/journal.pone.0045140.g001
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y’~(y{a)=(b{a) ð9Þ

y’’~½y’(N{1)z0:5�=N, ð10Þ

where a and b are the y minimum and maximum values, respectively,

and N is sample size. Hereafter, we refer to this transformation as

Smithson and Verkuilen’s [6] (SV) transformation.

The goal of this paper is to compare the normal model

(Equation 4) with the beta model

X (t)*B(m~e{kt, w): ð11Þ

Specifically, we : (1) compare the performance of the normal vs.

beta model in numerical simulations, using different realistic error

structures for simulated X(t); (2) investigate the influence of two

different transformations to compress X(t) between 0 and 1,

namely (i) treating zeros as missing data and setting values $1

equal to 0.9999, or (ii) Smithson and Verkuilen’s transformation

[6]; and (3) compare the performance of the normal vs. beta model

and evaluate the influence of the transformations mentioned

above, using real data from decomposition studies of differing

decomposition stage (early, medium, and late based on percent of

initial mass remaining: 25, 60, and 72% average mass loss,

respectively). Because different decomposition stages encompass

different portions of the mean-variance relationships seen in litter

decomposition data (Figure 1), we expected that it could influence

the fit of beta vs. normal models.

We hypothesized that nonlinear beta regression would provide

better fits to proportional mass loss data and give more accurate k

estimates than normal nonlinear regression, because of the

heteroscedasticity often associated with these data (Figure 1). If

so, nonlinear beta regression would provide more reliable k

estimates from single-pool models [2].

Materials and Methods

Data Simulation
We simulated X(t) using four values that spanned the range of

low to high decomposition rates: 0.0005, 0.002, 0.01, and 0.1 d21.

These k values were chosen by examining the range of k values

found in the Adair et al. [3] decomposition review and choosing

values that spanned the range from very low to high (Figure S1).

The chosen k values resulted in 1% mass remaining at

approximately 25, 6, 1.3, and 0.1 years, respectively (using

Equation 2; Table 1). We used these k values to simulate X(t) over

four different time spans that represented early (80% mass

remaining), mid (50% mass remaining), late (20% mass remain-

ing), and end (1% mass remaining) stage decomposition for each k

value (Table 1). This strategy allowed us to investigate the ability of

each regression type to accurately predict k across a range of k

values and decomposition stages (i.e., study lengths or total times).

To investigate whether the number of mass loss measurements

taken within a given study would affect a given regression type’s

ability to accurately estimate k, we generated 2, 5, 7 or 10

‘‘measurements’’ across each k value and decomposition stage

simulation. Because sampling times in decomposition studies are

not typically evenly spaced, but are instead weighted towards the

beginning of the study (where litter mass loss is most rapid), we

used the data gathered during the review completed by Adair et al.

[3] to determine sampling times: we (1) recorded total experiment

time and all measurement times from each of the 383 references

contained in the review; (2) converted measurement times to

proportion of total experiment times; (3) grouped proportional

measurement times by the number of times each study made mass

loss measurements (i.e., 2, 5, 7 or 10 times); (4) created histograms

for each category using bin sizes of 0.1; and (5) selected the most

frequent proportional measurement times from each category (2,

5, 7, or 10 measurements; Figure S2). The proportional times used

were the averages of the most frequent proportional measurement

bins. Thus, for 2 measurements, data was simulated at 0.5 and 1.0

of total time (i.e., at K of the total time and at the end of the total

time). For 5 measurements, data was simulated at 0.06, 0.14, 0.23,

0.63, 1.0 of total time. For 7 measurements, data was simulated at

0.05, 0.15, 0.24, 0.36, 0.54, 0.65, 1.0 of total time. For 10

measurements, data was simulated at 0.04, 0.11, 0.23, 0.32, 0.43,

0.53, 0.62, 0.84, 0.93, 1.0 of total time.

Finally, we used three different error structures that resembled

those found in real data (Figures 1–2). For each error structure we

generated data using three different standard deviations (or w’s for

beta regression) that resulted in low, moderate, and high variation

in the simulated X(t)s:

1. Normally distributed errors with variable standard

deviations (s). We took random samples from the normal

distribution

X (t)~N(m~e{kt, s2), ð12Þ

using three different variable s structures:

Var s1~

0:02 if mƒ0:05

0:04 if 0:05vmƒ0:15

0:075 if 0:15vmv0:85

0:05 if 0:85ƒmv0:95

0:025 if m§0:95

8>>>>>><
>>>>>>:

, ð13Þ

Var s2~

0:04 if mƒ0:05

0:08 if 0:05vmƒ0:15

0:15 if 0:15vmv0:85

0:10 if 0:85ƒmv0:95

0:05 if m§0:95

8>>>>>><
>>>>>>:

, or ð14Þ

Table 1. Percent mass remaining at early, mid, late and end
stage decomposition for four different decomposition rates (k
in d21).

Time (d)

Stage Mass remaining k = 0.0005 k = 0.002 k = 0.01 k = 0.1

Early 80% 446 112 22 2

Mid 50% 1386 347 69 7

Late 20% 3219 805 161 16

End 1% 9210 2303 461 46

Years to end 25.2 6.3 1.3 0.1

Time is the number of days (d) it takes for mass remaining to reach 80, 50, 20 or
1% for early, mid, late or end stage decomposition, respectively. Time is also
provided in years for end stage decomposition.
doi:10.1371/journal.pone.0045140.t001
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Var s3~

0:06 if mƒ0:05

0:12 if 0:05vmƒ0:15

0:225 if 0:15vmv0:85

0:15 if 0:85ƒmv0:95

0:075 if m§0:95

8>>>>>><
>>>>>>:

ð15Þ

where s increases from Var s1to Var s3. Values X(t) ,0 were set

to 0, whereas values X(t) .1.05 were set equal to 1 (Figure 2d).

2. Beta-distributed errors. We took random samples from

the beta distribution, with w = 5, 8 or 15 (higher values generate

less variation in X(t); Figure 2c).

X (t)*B(m~e{kt, w): ð16Þ

3. Beta-distribution errors with normal errors added. We

sampled from the beta distribution (w = 5, 8 or 15) and added small

amounts of normal error (e; two different s values) to generate values

X(t) #0 or $1, which sometimes occur in real data.

X (t)*B(m~e{kt, w)ze ð17Þ

where e was either

(a)e*N(m~0, s~0:0125

(b)e*N(m~0, s~0:05

ð18Þ

Values ,0 were then set equal to 0 (Figure 2a–b).

In total, we ran 768 simulations (four k values; three error

options with three variable s structures for option 1, three w values

for option 2 and six s + w combinations for option 3; four

decomposition stages; four numbers of measurements). Each data

set generated within a simulation run had five replicates per

measurement time. We generated 12,000 data sets in each

simulation run. We estimated parameters via maximum likelihood

(ML) estimation with normal and beta distributed errors, using the

‘bbmle’ package (version 1.0.4.1) [8] and nonlinear least-squares

regression (NLS; assumes normal errors), using the ‘nls’ function in

R 2.15.0 [9]. At times, NLS and beta ML regression failed to

converge. Thus, to compare regression methods, we used the first

10,000 simulations where all regression types successfully estimat-

ed k. NLS only failed in cases where simulated data sets contained

many missing values (see REP transformation below). However,

beta ML regression often failed to converge during early

decomposition, regardless of the number of measurements that

were used (2, 5, 7 or 10) to estimate k. This was especially true in

simulations that used only beta-distributed errors (option 2). In

these cases, we used ,10,000 simulated data sets to compare

regression methods (Table 2).

Additionally, when using ML estimation with beta errors to

estimate the low k value (0.0005 d21), optimization algorithms

often failed to converge. We therefore estimated the low rate as a

yearly rate (this solved the convergence problems) and converted it

back to a daily rate for analyses, figures and tables.

For simulation runs that generated data sets with values X(t) = 0

or $1 (options 1, 3a, 3b), we compared two data transformations:

Figure 2. Figure of mean mass remaining versus standard deviation of replicates at each time point for 200 simulations with four
different error structures: (A) beta errors + normal errors (option 3a; s = 0.0125, w = 5); (B) beta errors + normal error (option 3b;
s = 0.05, w = 5); (C) beta errors (option 2; no 0 or .1 values, w = 5); and (D) normal error with variable s (option 1; Var s2).
doi:10.1371/journal.pone.0045140.g002
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the Smithson and Verkuilen (SV) [6] transformation (Equations 9

and 10) or, following [3], converting all values $1 to 0.9999 and

treating zeros as missing data (the ‘replacement’ or REP

transformation). For simulations with values 0, X(t) ,1 (option

2), no transformations were necessary. This resulted in 576

additional simulations, for a total of 1344 simulations.

Because the generated data sets had small sample sizes (i.e. N/

p,40, where p is the number of parameters), which is typical for

litter decomposition studies, we used the corrected Akaike

Information Criterion (AICc) to compare models fitted via ML

AICc~AICz
2p(pz1)

N{p{1
: ð19Þ

To determine how well the different approaches estimated the

litter decomposition rate, ke, relative to the true kt (here, 0.002 d21)

we calculated the average percent (%) bias

% Bias~100

Ps
i~1

(kei{kt)=kt

s
, ð20Þ

where s is the number of simulations (here, s = 10,000 or as in

Table 2), and the percent relative error (%RE)

% RE~100

Ps
i~1

Dkei{ktD=kt

s
: ð21Þ

Bias measured whether a particular approach over- or under-

estimated kt, whereas %RE measured the magnitude of the

difference between kt and all ke, regardless of direction.

Because results (% bias, % RE, and average k estimates, and AICc

results) were very similar among k values (e.g., Figures

S3,S4,S5,S6,S7,S8,), we present results from one k value (k = 0.0002).

Analysis of Real Decomposition Data
We used three real data sets that reflected the range of time

frames used in the data simulation: early, mid, and late stage

decomposition data, based on the proportion of initial litter mass

still present at the end of each study (Table 1).

For the early stage decomposition data set, we used the Hobbie

and Gough [10] litter bag decomposition data set. The average

percent of initial mass remaining at the end of this experiment was

75.4% (standard error, SE = 3.1%), indicative of early decompo-

sition. The Hobbie and Gough [10] experiment was conducted at

two arctic tundra sites near Toolik Lake, Alaska (68 389N, 149

439W). Mean annual temperature (MAT) at Toolik Lake is 27uC
with low annual precipitation (200–400 mm) [11]. In this

experiment, nine litter types were decomposed over 1082 days.

Five bags of each litter type were collected from each site on days

308, 361, 717, and 1082. Experiment details are presented in [10].

Mid stage decomposition data were provided by Laliberté and

Tylianakis’ [12] 560-day litter bag decomposition experiment

conducted on the AgResearch Mount John trial site, in the

Mackenzie Basin of New Zealand’s South Island (43u599S,

170u279E). The climate is semi-continental with a MAT of

8.7uC and mean annual precipitation (MAP) of 601 mm.

Litterbags of mixed senesced ‘‘community litter’’ were decom-

posed within a larger fertilization and grazing experiment

(described in detail by [12]).The experiment is a split-plot design

where fertilizer treatment is the whole-plot treatment and sheep

grazing intensity were the sub-plot treatments. Four replicates

were collected from each sub-plot after 1, 3, 6, 12, and 18 months.

Litterbags were also collected from adjacent unfertilized and

ungrazed control sites. Average percent of initial mass remaining

at the end of the experiment was 40% (SE = 0.002). This

experiment is described in detail in [13].

We used the Hobbie [14] data set for late stage or long-term

decomposition. Average mass remaining at the final collection was

27.6% (SE = 0.60%). These data consisted of the data within [14]

plus Hobbie’s unpublished filter paper mass loss data from the

same experiment (hereafter, the Hobbie data set). Briefly, the

Hobbie [14] experiment was established at Cedar Creek

Ecosystem Science Reserve in central Minnesota, USA (45.40u
N, 93.20u W; MAT = 6.7uC, MAP = 800 mm). Eight litters were

decomposed for five years (1763 days) at eight sites (two old fields,

a hardwood forest, two oak stands, two pine stands, and an aspen

stand), with a nitrogen addition treatment at each site (6 replicates

per treatment/time point). Details are presented in [14],[15].

Because NLS and ML estimation using normal errors produced

nearly identical results in the data simulations for early to late stage

decomposition (Figures 3,4,5,6,7,8), we only compared k estimates

obtained using ML estimation with normal and beta errors (k

estimates/decomposition models were compared using AICc; see

below). As in the simulations, when using beta errors to estimate low

k values (k ,0.0015 d21), optimization algorithms often failed to

converge. In these cases, estimating k in years solved the problem.

Thus, while all other k values were estimated as daily rates, k values

in the Hobbie and Gough [10] data set were estimated as yearly

rates and converted to daily rates for figures and tables.

We fit single pool models (Equation 2) to all litter mass loss

curves within each data set using ML estimation with normal or

Table 2. Simulations for which ML estimation with beta errors (option 2) failed to converge for 10,000 out of 12,000 generated
data sets.

k = 0.1 k = 0.01 k = 0.002 k = 0.0005

Error Stage
#
meas w = 5 w = 8 w = 15 w = 5 w = 8 w = 15 w = 5 w = 8 w = 15 w = 5 w = 8 w = 15

Beta only

Early 5 5690 9784 6906 7123 6942

Early 7 4325 8519 5168 9351 5367 9517 5281 9409

Early 10 2581 6638 3274 7454 3390 7802 3335 7641

The number of generated data sets for which ML estimation with beta errors converged is shown.
doi:10.1371/journal.pone.0045140.t002
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Figure 3. Simulation results for beta-distributed errors (option 2), k = 0.002. (A) Percent bias, (B) percent relative error, and (C) average k
estimate. Early, mid, late and end are early, mid, late and end stage decomposition simulations. The numbers 2, 5, 7 and 10 are the numbers of
measurements used in each simulation. Blue circles = NLS, Red circles = Normal ML, gray/black circles = Beta ML. In most cases, nls = Normal ML so
that the red circles cover the blue circles. In panel (A), the gray line shows 0% bias. In panel (C), the gray line shows the true k value, 0.002 d21.
doi:10.1371/journal.pone.0045140.g003

Figure 4. Percent bias for beta-distributed errors plus normal errors. (A) standard deviation (s) = 0.0125 (option 3a) and SV transformation,
(B) s= 0.0125 (option 3a) and REP transformation, (C) s= 0.05 (option 3b) and SV transformation, (D) s= 0.05 (option 3b) and REP transformation.
Early, mid, late and end are early, mid, late and end stage decomposition simulations. The numbers 2, 5, 7 and 10 are the numbers of measurements
used in each simulation. Blue circles = NLS, Red circles = Normal ML, gray/black circles = Beta ML. In most cases, nls = Normal ML so that the red circles
cover the blue circles. Gray lines show 0% bias.
doi:10.1371/journal.pone.0045140.g004
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beta errors (‘bbmle’ package version 1.0.4.1) [8]. The early, mid

and late stage decomposition data sets contained 18, 64, and 128

litter mass loss curves, respectively. Whenever possible (i.e. all X(t)

.0 and ,1), we used untransformed data. When transformation

was required, we used both the SV and REP data transformations.

Within transformed or untransformed data sets, we compared

model fit using AICc. We considered models with AICc between 4

and 7 apart (4, DAICc ,7) as clearly distinguishable and models

with DAICc .10 as definitely different, following previous

recommendations [16].

We also examined model fit to the untransformed data using

fractional bias (FB)

FB~
M(t)pred{M(t)obs

0:5½M(t)predzM(t)obs�
, ð22Þ

and relative bias (RB)

RB~
M(t)pred{M(t)obsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var½M(t)obs�
p , ð23Þ

where M(t)pred is the mean of predicted values, M(t)obs is the

mean of all observations, and var[M(t)obs] is the sample variance

of all observations [17]. These metrics express the average amount

of bias in the model predictions (compared to the observations)

and thus describe the ‘model-data’ discrepancy [17].

Results

Simulations
Beta-distributed errors. For beta-distributed errors (option

2; no data transformations needed), the accuracy of k estimates

generally increased with the number of measurements (from two

to ten) and declining error (from w = 5 to 15; Figure 3). Bias and

RE decreased with increasing number of measurements and with

decreasing error (w). In general, k estimates also improved (reduced

bias and RE) from early to late decomposition (Figure 3).

However, when study lengths were the longest (end stage

decomposition), using only two measurements often resulted in

inaccurate k estimates, particularly when using ML estimation with

normal errors.

Across all simulations, using ML regression with beta errors

resulted in very similar or more accurate k estimates than NLS or

ML with normal errors (Figure 3). This was particularly true for

Figure 5. Percent relative error for beta-distributed errors plus normal errors with different s and transformations. (A) s= 0.0125
(option 3a) and SV transformation, (B) s= 0.0125 (option 3a) and REP transformation, (C) s= 0.05 (option 3b) and SV transformation, (D) s= 0.05
(option 3b) and REP transformation. Early, mid, late and end are early, mid, late and end stage decomposition simulations. The numbers 2, 5, 7 and 10
are the numbers of measurements used in each simulation. Blue circles = NLS, Red circles = Normal ML, gray/black circles = Beta ML. In most cases,
nls = Normal ML so that the red circles cover the blue circles.
doi:10.1371/journal.pone.0045140.g005
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end stage decomposition with two measurements, where the beta

model provided more accurate k estimates than the normal models

(i.e., lower bias and RE, average k closer to true k of 0.002;

Figure 3). However, beta ML regression did not successfully

converge for all the data sets produced by the simulations (Table 2).

Beta ML regression most often failed to converge during early

decomposition, when w ,15, and the number of measurements

was .2 (Table 2). In contrast, both NLS and normal ML

estimation consistently successfully estimated k. In general, NLS

and normal ML estimation produced nearly identical results. The

exception was end stage decomposition with two measurements –

in this case NLS produced slightly more accurate k estimates than

did ML estimation with normal errors.

In most cases, AICc identified ML estimation with beta errors as

the best model (Table 3). In the majority of simulations, ML

estimation with beta errors was identified as the best model in 90–

100% of cases (Table 3). In the remaining simulations, AICc

generally showed either no difference between ML estimation with

beta and normal errors (13.3–99.2% of cases) or found ML

estimation with beta errors to be the best model (0–86.5% of cases;

Table 3). Across all simulations, ML estimation with normal errors

was only identified as the best model in 0–3% of cases.

Beta-distribution errors with normal errors added. For

simulations with beta-distributed plus normal errors (option 3), the

accuracy of k estimates again tended to increase (i.e., bias and RE

declined) with the number of measurements and declining error

(from w = 5 to 15 and normal error s= 0.05 to 0.0125;

Figures 4,5,6). Estimates of k also improved from early to late

stage decomposition (Figures 4,5,6). However, during end stage

decomposition, k estimates became more variable, particularly

when k was estimated using only two measurements (Figures 4,5,6).

With few exceptions, estimating k using NLS and ML estimation

with normal errors on untransformed data produced similar (to one

another) and more accurate k estimates (lower bias and RE) than did

transforming the data and using NLS or ML estimation with normal

or beta errors (Figures 4,5,6). The only exception was for the end

stage decomposition simulation with only two measurements, where

using ML estimation with normal errors produced high bias and RE

(Figures 4–5). In general, beta regression on transformed data

resulted in high bias and RE (Figures 4,5,6). These differences were

most apparent in the early and end stage decomposition simula-

tions; the smallest amount of bias and RE among estimation and

transformation techniques (and thus k estimates) occurred during

mid and late stage decomposition.

Figure 6. Average k estimates for beta-distributed errors plus normal errors with different s and transformations. (A) s= 0.0125
(option 3a) and SV transformation, (B) s= 0.0125 (option 3a) and REP transformation, (C) s= 0.05 (option 3b) and SV transformation, (D) s= 0.05
(option 3b) and REP transformation. Early, mid, late and end are early, mid, late and end stage decomposition simulations. The numbers 2, 5, 7 and 10
are the numbers of measurements used in each simulation. Blue circles = NLS, Red circles = Normal ML, gray/black circles = Beta ML. In most cases,
nls = Normal ML so that the red circles cover the blue circles. Gray lines show the true k value of 0.002 d21.
doi:10.1371/journal.pone.0045140.g006
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Figure 7. Results for simulations with variable normal errors (option 1). Percent bias using (A) SV and (B) REP transformations and relative
error using (C) SV and (D) REP transformations. Early, mid, late and end are early, mid, late and end stage decomposition simulations. The numbers 2,
5, 7 and 10 are the numbers of measurements used in each simulation. Blue circles = NLS, Red circles = Normal ML, gray/black circles = Beta ML. In
most cases, nls = Normal ML so that the red circles cover the blue circles. Gray lines in panels (A) and (B) show 0% bias.
doi:10.1371/journal.pone.0045140.g007

Figure 8. Average k estimates for simulations with variable normal errors (option 1). (A) SV and (B) REP transformations. Early, mid, late
and end are early, mid, late and end stage decomposition simulations. The numbers 2, 5, 7 and 10 are the numbers of measurements used in each
simulation. Blue circles = NLS, Red circles = Normal ML, gray/black circles = Beta ML. In most cases, nls = Normal ML so that the red circles cover the
blue circles. Gray lines in panels (A) and (B) show the true k value of 0.002 d21.
doi:10.1371/journal.pone.0045140.g008
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Overall, the REP transformation resulted in less bias and RE

than did the SV transformation. This was especially apparent in

early, mid and late stage decomposition. The amount of bias and

RE generated by the REP and SV transformations was similar

during end stage decomposition.

Despite the fact that ML estimation using beta errors tended to

generate less accurate k estimates than ML estimation using

normal errors, AICc generally showed either no difference between

ML estimation using beta and normal errors or found ML

estimation with beta errors to be the best model. For SV and REP

transformed data with low normal error (s= 0.0125), AICc either

selected ML estimation with beta errors as the best model or found

no difference between ML selection with beta and normal errors.

Only during end stage decomposition with two measurements was

ML estimation using normal errors selected as the best model

more than 3% of the time (Table 4).

In SV transformed data with high normal error (s= 0.05), AICc

more frequently selected ML estimation with normal errors as the

best model, particularly in early decomposition simulations with

more than two measurements and end stage decomposition

simulations with only two measurements (Table 5). In REP

transformed data with high normal error (s= 0.05), AICc again

found either no difference between models or ML estimation with

beta errors as the best model in the majority of cases across all

simulations. Only during end stage decomposition was ML

estimation with normal errors selected as the best model more

than 8% of the time.

Variable s Normal Error. Again, percent bias and RE

declined from early to late stage decomposition and RE declined

with number of measurements (Figures 7–8). Estimates of k also

improved with declining error (from Var s1 to Var s3; Figures 7–

8). However, increasing the number of measurements within

decomposition stage failed to reduce percent bias and did not

typically improve average k estimates (Figures 7–8). Again, bias

and RE increased during end stage decomposition (Figures 7–8),

relative to mid and late stage decomposition simulations.

Using NLS or ML estimation with normal errors on untrans-

formed data yielded the most consistently accurate k values with

low bias and relative error across all decomposition stages and

numbers of measurements (Figures 7–8). For transformed data,

using the SV or REP transformation combined with NLS or ML

estimation with normal errors frequently resulted in less bias and

relative error than using ML estimation with beta errors (Figure 7).

In certain cases, using beta regression on transformed data resulted

in k values that were just as or more accurate than other methods:

most frequently this occurred during mid and late stage

decomposition.

In general, using the REP transformation resulted in less bias

and relative error than did using the SV transformation (Figure 7).

This was especially true during early to late stage decomposition.

During end stage decomposition, both transformations generated

similar levels of bias and relative error (Figure 7).

When the data were SV transformed, across all decomposition

stages, numbers of measurements, and amounts of error used to

create the simulated data, AICc generally identified ML estima-

tion with beta errors as the best model or found no difference

between ML estimation with beta or normal errors (Table 6).

However, ML estimation with normal errors was identified as the

best model more frequently than when other error structures were

used to generate the data (i.e., beta or beta plus normal errors). In

particular, AICc identified ML estimation with normal errors as

the best model more frequently during early decomposition with

more than two measurements, in end stage decomposition with

only two measurements, and in mid and late decomposition when

error was low (Var s1 and Var s2).

Table 3. Percent of simulations using beta errors (option 2) for which AICc selected maximum likelihood (ML) estimation with beta
or normal errors best or found no difference between the two models (Same) from each simulation (k = 0.0002).

w = 5 w = 8 w = 15

Stage # meas2 Same Beta ML Norm ML Same Beta ML Norm ML Same Beta ML Norm ML

Early 2 35.3 64.3 0.4 66.5 32.5 1.0 91.7 6.0 2.3

5 0.0 100.0 0.0 0.0 100.0 0.0 0.1 99.9 0.0

7 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0

10 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0

Mid 2 98.3 1.2 0.6 99.2 0.0 0.8 99.2 0.0 0.8

5 0.2 99.8 0.0 1.3 98.7 0.0 8.4 91.3 0.3

7 0.1 99.9 0.0 0.6 99.4 0.0 4.2 95.6 0.2

10 0.0 100.0 0.0 0.1 99.9 0.0 1.1 98.9 0.1

Late 2 87.6 11.6 0.8 97.0 1.6 1.4 97.8 0.0 2.2

5 6.3 93.6 0.1 24.3 75.3 0.4 62.5 35.8 1.8

7 3.4 96.6 0.1 13.3 86.5 0.2 40.7 58.2 1.2

10 0.4 99.6 0.0 3.8 96.2 0.1 18.6 80.9 0.5

End 2 0.0 100.0 0.0 0.2 99.8 0.0 1.0 98.9 0.1

5 0.0 100.0 0.0 0.0 100.0 0.0 0.1 99.9 0.0

7 0.0 100.0 0.0 0.0 100.0 0.0 0.1 99.9 0.0

10 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0

Results were similar across all k values.
1Norm = normal.
2meas = measurements.
doi:10.1371/journal.pone.0045140.t003
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When using the REP transformation, AICc usually selected ML

estimation with beta errors as the best model or found no

difference between the models, especially when error was high or

moderate (Var s2 and Var s3) and the number of measurements

was more than two (Table 6). When error was low (Var s1), AICc

more frequently showed ML estimation with normal errors to be

the best model.

Real Data
Early stage decomposition data (hobbie and gough

[10]). Overall, normal and beta errors produced similar k

estimates within the transformed and untransformed data sets

(Figure 9, Table 7). Fractional and relative bias for all

transformation and error combinations were relatively small, but

the SV transformation resulted in either similar or slightly more

bias than the REP transformation or no transformation (Table 7).

Within the untransformed and REP transformed data sets, using

beta errors produced less bias than using normal errors.

In 13 of 18 cases, the beta distribution could be used on

untransformed data (all values .0 and ,1). In these cases the beta

model was best (DAICc $4) in four cases. In the nine remaining

cases, the models were indistinguishable based on AICc. When the

data were SV transformed, the beta distribution produced the best

model in five cases, but in the remaining 13 cases the models were

indistinguishable. For REP transformed data, the beta model was

best in nine cases; for the remaining nine cases the models were

indistinguishable.

Table 4. Percent of beta error simulations with normal error (s= 0.0125) added, for which AICc selected maximum likelihood (ML)
estimation with beta or normal errors best or found no difference between the models (Same) from each simulation (k = 0.0002).

w = 5 w = 8 w = 15

Tr1 Stage # meas Same Beta ML Norm ML Same Beta ML Norm ML Same Beta ML Norm ML

SV2 Early 2 50.6 49.0 0.4 74.6 24.4 0.9 91.6 5.7 2.7

5 4.6 94.6 0.8 8.7 90.3 1.0 16.4 81.5 2.0

7 1.1 98.9 0.1 3.3 96.6 0.2 10.4 88.5 1.1

10 0.3 99.7 0.0 1.5 98.4 0.1 6.1 93.0 0.9

Mid 2 98.0 1.2 0.8 98.9 0.0 1.1 99.1 0.0 0.9

5 2.3 97.6 0.1 6.2 93.7 0.1 16.8 82.7 0.5

7 1.0 99.0 0.0 3.5 96.4 0.1 10.9 88.6 0.5

10 0.5 99.5 0.0 1.6 98.4 0.1 5.5 94.2 0.3

Late 2 89.2 10.1 0.7 96.9 1.5 1.6 97.8 0.0 2.2

5 9.5 90.4 0.1 28.8 70.8 0.5 62.7 35.4 1.9

7 5.4 94.5 0.1 17.1 82.5 0.4 43.9 55.0 1.1

10 1.0 99.0 0.0 5.9 94.0 0.1 21.4 77.7 0.9

End 2 34.3 43.6 22.1 41.8 35.5 22.6 49.0 25.6 25.5

5 1.9 97.9 0.2 3.1 96.6 0.3 6.3 93.3 0.4

7 0.1 99.9 0.0 0.6 99.4 0.0 2.1 97.8 0.1

10 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0

REP3 Early 2 32.8 66.9 0.4 62.2 36.5 1.3 89.2 7.4 3.5

5 0.0 100.0 0.0 0.0 100.0 0.0 0.4 99.5 0.1

7 0.0 100.0 0.0 0.0 100.0 0.0 0.2 99.8 0.0

10 0.0 100.0 0.0 0.0 100.0 0.0 0.1 99.9 0.0

Mid 2 97.7 1.6 0.8 99.2 0.1 0.8 99.1 0.0 0.9

5 0.4 99.6 0.0 1.7 98.2 0.1 9.4 89.8 0.8

7 0.2 99.8 0.0 1.2 98.8 0.1 5.5 94.0 0.5

10 0.0 100.0 0.0 0.5 99.5 0.0 1.9 97.9 0.2

Late 2 90.6 8.7 0.8 97.1 1.5 1.4 97.6 0.0 2.4

5 6.9 93.0 0.2 24.0 75.3 0.7 62.3 34.8 2.9

7 3.9 96.0 0.1 13.6 85.9 0.5 43.4 54.9 1.7

10 0.7 99.3 0.0 4.4 95.5 0.2 19.5 79.2 1.4

End 2 39.1 53.3 7.7 44.9 46.3 8.9 53.1 36.3 10.6

5 8.2 91.1 0.8 11.0 88.2 0.8 14.5 84.4 1.1

7 1.2 98.8 0.0 3.1 96.7 0.1 7.2 92.4 0.4

10 0.1 100.0 0.0 0.2 99.8 0.0 1.1 98.8 0.2

1Tr = transformation.
2SV = Smithson and Verkuilen [6] transformation.
3REP = transformed by replacing values $1 with 0.9999 and treating zeros as missing data.
doi:10.1371/journal.pone.0045140.t004
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Mid stage decomposition data (laliberté and tylianakis

[12]). Using normal and beta errors generally produced very

similar k estimates (Figure 9). Notable exceptions were when the

data were transformed and k was greater than ,0.01 d21

(Figure 9b,d), in which case the normal model gave larger k

estimates than the beta model (Figure 9b,d). This was particularly

evident when using the SV transformation (Figure 9b). In these

cases, the beta model produced more biased predictions than the

normal model (Table S1). For the SV transformed data, FB and

RB were 14–60% larger for the beta than normal model. For the

REP transformed data, FB and RB were 1.4 to 18 times larger for

the beta than normal model (Table S1). Despite the larger bias

associated with the beta model for the SV data, the beta model

was identified as best in three cases (DAICc $4; Table S1). In the

remaining cases the models were indistinguishable (DAICc ,4;

Table S1). For the REP transformed data, the models were

indistinguishable in all cases (Table S1).

In general, using the SV data transformation resulted in similar

or slightly more bias than the REP or no transformation (Table 7).

Within the untransformed and REP transformed data, using beta

errors produced predictions with similar or less bias than did using

normal errors.

In 40 of 64 cases, the data did not need to be transformed to use

beta errors. Based on AICc, the beta model was best (DAICc $4) in

only three of these cases. In 18 cases the normal model was best.

For the remaining cases, the models were indistinguishable. With

Table 5. Percent of beta error simulations with normal error (s= 0.05) added, for which AICc selected maximum likelihood (ML)
estimation with beta or normal errors best or found no difference between the models (Same) from each simulation (k = 0.0002).

w = 5 w = 8 w = 15

Tr1 Stage # meas Same Beta ML Norm ML Same Beta ML Norm ML Same Beta ML Norm ML

SV2 Early 2 73.7 25.9 0.4 85.1 13.9 1.0 92.8 4.3 2.9

5 33.7 19.3 46.9 31.7 13.2 55.1 25.5 6.9 67.6

7 36.3 27.8 35.8 33.4 17.6 49.0 26.9 8.6 64.5

10 31.4 25.9 42.7 26.9 14.6 58.4 17.3 6.2 76.6

Mid 2 97.8 1.3 0.9 98.4 0.2 1.5 98.2 0.0 1.9

5 40.1 55.1 4.9 46.9 44.9 8.2 53.1 31.8 15.2

7 34.2 60.9 4.9 43.1 48.6 8.4 50.0 33.8 16.2

10 33.9 58.7 7.3 40.2 46.8 13.0 43.6 33.9 22.5

Late 2 90.5 8.7 0.9 96.7 1.9 1.4 96.3 0.2 3.5

5 26.4 73.2 0.4 46.8 51.1 2.1 71.4 22.4 6.2

7 20.3 79.0 0.8 38.8 58.8 2.4 60.4 32.9 6.7

10 9.1 90.5 0.4 25.1 72.5 2.4 47.8 43.8 8.4

End 2 41.5 20.8 37.8 45.6 13.7 40.7 44.4 6.2 49.4

5 12.2 85.4 2.4 18.0 78.6 3.4 28.7 66.0 5.3

7 1.9 97.9 0.3 6.1 93.2 0.7 15.5 81.8 2.7

10 0.1 99.9 0.0 0.5 99.4 0.1 2.8 96.7 0.5

REP3 Early 2 27.1 72.1 0.8 47.2 50.7 2.1 72.5 21.8 5.7

5 0.1 99.8 0.0 0.4 99.5 0.1 1.2 98.4 0.4

7 0.0 100.0 0.0 0.1 99.9 0.0 0.9 98.9 0.3

10 0.0 100.0 0.0 0.0 100.0 0.0 0.4 99.5 0.1

Mid 2 93.3 5.7 1.0 97.2 0.8 2.0 97.6 0.0 2.4

5 0.8 99.1 0.1 3.2 96.5 0.3 10.6 87.3 2.1

7 0.6 99.4 0.1 2.7 96.8 0.5 9.5 87.5 3.0

10 0.2 99.7 0.1 1.8 97.8 0.5 5.9 91.9 2.3

Late 2 93.1 5.8 1.0 97.1 1.4 1.6 96.4 0.1 3.5

5 9.1 90.4 0.5 24.1 73.7 2.2 54.3 38.7 7.1

7 6.6 92.7 0.8 15.8 82.1 2.2 39.4 54.8 5.8

10 2.0 97.8 0.2 7.0 91.9 1.1 23.4 71.7 4.9

End 2 61.9 17.0 21.1 63.1 12.9 24.0 61.3 7.5 31.2

5 36.1 56.0 8.0 46.3 41.2 12.5 53.5 28.3 18.2

7 16.2 81.7 2.1 30.2 64.7 5.1 42.7 44.6 12.7

10 6.0 93.1 0.9 14.1 82.6 3.3 28.6 59.3 12.1

1Tr = transformation.
2SV = Smithson and Verkuilen [6] transformation.
3REP = transformed by replacing values $1 with 0.9999 and treating zeros as missing data.
doi:10.1371/journal.pone.0045140.t005
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the SV transformed data, the beta model was best in 14 cases,

while the normal model was best in 18 cases. Using the REP

transformation, the beta model was best in four cases, while the

normal model was best in 18 cases. The models were indistin-

guishable in all remaining cases.

Late stage decomposition data (hobbie [14]). Again,

normal and beta distributed errors produced largely similar k

estimates within the same data set (Figure 9). However, at high k

values (.0.0015 d21), beta models produced slightly lower k

estimates than normal models (Fig 9b,c). Unlike medium stage

data, this was also true for untransformed data, and there were no

consistent patterns in bias for these points (Table S1). Of the 21

cases where k estimated using normal errors was $0.0015 d21, for

both the SV and REP transformations, the beta model was best in

11 cases, the normal model was best in nine cases, and there was

no difference between the models in one case (Table S1). For the

untransformed data, when k could be estimated using beta errors

(9 of 21 cases), using the normal model resulted in less bias and was

the best model (data not shown).

Using the SV transformation resulted in predictions with similar

or more bias than using no transformation or the REP

transformation (Table 7). The only exception was for the beta

model, where less bias was generated using the SV than REP

transformation. In the untransformed data set, normal and beta

errors produced similar bias; in the REP transformed data, using

beta errors produced slightly less bias than using normal errors

(Table 7).

Table 6. Percent of variable normal s simulations for which AICc selected maximum likelihood (ML) estimation with beta or
normal errors best or found no difference between the models (Same) from each simulation (k = 0.0002).

Var s3 Var s2 Var s1

Tr1 Stage # meas Same Beta ML Norm ML Same Beta ML Norm ML Same Beta ML Norm ML

SV2 Early 2 75.1 24.1 0.8 90.1 7.1 2.8 90.7 0.1 9.2

5 39.3 32.5 28.1 39.3 21.7 39.0 39.7 22.6 37.8

7 37.3 44.2 18.5 39.3 21.1 39.6 35.5 16.7 47.8

10 31.8 51.3 16.9 33.1 20.7 46.2 26.8 14.9 58.3

Mid 2 95.8 3.0 1.3 96.5 0.1 3.5 98.3 0.0 1.7

5 36.7 57.3 6.0 45.7 47.7 6.6 48.1 41.4 10.5

7 29.4 66.6 3.9 44.6 43.6 11.8 43.7 38.9 17.4

10 30.7 60.1 9.3 39.9 41.7 18.5 37.1 47.9 15.0

Late 2 91.5 7.6 0.9 95.8 0.9 3.3 89.5 0.0 10.5

5 30.5 67.4 2.1 63.6 27.8 8.6 74.7 1.3 24.0

7 28.1 68.8 3.0 56.5 31.4 12.2 68.4 3.5 28.1

10 14.0 84.2 1.8 46.1 39.1 14.8 55.0 6.1 38.9

End 2 54.5 8.3 37.2 49.1 5.2 45.8 56.7 5.8 37.5

5 21.4 73.0 5.6 24.2 70.8 5.0 23.0 74.8 2.1

7 6.2 92.9 0.9 14.6 82.7 2.7 20.0 75.5 4.5

10 0.6 99.3 0.1 1.9 97.7 0.4 2.3 97.3 0.4

REP3 Early 2 23.2 74.8 2.0 53.1 39.6 7.3 85.6 0.5 14.0

5 0.6 99.2 0.2 1.9 97.4 0.7 10.3 86.3 3.4

7 0.1 99.8 0.0 1.2 98.3 0.6 13.2 79.6 7.2

10 0.0 100.0 0.0 0.4 99.4 0.1 8.8 85.0 6.2

Mid 2 77.9 19.3 2.8 92.7 1.1 6.3 98.4 0.0 1.7

5 3.9 95.1 1.0 13.9 82.7 3.5 42.4 37.7 19.9

7 1.5 98.1 0.4 10.6 84.8 4.5 35.2 42.3 22.6

10 1.3 98.2 0.5 8.6 86.4 5.0 26.2 55.3 18.6

Late 2 95.6 2.9 1.5 95.9 0.3 3.8 90.2 0.0 9.9

5 11.7 86.0 2.4 39.4 49.4 11.2 66.2 1.3 32.5

7 10.3 86.4 3.3 32.3 56.1 11.7 55.0 3.5 41.6

10 6.0 91.8 2.2 21.3 69.5 9.3 42.4 4.9 52.8

End 2 70.4 6.6 23.0 65.4 7.1 27.6 67.7 12.1 20.2

5 37.3 48.7 14.0 48.7 35.4 16.0 35.5 60.3 4.3

7 26.2 68.1 5.8 39.0 49.5 11.6 30.9 60.8 8.4

10 9.2 88.4 2.4 16.5 78.3 5.2 7.4 86.7 5.9

1Tr = transformation.
2SV = Smithson and Verkuilen [6] transformation.
3REP = transformed by replacing values $1 with 0.9999 and treating zeros as missing data.
doi:10.1371/journal.pone.0045140.t006
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Of the 79 cases where the beta model could be used on

untransformed data, it was best in 33, whereas the normal model

was best in 22 cases. The models were indistinguishable in 24

cases. Using SV transformation, in 25 out of 128 cases there was

no substantial difference between the models. In the majority of

cases (69) the beta model was best. The normal model was best in

34 cases. Using the REP transformation, the beta model was best

in 75 cases, the normal model was best in 29 cases, and the models

were indistinguishable in 24 cases.

Discussion

Proportional litter mass loss data generally show reduced

variance near its bounds (i.e. 0 and 1), but researchers generally

use single pool decomposition models that ignore such hetero-

scedasticity, potentially leading to biased k estimates [3]. For

example, the most recent recommendation to use standard

nonlinear regression on untransformed proportional mass loss

data still assumes constant, normally-distributed errors (a problem

acknowledged by these authors [3]). We therefore evaluated the

Figure 9. Daily decomposition rate (k) estimates for the Hobbie (SH) [14], Laliberté and Tylianakis (LT) [12] and Hobbie and Gough
(H&G) [10] data compared by error distribution (beta or normal) used to estimate k. (A) untransformed (B) Smithson and Verkuilen
(SV) [6] transformed and (C) replacement (zeros = missing data; values $1 = 0.9999) transformed data sets. Insets in (b) and (c) show
only the SH and H&G data.
doi:10.1371/journal.pone.0045140.g009

Table 7. Mean k (decomposition rate), fractional bias (FB) and relative bias (RB) produced by each data transformation and error
structure using the Hobbie [14], Laliberté and Tylianakis [12] and Hobbie and Gough [10] data sets.

Data Transformation Error Mean k(d21) Mean FB s FB Mean RB s RB

Hobbie &
Gough

None Beta 0.00055 0.0001 0.0020 0.0047 0.0190

Normal 0.00054 0.0026 0.0088 0.0308 0.1163

SV1 Beta 0.00055 20.0042 0.0083 20.1394 0.2908

Normal 0.00054 20.0006 0.0121 20.0758 0.2923

REP2 Beta 0.00055 20.0002 0.0018 20.0049 0.0276

Normal 0.00054 0.0024 0.0089 0.0263 0.1216

Laliberté &
Tylianakis

None Beta 0.00258 0.1090 0.0481 0.2778 0.0985

Normal 0.00363 0.1682 0.1082 0.3399 0.1219

SV1 Beta 0.00349 0.1646 0.1438 0.3256 0.1979

Normal 0.00361 0.1693 0.1098 0.3416 0.1244

REP2 Beta 0.00357 0.0192 0.0449 0.0279 0.0647

Normal 0.00356 0.0286 0.0303 0.0561 0.0495

Hobbie

None Beta 0.00088 0.0123 0.0293 0.0249 0.0660

Normal 0.00091 20.0142 0.0227 20.0236 0.0574

SV1 Beta 0.00090 20.0097 0.0604 20.0291 0.1247

Normal 0.00095 20.0343 0.0562 20.0636 0.1192

REP2 Beta 0.00084 0.0220 0.0453 0.0330 0.0675

Normal 0.00091 20.0148 0.0232 20.0251 0.0588

1SV = Smithson and Verkuilen [6] transformation.
2REP = data transformed by replacing values $1 with 0.9999 and treating zeros as missing data.
doi:10.1371/journal.pone.0045140.t007

Estimating Litter Decomposition

PLOS ONE | www.plosone.org 14 September 2012 | Volume 7 | Issue 9 | e45140



potential of beta regression, which is well suited to bounded data

and its associated heteroscedasticity [6],[7]. We hypothesized that

nonlinear beta regression would provide a better fit to propor-

tional litter mass loss data, and more accurate k estimates, than

standard nonlinear regression in simulated and real decomposition

data sets.

Contrary to our hypothesis, we found that standard nonlinear

regression with constant, normal errors proved very robust to

violations of homoscedasticity. In our simulations, k estimates

obtained via the normal model (NLS or ML estimation) on

untransformed data were equally or more accurate as those

obtained with the beta model, regardless of error structure and

data transformation. On transformed and untransformed (beta

errors only) data, ML estimation using beta errors tended to

generate less accurate k estimates than ML estimation using

normal errors. This occurred despite the beta model being clearly

equal or superior in nearly all cases to the normal model, as

determined by AICc. Thus, our concern that standard nonlinear

regression may lead to biased k estimates in the presence of

heteroscedasticity appears to be unjustified by our simulation

results. However, we do not imply that researchers should use

standard nonlinear regression even when its assumptions are

violated, simply because these results did not show systematic

biases in k estimates. Still, it is important to note that k values

previously estimated in the presence of heteroscedasticity using

standard nonlinear regression should not be strongly biased.

Our simulations also provided information for the design of

decomposition experiments, suggesting that the accuracy of k

estimates increases with the number of measurements and with the

length of the study, from early to late decomposition. Estimates of k

from end stage decomposition were less accurate (or at least more

variable between estimation methods), perhaps due to an increasing

number of zero measurements or missing data (REP transforma-

tion), which may bias estimates [3]. In general, mid and late stage

decomposition had the least amount of between method and data

transformation variation in k estimates, suggesting that studies in

these ranges will be less impacted by regression method choice.

Obviously, with real proportional litter mass loss data we cannot

evaluate how ‘‘biased’’ k estimates are, because we do not know

the ‘‘true’’ k value (which is why it must be estimated from data).

Yet, we must make an informed decision on which model provides

the best estimate of k. Tools at our disposal include various

measures of model fit such as AIC [18], and visual inspection of

model predictions and residuals to evaluate model assumptions

[19]. In untransformed or REP transformed real data, the beta

model produced slightly less bias than did the normal model.

Using AICc, we found that the models were indistinguishable from

each other in the majority of cases. Therefore, we recommend a

pragmatic approach where both models are compared and the

best one is selected for a given data set (particularly when k

estimates are high and normal and beta model k estimations

diverge). Alternatively, one may use model averaging to calculate

the weighted average of k using both the beta and normal models

[18]. This technique has been successfully used to estimate

accurate parameters for biological power functions, where similar

error structure issues are encountered (normal vs. lognormal

models/errors) [5].

While we have focused on the beta distribution because it suits

bounded data especially well [6],[7], several other distributions

could be used to suit particular situations [16]. Yet, the beta

distribution will be especially useful to estimate decomposition

rates in single pool models because it easily accommodates the

type of heteroscedasticity encountered in proportional mass loss

data. In practice, a particular statistical model is often favored by

researchers not just because it fits the data better, but for other

pragmatic reasons such as computational simplicity [16],[19].

Unlike standard nonlinear regression, nonlinear beta regression is

not widely implemented in mainstream statistical packages. This

does not mean, however, that nonlinear beta regression is more

complex than standard nonlinear regression with normal errors.

Like the normal distribution, the beta distribution contains only

two parameters and can be easily parameterized with location and

precision (the inverse of dispersion) parameters [6,7] (see

Introduction). To facilitate the use of nonlinear beta regression

in single pool decomposition models, we provide code to

implement this approach in the freely available R environment

[9] (Appendix S1). Because the beta distribution does not allow

values #0 or $1, which often occur in proportional litter mass loss

data, transformations to constrain the data in the ]0, 1[interval

may be required. We evaluated two such transformations: the SV

[6] and REP transformations. The SV transformation simulta-

neously standardizes all values, so the transformed data stay

perfectly correlated with the untransformed data. In contrast, the

REP transformation removes data points, treating zeros as missing

values, and converts values $1 to 0.999. However, using the SV

transformation resulted in slightly more error (simulations) or bias

(real data) than did using the REP or no transformation.

The potential negative impacts of rapid increases in atmospher-

ic CO2 require a better understanding of the critical role of litter

decomposition in the global carbon cycle. This, in turn, requires

accurate estimates of litter decomposition rates. Our results show

that nonlinear beta regression is a useful method for estimating

these rates. However, with the data explored to date, it did not

often produce dramatically different results from standard

nonlinear regression. Yet, given the type of heteroscedasticity

found in most decomposition data, we suggest that the two

methods should be considered alongside one another. Further-

more, our results suggest that regression method choice will have

the smallest impacts during mid and late stage decomposition.
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