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Abstract

Acute lung injury (ALI) develops in response to a direct insult to the lung or secondarily to a systemic inflammatory
response, such as sepsis. There is clinical evidence that the incidence and severity of ALI induced by direct insult are lower in
diabetics. In the present study we investigated whether the same occurs in ALI secondarily to sepsis and the molecular
mechanisms involved. Diabetes was induced in male Wistar rats by alloxan and sepsis by caecal ligation and puncture
surgery (CLP). Six hours later, the lungs were examined for oedema and cell infiltration in bronchoalveolar lavage. Alveolar
macrophages (AMs) were cultured in vitro for analysis of IkB and p65 subunit of NFkB phosphorylation and MyD88 and
SOCS-1 mRNA. Diabetic rats were more susceptible to sepsis than non-diabetics. In non-diabetic rats, the lung presented
oedema, leukocyte infiltration and increased COX2 expression. In diabetic rats these inflammatory events were significantly
less intense. To understand why diabetic rats despite being more susceptible to sepsis develop milder ALI, we examined the
NFkB activation in AMs of animals with sepsis. Whereas in non-diabetic rats the phosphorylation of IkB and p65 subunit
occurred after 6 h of sepsis induction, this did not occur in diabetics. Moreover, in AMs from diabetic rats the expression of
MyD88 mRNA was lower and that of SOCS-1 mRNA was increased compared with AMs from non-diabetic rats. These results
show that ALI secondary to sepsis is milder in diabetic rats and this correlates with impaired activation of NFkB, increased
SOCS-1 and decreased MyD88 mRNA.
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Introduction

Diabetes is a syndrome characterized by chronic hyperglycae-

mia with disturbances in protein, lipid and carbohydrate

metabolism owing to a deficiency in insulin production, action

or both. In type 1 diabetes (T1D) the patients exhibit defective

insulin production [1].

In experimental models of T1D, many aspects of the

inflammatory response are reduced such as leukocytes’ adhesion

to endothelium and migration into the inflammatory site, mast cell

degranulation, and production of prostaglandin (PG) E2 [2].

Moreover, the phagocytes from diabetic rats have reduced

capacity to ingest fungi [2] and IgG opsonized targets [3] and

bacterial clearance is reduced in the peritoneal cavity of mice

submitted to colon ligation and puncture (CLP) [4]. These

alterations in inflammation and innate immunity contribute to

the increased susceptibility to infection of diabetics.

In clinical studies, it was reported that the incidence of sepsis is

increased in diabetic patients [5,6]. Sepsis develops when the

initial host response to an infection is amplified and becomes

damaging to the host [7]. Some structural components of bacteria

(pathogen-associated molecular patterns - PAMPs), are recognized

by pattern recognition receptors (PRRs) expressed in phagocytes

and other cell types [8] and are responsible for the initiation of the

septic process. Upon infection with gram-negative bacteria,

lipopolysaccharide (LPS) has a central role in disease development.

The receptor complex formed by toll-like receptor (TLR) 4 and

CD14 constitutes the LPS receptor in the host cells [8], and the

signalling programme is initiated by two major distinct pathways:

the myeloid differentiation factor 88 (MyD88) and the TIR-

domain-containing adapter-inducing IFN-b (TRIF) pathway. Both

pathways result in activation of NFkB and transcription of several

pro-inflammatory genes [8].

This amplified response, also called cytokine storm, results in a

systemic inflammation that affects several organs. The lung is

particularly affected and acute lung injury (ALI) secondary to

sepsis is characterized by oedema, inflammatory cell infiltration

and, in consequence, impaired gas exchange. In its severe form,

hypoxia aggravates the patients condition and can lead to multi-

organ failure [9]. About 40% of septic patients develop ALI [10].

In diabetics, however, the incidence of ALI is much lower [11] and
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respiratory failure is less frequent [12]. Thus, diabetes seems to

exert a protective role in ALI although the mechanisms of this

‘protection’ are still unknown.

In the present study we compared sepsis-induced ALI in

diabetic and non-diabetic rats and investigated the molecular

mechanisms that regulate the development of ALI. To this

purpose we used the alloxan-induced diabetes that is extensively

used as a model for T1D and the CLP model of sepsis which

resembles the bacterial dissemination seen in human infectious

sepsis [13].

Materials and Methods

Animals
Specific pathogen-free male Wistar rats weighing 200620 g

at the beginning of the experiments were used. The animals

were maintained at 23uC under a 12-h light-dark cycle and

were allowed access to food and water ad libitum. This study

was carried out in strict accordance with the principles and

guidelines adopted by the Brazilian College of Animal

Experimentation and approved by the Ethical Committee for

Animal Research of the Biomedical Sciences Institute, Univer-

sity of São Paulo (Permit Number: 139-65-02). All surgery was

performed under ketamine anaesthesia, and all efforts were

made to minimize suffering.

Alloxan-induced Diabetes(T1D)
T1D was induced by alloxan injection (42 mg/kg, i.v.), as

previously described by Martins et al. [9]. After 10 days, the

glycaemia of the injected animals was measured with Accu-Chek

Advantage II (Roche Diagnostica, Sao Paulo, SP, Brazil). Only

animals presenting glycaemia .200 mg/dL were considered as

diabetic for the purposes of this research. The control group (non-

diabetic animals) was injected with the same volume of the vehicle

(NaCl, 0.9%).

Sepsis-induced ALI
The animals were anaesthetized by an intraperitoneal injection

(150 mg/kg) of ketamine hydrochloride (Ketamin-S(+); Cristalia,

São Paulo, Brazil), a midline laparotomy was performed, the

caecum was exposed, ligated and punctured 12 times with a 20-

gauge needle. The caecum was replaced in the abdomen, and the

incision was closed. Another group of rats was subjected to midline

laparotomy and manipulation of the caecum without ligation and

puncture (sham operation). After the surgery, the animals were

returned to their cages and were allowed access to food and water

ad libitum. Six hours after CLP, the animals were anaesthetized,

as described previously, and exsanguinated from the abdominal

aorta. For bronchoalveolar lavage (BAL), 10 mL of phosphate-

buffered saline (PBS) was instilled intra-tracheally, and the

recovered sample was centrifuged (500Xg for 15 min). Protein

concentration was determined in the BAL supernatant, as a

measure of oedema, by means of a commercially available kit

(BCATM Protein Assay Kit, Pierce Biotechnology Inc., Rockford,

IL, USA). The pellet was re-suspended in PBS, and total cell

counts were performed under light microscopy. Differential cell

counts were carried out on haematoxylin-eosin stained prepara-

tions under oil immersion microscopy. In another set of

experiments, the lungs were removed 6 h after CLP, rinsed and

the lobulated side immediately immersed in 10% buffered

formaline for histopathologic and morphometric analysis, and

the other side was stored in liquid nitrogen until processed for

Western blot analysis. For survival rate determination, five animals

were used in each group and this was repeated three times.

Immunoblotting
Lungs were homogenized in PBS containing 1% of protease

inhibitor cocktail according to the manufacturer’s instructions

(Sigma Chemical Co, St. Luis, MO, USA.). Samples containing

20 mg protein were separated by sodium dodecyl sulfatepolyacry-

lamide gel electrophoresis (10%) and transferred to nitrocellulose

membrane (Invitrogen, Carlsbad, CA, USA ). The membranes

were incubated in TSB-T (150 mM NaCl, 20 mM Tris, 1%

Tween 20, pH 7.4) containing 5% non-fat dried milk for 60 min.

After that, the blots were washed with TSB-T and probed with

antibodies (1:500 diluted; Cayman Chemical, Ann Arbor, MI,

USA) against cyclooxygenase (COX)- 2; (1:500 diluted; Abcam)

and against phospho-IkB-a for 120 min at room temperature. The

membranes were washed with TBS-T and incubated with

peroxidase-conjugated monoclonal anti-rabbit immunoglobulin

G (1:2000) for 60 min at room temperature. The immuno-

complexed peroxidase-labelled antibodies were visualized by an

enhanced chemiluminescence (ECL) kit following the manufac-

turer’s instructions (Amersham, Piscataway, NJ, USA) and

exposed to photographic films. Finally, blots were stripped and

reprobed for b-actin. The band densities were determined by

densitometric analysis by means of the AlphaEaseFCi program

(Alpha Innotech, San Leandro, CA, USA ). Density values of

bands were normalized to the total b-actin present in each lane

and expressed as percentage of control.

Isolation of Alveolar Macrophage
Rat AMs were obtained by lung lavage and allowed to adhere in

culture plates for 1 h (37uC, 5% CO2); this was followed by two

washes with warm RPMI, resulting in more than 99% adherent

cells identified as AMs, as described previously [14](n = 5 per

group).

Table 1. Sequence of primer pairs used in semi-quantitative
real-time PCR.

Genes Right Left

MyD88 59-GATAGGCATGTCAGGGGAGA-39 59-GCTGACTTGGAGCCTGATTC-39

SOCS-1 59-GAAGGTGCGGAAGTGAGTGT-39 59-TGGTAGCACGTAACCAGGTG-39

GAPDH 59-GCCAGCCTCGTCTCATAGACA-39 59-TGGTAACCAGGCGTCCGATA-39

doi:10.1371/journal.pone.0044987.t001

Table 2. Blood glucose levels (mg/dL) in diabetic* and non-
diabetic rats and effect of sepsis induced by CLP**.

Non-diabetic Diabetic

0 h 6 h 0 h 6 h

SHAM 96,666,6 105,265,3 534,2627,8 468,6635,3

CLP 92,463,1 91,263,5 517,0636,8 438,7619,9

*Alloxan (42 mg/Kg) was given i.v. and glucose levels were determinate 10 days
later.
**CLP – Colon Ligation and Puncture (20 G needle –12 punctures).
doi:10.1371/journal.pone.0044987.t002
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Real-time PCR
Total RNA was extracted with TRIzol Reagent (Invitrogen,

USA) and the concentration of RNA was determined by

spectrophotometer readings at absorbance 260 nm. cDNA were

synthesized by RevertAid First strand (Fermentas life sciences,

Ontario, USA). Real-time PCR was performed with semi-

quantitative SYBR Green assay (Applied Biosystem, USA) using

specific primers for MyD88 and SOCS-1 (Table 1).

The amount of the target gene was normalized first to the

endogenous reference (GAPDH) and then relative to a calibrator

(sample with the lowest expression - control animal); data were

analysed by the comparative C(T) method [15]. Hence, steady-

state mRNA levels were expressed as an n-fold difference relative

to the calibrator. Analyses were performed with the MxPro-

Mx3005P v3.00.

Histology
Lungs were dehydrated in 70% ethanol, processed using

standard procedures and embedded in paraffin. Sections of

5 mm were cut, mounted on slides, and stained with haematoxylin

and eosin. The histopathology analysis was performed with a

conventional light microscope (Olympus BX51, Olympus Latin

America, São Paulo, Brazil) and images were captured with a

Nikon DXM1200C digital camera.

Lung Morphometric Analysis for Cell Infiltration and
Oedema

Lung morphometric analysis was performed with an integrating

eyepiece with a coherent system consisting of a grid with 100

points and 50 lines (known length) coupled to a conventional light

microscope (Olympus BX51, Olympus Latin America, São Paulo,

Brazil). Polymorphonuclear and mononuclear cells were evaluated

at x1,000 magnification, and 10 random, non-coincident micro-

scopic fields were evaluated for each group, n = 5 per group.

Points falling on polymorphonuclear and mononuclear cells were

identified by conventional morphology, counted and divided by

the total number of points falling on the tissue area in each

microscopic field as described in [16]. To quantify interstitial

oedema, 10 random non-coincident microscopic fields containing

a bronchus and a venule were evaluated for each group, n = 5 per

group. The number of points falling on areas of perivascular

oedema and the number of intercepts between the lines of the

integrating eyepiece and the basal membrane of the vessels were

counted. The interstitial perivascular oedema index was calculated

as follows: number of points1/2/number of intercepts [17].

Statistical analysis
Data were presented as mean 6 standard error of the mean

(SEM) and were analysed by Student t test or ANOVA followed

by the Tukey-Kramer multiple comparisons test when appropri-

ate. P,0.05 was considered significant. Survival rates were

analysed with the log-rank test.

Results

Diabetic Rats are More Susceptible to Sepsis
Diabetes was induced by alloxan injection (42 mg/kg, i.v.) and

10 days later the blood glucose was measured, being under

100 mg/dL in non-diabetic rats and over 300 mg/dL in diabetic

rats.

Sepsis was induced by 12 caecal punctures (CLP) and did not

affect the blood glucose levels (Table 2). CLP was followed by a

significant reduction in blood leukocytes in both diabetic and non-

diabetic groups (from 13.961.0 to 6.260.8 in diabetics and from

13.461.0 to 7.261.26103 in non-diabetics) whereas the sham

surgery did not affect the number of blood leukocytes in diabetic

and non-diabetic rats (from 12.961.5 to 13.161.4 in diabetics and

13.261.1 to 12.961.16103 in non-diabetics).

After 24 h of sepsis induction all diabetic animals were dead

whereas 80% of the non-diabetic rats were still alive (Figure 1). In

the present study we evaluated the lung inflammation after 6 h of

sepsis induction since this was the last point at which 100% of the

animals were still alive.

ALI Secondary to Sepsis is Milder in Diabetic Rats
Sepsis induces acute lung inflammation that, depending on

severity, can impair gas exchange leading to hypoxia and multi-

organ failure. Since the diabetic rats were more susceptible to

Figure 1. Survival rate. Percentage of diabetic and non-diabetic rats submitted to CLP-induced sepsis that died in a given time. Diabetes was
induced by i.v. injection of alloxan (42 mg/kg/iv) in Wistar rats and 10 days later CLP was performed (12 punctures with a 20 G needle). n = 5/group,
repeated three times with identical results. Data are presented as mean 6 SEM. **P,0.01 diabetic vs. non-diabetic.
doi:10.1371/journal.pone.0044987.g001
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Figure 2. Lung oedema at 6 h after CLP. Diabetic and non-diabetic rats were submitted to CLP and after 6 h the lungs were removed and
processed. (A) Photomicrographs of peribronchovascular axis in lung stained with haematoxylin-eosin; ‘B’ stands for bronchiole and ‘V’ for venule.
Note the presence of oedema around the venule (leakage area marked in black bars). Photographs were taken at an original magnification of 200x.
(B) Quantification of perivascular oedema by light microscopy with an integrating eyepiece with a coherent system consisting of a grid with 100

Impaired NFkB Activation in Diabetics, Milder ALI
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sepsis, we sought to investigate whether this greater susceptibility

leads to more severe ALI.

Figure 2A shows the lungs of CLP and sham-operated non-

diabetic and diabetic rats, stained by haematoxylin and eosin. The

illustration shows a bronchiole with a small blood vessel. After 6 h

of CLP induction, oedema can be seen around the blood vessel in

both groups. At higher magnification, the lungs from diabetic rats

showed intra-alveolar oedema and the alveolar septa were thicker

(data not shown). Histomorphometric analysis confirmed the

pattern observed in Figure 2A. The oedema area around 10 blood

vessels from each lung (n = 5/group) was measured and the index

was calculated as described in MM. Figure 2B shows that the non-

diabetic group with CLP exhibits a markedly increased index,

contrasting with the sham-operated group. The diabetic group

with CLP also exhibited increased index when compared with the

sham-operated. Comparison of the CLP groups showed that the

oedema index was significantly lower in the diabetics. This was

confirmed by measuring the protein content in the bronchoalve-

olar lavage fluid. Figure 2C shows an increase in protein

concentration in the CLP group compared with the sham-

operated. In diabetics with CLP the protein levels were lower,

indicating that they had developed less oedema than the non-

diabetic septic rats.

Figure 3A shows that 6h after induction of CLP there was a

strong recruitment of leukocytes into the lung parenchyma,

evaluated by morphometric analysis in histological preparations.

The cell infiltrate was of mono and polimorphonuclear cells but

mononuclear cells predominated. Although the pattern of cell

infiltration was similar in diabetic and non-diabetic rats, in

diabetic rats the number of infiltrated cells was significantly lower

(Figure 3B). Figure 4A shows that following CLP there was also a

marked influx of inflammatory cells into the bronchoalveolar

space which was significantly lower in diabetic rats.

When expression of the inducible enzyme COX-2 (which

generates prostanoids, including PGE2) was measured, it had also

increased after CLP (Figure 4B). In diabetic rats, the level of

COX-2 did not change after CLP.

Alveolar Macrophages from Diabetic Rats with Sepsis
have Impaired NFkB Activation

The observation that lung injury was milder in diabetic rats with

sepsis prompted us to investigate whether this was owed to an

impaired response of AMs to stimuli derived from the systemic

infection. AMs were obtained by bronchoalveolar lavage per-

formed after 6h of sepsis induction.

NFkB exists in unstimulated cells as a transcriptional dimer (p50

and p65 subunits) sequestered in the cytoplasm by the inhibitor

protein IkB-a. Upon cell activation IkB-a is phosphorylated and

degraded, releasing NFkB subunits which allows NFkB to

translocate to the nucleus and promote transcription of target

genes. We first investigated the phosphorylation of the regulator

protein IkB-a and found that the phosphorylation of IkB-a
occurred only in AMs from the septic non-diabetic group,

indicating that in diabetic cells the NFkB activation is impaired

(Figure 5A). This was confirmed when we analysed the phosphor-

ylation of the transcriptional subunit p65. The phosphorylation of

p65 increases NFkB interaction with the co-activator p300/CBP

and enhances the transcriptional activity of this factor. It was

found that p65 was phosphorylated in AMs from septic non-

diabetic rats but not in those from diabetic rats (Figure 5B). These

results suggest that AMs from diabetic rats are unable to activate

NFkB during sepsis.

It is known that LPS induces NFkB activation in a MyD88-

dependent manner during sepsis [18] and that the expression of

this adaptor protein is negatively regulated by SOCS-1 [19] so we

then investigated the MyD88 and SOCS-1 (Suppressor of

Cytokine Signalling) expression in the septic animals. It was found

that AMs from diabetic rats with sepsis express higher levels of

SOCS1 mRNA compared with non-diabetics (Figure 5C). The

inverse was found for MyD88 mRNA, which was expressed in

non-diabetic CLP rats but not detected in diabetic septic rats

(Figure 5D).

Thus in AMs from diabetic rats with sepsis, the enhanced

expression of the molecular brake SOCS-1 decreases MyD88

expression and therefore NFkB activation does not occur. This

could explain the milder sepsis-induced ALI in diabetic rats.

Discussion

In the present study, diabetes was induced by Alloxan, a

diabetogenic drug that induces the production of reactive oxygen

species (ROS) that accumulate in the pancreatic islets causing an

irreversible lesion of the cells responsible for insulin synthesis, the b
cells [20]. The CLP model is one of the most widely used models

of sepsis and septic shock and resembles human sepsis in many

parameters [13]. In this model, the severity of sepsis correlates

with the number of colon punctures. We tested 4, 8 and 12

punctures and since our focus was on the lung inflammation

secondary to sepsis, we chose to use 12 punctures to ensure

measurable alterations in the lung. By choosing this protocol,

however, we were limited by time, as 6 h after CLP was the

maximum time point when all animals subjected to 12 punctures

were still alive. After 24 h, all the diabetic rats were dead

compared with 20% of the non-diabetics.

ALI can be divided into two forms depending on the origin of

the insult. The extra-pulmonary form occurs secondarily to a

systemic process and the pulmonary form occurs when the injury

is primarily to lung parenchyma [10]. In our model of extra-

pulmonary ALI, after 6 h of CLP induction we observed the

formation of peribronchovascular oedema, intra-alveolar oedema,

septa lungs thickened by capillary congestion and cell infiltration

in the lung. Although polymorphonuclear cells were present, the

mononuclear cells predominated in both compartments, paren-

chyma and airways. This is in accordance with previous reports on

extrapulmonary ALI and it differs from pulmonary ALI in which

polymorphonuclear cells are the predominant cells infiltrating the

lung [21,22]. Although at the time point after sepsis (6 h) used in

this study the lungs clearly presented inflammatory alterations, the

lung function was not yet affected. We analysed the airways’

responsiveness to methacholine by whole body plethysmography

(Buxco) and found that the respiratory function was not

significantly affected by CLP at this time in non-diabetic rats

(data not shown). Thus, it seems that at this time point, the

inflammatory process has been initiated at molecular and cellular

level but it did not affect the respiratory function yet.

points and 50 lines (known length).The number of points falling on areas of perivascular oedema and the number of intercepts between the lines of
the integrating eyepiece and the basal membrane of the vessels were counted. The oedema index was calculated as follows: number of points1/2/
number of intercepts. Ten random non-coincident microscopic fields containing a bronchus and a venule were evaluated for each group, n = 5 per
group. (C) Evaluation of lung oedema by total protein content in the BAL after 6 hours of CLP or sham-operated, n = 5/group and scale bar = 50 mm.
Data are presented as mean 6 SEM. ***P,0.001.
doi:10.1371/journal.pone.0044987.g002

Impaired NFkB Activation in Diabetics, Milder ALI

PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e44987



Impaired NFkB Activation in Diabetics, Milder ALI

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e44987



We found that although the diabetic animals with sepsis die

earlier, they present milder lung inflammation than non-diabetics.

This is in accordance with observations that during sepsis patients

with diabetes are less likely to develop acute respiratory failure

[12] and that septic-shock patients with a history of diabetes

mellitus have a decreased risk of developing ALI or its more severe

form ARDS (Acute Respiratory Distress Syndrome) compared

with patients without diabetes [11]. Our results reported here shed

light on the mechanisms involved in lung ‘protection’ in diabetics.

It has also been recently shown [4] that the inflammatory

response is lower at the site of infection (peritoneal cavity) in

diabetics. It was shown that rolling, adhesion, and migration of

leukocytes were reduced in diabetic rats. The authors also show

that the clearance of bacteria in the peritoneal cavity is impaired.

In this situation it is easy to correlate the increased sepsis with the

lower inflammation.

The reduced inflammatory lung inflammatory response in

diabetic rats, seems to be restricted to the lung since diabetics

present even increased renal dysfunction after sepsis, and there is

no difference in cardiovascular, hepatic, haematological or

metabolic dysfunction between diabetic and non-diabetic patients

with sepsis [12].

Sepsis induced the expression of the lung-inducible prostaglan-

din syntase, COX2, in non-diabetic but not in diabetic rats. This

suggested to us the possibility that diabetic rats have some problem

in the signalling cascade that leads to gene expression. In fact,

previous work by our group has shown that NFkB activation was

impaired in diabetic lungs following LPS instillation [23]. In the

present study we found that in AMs from diabetic rats with sepsis

the NF-kB activation is impaired, as can be inferred from the

reduced phosphorylation of the inhibitory protein IkB-a and the

p65 subunit, which is responsible for gene transcription.

Signalling through TLRs requires the adaptor molecule MyD88

to be coupled to the receptor. The expression of MyD88 is

inhibited by SOCS-1 [19] and we observed that, in our sepsis-

induced ALI model, the alveolar macrophages from diabetic

animals over-expressed SOCS-1 mRNA. At the same time,

MyD88 mRNA was not detected in the diabetic rats. In addition,

Serezani et al. [19] have shown that Gai signalling-mediated cyclic

AMP decrease inhibits SOCS-1 expression by enhancing SOCS-

1 mRNA turnover.

The results presented suggest that during sepsis AMs from

diabetic rats over-express SOCS-1 which inhibits the expression of

MyD88, thus preventing TLR-mediated signal transduction,

NFkB activation and therefore the transcription of inflammatory

genes.

One limitation of this study is the fact that the lung

inflammation was analysed at a single time point for reasons

already explained and thus it is not possible to assume what would

happen at later time points. Another limitation is the difficulty of

extrapolating these findings to humans, as critically-ill patients are

promptly treated with insulin to control the glycaemia.

Figure 3. Inflammatory cell infiltration in lung at 6h after CLP. Diabetic and non-diabetic rats were submitted to CLP and after 6h the lungs
were removed and processed. (A) Photomicrographs of lung parenchyma stained with haematoxylin-eosin. (B) Mononuclear and polymorphonuclear
cell index was determined in the parenchyma. The cell index quantification was performed with an integrating eyepiece with a coherent system
consisting of a grid with 100 points and 50 lines (known length); cells were evaluated at x1,000 magnification. Points falling on mononuclear or PMN
cells were counted and divided by the total number of points falling on tissue areas in each microscopic field. Ten random non-coincident
microscopic fields were evaluated for each group, n = 5/group and scale bar = 50 mm. Data are presented as mean 6 SEM. * P,0.05; ***P,0.001.
doi:10.1371/journal.pone.0044987.g003

Figure 4. Inflammatory cell infiltration in BAL fluid and lung COX2 expression at 6h after CLP. Diabetic and non-diabetic rats were
submitted to CLP or SHAM (false surgery) and after 6h bronchoalveolar lavage (BALF) was performed. (A) mononuclear and PMN cell were counted in
haematoxilin-eosin stained cytospin preparations of BALF cells after total cell count was performed under light microscopy. (B) Expression of COX2
protein in lung homogenates six hours after CLP analysed by immunoblotting using antibodies to COX-2 and quantified by densitometric analysis of
the immunoblot bands. Density values of bands were normalized to the total b-actin present in each lane and expressed as a percentage of control.
n = 5/group, data are presented as mean 6 SEM; *, P,0.05.
doi:10.1371/journal.pone.0044987.g004
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The finding that reduced inflammation in diabetics with sepsis is

related to impaired activation of NF-kB in alveolar macrophages

unveils a novel mechanism that helps to explain the molecular

basis for the lung ‘protection’ observed in diabetics with sepsis.

Figure 5. NFkB activation in alveolar macrophages 6h after CLP. Alveolar macrophages (AM) were obtained by lung lavage six hours after
CLP and allowed to adhere in culture plates for 1 h. Total mRNA or total protein was extracted from AMs. (A) 20 mg of total protein analysed by
immunoblotting using antibodies to phosphorylated – IkBa and b-actin.The bands were quantified by densitometric analysis. Density values of bands
were normalized to the total b-actin present in each lane and expressed as percentage of control. (B) 50 mg of total protein analysed by
immunoblotting using antibodies to phosphorylated – p65 and b-actin. (C) cDNA was synthesized from total mRNA extracted and the expression of
SOCS-1. (D) MyD88 mRNA was analysed by RT-PCR. mRNA expression levels were calculated by the comparative Ct method and normalized to
GAPDH levels with non-diabetic CLP given an arbitrary value of one. n = 5/group, data were presented as mean 6 SEM.* P,0.05; ***, P,0.001.
doi:10.1371/journal.pone.0044987.g005
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