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Abstract

Many questions remain about P. falciparum within-host dynamics, immunity, and transmission–issues that may affect public
health campaign planning. These gaps in knowledge concern the distribution of durations of malaria infections,
determination of peak parasitemia during acute infection, the relationships among gametocytes and immune responses
and infectiousness to mosquitoes, and the effect of antigenic structure on reinfection outcomes. The present model of intra-
host dynamics of P. falciparum implements detailed representations of parasite and immune dynamics, with structures
based on minimal extrapolations from first-principles biology in its foundations. The model is designed to quickly and
readily accommodate gains in mechanistic understanding and to evaluate effects of alternative biological hypothesis
through in silico experiments. Simulations follow the parasite from the liver-stage through the detailed asexual cycle to
clearance while tracking gametocyte populations. The modeled immune system includes innate inflammatory and specific
antibody responses to a repertoire of antigens. The mechanistic focus provides clear explanations for the structure of the
distribution of infection durations through the interaction of antigenic variation and innate and adaptive immunity.
Infectiousness to mosquitoes appears to be determined not only by the density of gametocytes but also by the level of
inflammatory cytokines, which harmonizes an extensive series of study results. Finally, pre-existing immunity can either
decrease or increase the duration of infections upon reinfection, depending on the degree of overlap in antigenic
repertoires and the strength of the pre-existing immunity.
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Introduction

Mathematical modeling of malaria necessarily includes more

than population-level transmission models [1–5] and extends to

detailed models of within-host dynamics [6–10]. Crucial questions

about malaria infections–including those regarding the duration of

patent parasitemia [11] and the extent of subpatent and

asymptomatic infections in a partially-immune population

[1,10]–can be studied and explored within a suitably detailed

intrahost model. These detailed models can be used to explore and

to understand relationships among gametocytes, immunity, and

human infectiousness to mosquitoes [12]. The local diversity of P.

falciparum and the effects of acquired immunity on reinfection may

also be important factors in elimination campaigns, and certain

intrahost models can be used to explore these phenomena

decoupled from either the high-dimensional complexity or the

lower-resolution for infections in a full population-transmission

model. Intrahost models can also serve as testbeds to examine

potential vaccines and drugs early in development [4,13]. Each

species of malaria exhibits a complicated life cycle [14–16], and

models that focus on the within-host dynamics of the parasite can

provide detailed resolution of these life cycle features and their

potential disruption. Finally, intrahost models can be used to

evaluate hypotheses regarding parasite within-host dynamics and

immune responses and to propose new experiments and field

studies.

Mathematical models for studying intrahost dynamics of

malaria have a rich history. Most ordinary differential equation

(ODE)-based models of the human population implement constant

rates of recovery from the infected compartment, which is

equivalent to representing malaria infections as exponentially-

distributed periods of constant infectiousness [5,17–19]. More

detailed models of within-host dynamics often include key

biological features (e.g., discrete latencies, time-varying symptoms,

and dynamic infectiousness). One type of intrahost model uses a

system of ODEs to represent different combinations of immune

responses as well as asexual parasite and gametocyte densities

[9,20–24]. ODE-based intrahost models are limited by the discrete

nature of the ,2-day parasite asexual cycle, which culminates in

the release of merozoites to invade other red blood cells (RBCs),

and considerable care must be taken when attempting to represent

these dynamics in a continuous-time framework [25]. Some recent
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models built using the malariatherapy dataset [26] use a discrete-

time framework to better represent underlying dynamics

[6,7,10,13,27]. These detailed models can also be embedded in

population transmission models [4,28].

This paper presents a novel mechanistic intrahost model and

model-based simulations of the dynamics of P. falciparum. The

model implements a hybrid structure which couples a discrete-

event simulation with full latencies for events, such as rupture of

mature schizonts at an interval after merozoite invasion, with

continuous-time dynamics for immune responses and parasite

clearance. Parasite populations are represented by discrete counts

of the number of infected red blood cells, and immune responses

are represented by continuous variables. This hybrid system allows

a straightforward implementation of mechanistic details of the

parasite and immune response. The model is based on current

understanding of parasite developmental physiology and incorpo-

rates realistic innate and adaptive host immune responses. This

model follows the parasite from sporozoite inoculation through all

intra-host stages to gametocyte intake in a mosquito blood meal,

tracking the development of P. falciparum within a human host. The

model incorporates current knowledge of the parasite, its intra-

host targets, the human immune system, and their relevant

interactions into a modular format that can readily accept new

data on the underlying biology and physiology of malaria

transmission and immunity.

An important application of this mechanistic model is the

investigation of hypotheses for underlying mechanisms of the

parasite and immune response. Mechanistic representations of

basic parasite and immune processes are used to study the

duration of patent parasitemia, peak parasite count, infectiousness

to mosquitoes, immunological memory and reinfection, and other

phenomena. Hypotheses proposed and investigated include the

role of the innate inflammatory immune response in limiting

gametocyte success in the mosquito, the role of evolutionary

optimization of the antigenic switching rate in creating the

characteristic distribution of infection durations, and the role of

homologous and heterologous antigens in affecting the duration of

infection on reinfection. The present model proposes and

implements a powerful and flexible hybrid approach that

combines discrete-event and continuous-time representations of

parasite and immune mechanisms to allow a transparent

investigation of mechanism impact on campaign-relevant phe-

nomena such as duration of infections, outcome upon reinfection,

and transmissibility to mosquitoes.

Results

Analysis of the Malariatherapy Dataset
Malariatherapy data provide much of the current understand-

ing of the course of blood-stage P. falciparum in an immunologically

naı̈ve individual [26]. Infection with malaria was a therapy for

neurosyphilis in the first part of the twentieth century. Treatment

records for 334 patients from Milledgeville, Georgia and

Columbia, South Carolina between 1941 and 1954 include

infected red blood cell (IRBC) and gametocyte densities, fever,

and drug treatments. Some patients were reinfected with

homologous or heterologous strains, allowing study of both

primary immune response and immunological memory [29,30].

It is notable that reinfection with a strain identical to the primary

infection was possible: parasite counts were reduced without

realization of sterilizing immunity [29]. Malaria infections are

characterized by successive peaks-in-time of asexual parasitemia.

These are suppressed by immune responses, with intervals of

recrudescence [31]. The maximum daily parasite count of

successive peaks tends to decrease, and after approximately 5

peaks, counts may drop below the detection threshold of slide-

based microscopy. The elapsed time between each of the first 5 or

6 peaks tends to average just under 3 weeks [31].

Although the malariatherapy data are an important resource,

they must be used with care. Drug treatments sometimes given to

reduce parasite counts rather than clear infections affected disease

progression and limit some uses of the data. One approach is to

select the subset of patients who did not receive drug treatment

during their infection [6]. However, this strategy drastically

reduces the number of cases available for analyses and also

introduces strong selection biases.

Various metrics provide a sparse representation of the full

dataset but limit selection bias. The first metric is the duration of

measured blood-stage infection, the number of days from the first

recorded parasites to the last detected parasitemia [11,26]. When

modeling elimination campaigns through the regime of sparse

infections, the shape of the duration distribution becomes vital as

the continuum approximation corresponding to exponential

durations becomes less applicable. Sama et al. [32] showed that

a Weibull or Gompertz distribution is superior to exponential for

primary infections. This reanalysis includes patients who had no

drug treatment within the 14 days before the last recorded

parasite-positive day. Distributions are shown for all cases that

were not disqualified, and then under more stringent requirements

for post-clearance follow-ups at 7-, 14-, 21-, and 60-days.

For each strain, the distribution of duration shows an interval of

high probability density about the mean, with a tail in each

direction (Figure 1 A,C,E). Mean durations differ, with an average

(given a 60-day follow-up) of 216 days for Santee Cooper, 233 for

El Limon, and 142 for McLendon. The McLendon mean derives

from only 4 cases with a 60-day follow-up; dropping the required

follow-up period to 21 days reduces the mean duration to 115

days.

Peak parasite count is another important metric. Individual

cases are classified by strain and drug treatment. Cases with drug

treatments ,5 days after the recorded peak parasite count are

classified as perturbed. These cases have a higher mean for all 3

strains. This is partly the result of high parasite counts and

associated fevers requiring more aggressive treatment for patient

safety. All cases, rather than just the unperturbed ones, are used to

constrain model results. This ensures that the perturbed high-

parasite count cases inform possible outcomes (Figure 1 B,D,F).

Strength of Immune Response
Model features and parameters influence infection severity,

duration, infectiousness, or the pattern of recrudescence during long

infections, and parameter studies can explore the effects of different

components of immunity and the potential of vaccines enhancing

specific responses. Figure 2 illustrates the relationships among

merozoite-blocking immunity Cmerozoite, antibody clearance of P.

falciparum erythrocyte membrane protein 1(PfEMP-1) major variants

Cantibody, and antibody responses to the shared minor epitopes

cminormod. Every 2 days, IRBC schizonts rupture and release an

average of 16 merozoites per schizont. If the merozoite-blocking

antibody response (characterized by Ycapacity,MSP and Yantibody,MSP )

is at full strength, then Cmerozoite determines the number of new

IRBCs. Each will express a PfEMP-1 variant and a minor epitope as in

[33]. The antibody response to these two antigens influences how

many IRBCs survive to rupture.

Figure 2 A,B show ten simulated infection trajectories for

different combinations of immunity parameters. Before the

parasite density rises to a level inciting an innate response, there

is very little parasite clearance. Increasing shared adapted immune

Mechanistic Model of P. falciparum with Immunity
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responses, either merozoite-blocking immunity, or immunity to

shared minor epitopes reduces the overall parasite density

envelope as immunity develops and extends the duration of

passage through the antigenic repertoire, indicated by the major

drop in parasite density. Extending much beyond 200 days allows

reuse of antigenic variants and recrudescence with reduced

parasite density. Note that the lower shared immunity results in

higher parasite densities and a more deterministic infection, but

that reduced parasite densities and extended durations result in

much more infection variation, even with fixed parameters. The

highest shared immunity corresponds to the broadest distribution

of infection.

Each curve in panel c) corresponds to a set of fixed antibody

levels for merozoite inhibition Cmerozoite = 0.5. They divide the

plot area into values for kill rates that diminish the parasite

population below the replacement level allowed by merozoite

immunity (right and upwards of each curve) and those for which

the parasite will continue to proliferate until antibody levels

increase (left and downward). The x-axis shows the value of the

antibody kill rate Cantibody; the y-axis, the value of non-specific

antigenicity cminormod. Known characteristics of infection dy-

namics place firm constraints on the covariation of model

parameters, thereby reducing the effective degrees of freedom.

Higher values of Cmerozoite shift each curve left, which may also

be the effect of potential vaccines that reduce the success

probability of merozoite invasion [34].

Figure 1. Measured durations and peak parasite counts in the malariatherapy data. Durations (A,C,E) and peak parasite counts (B,D,F)
from malariatherapy dataset for the Santee Cooper, El Limon, and McLendon strains. Inclusion criteria are described for durations and peak parasite
counts. For the latter, ‘‘unperturbed’’ implies no drug treatment before the fifth day after the measured peak. Even perturbed cases (light blue) are
included, since these cases requiring drug treatment represent possible high-parasitemia outcomes.
doi:10.1371/journal.pone.0044950.g001

Mechanistic Model of P. falciparum with Immunity
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Figure 2. Effect of varying non-specific antigenicity cminormod and antibody kill rate Cantibody on immune-parasite interactions. A,B)
Simulated infection trajectories for different sets of immune parameters, for Cantibody = 1.5. Increased shared immunity reduces parasite densities,
extends the duration of the first pass through the antigenic repertoire, and increases trajectory variability. C) Each curve corresponds to a level set of
immune response which over a two-day cycle balances the merozoites per schizont. The red curve corresponds to maximum antibody levels,
exhibited for Yantibody,MSP = 1 for merozoite-specific immunity and Yantibody,i = 1 for the PfEMP-1 minor epitope-specific antigens. To the left of the red
curve, no clearance occurs for any variant of the infection. The orange curve corresponds to Yantibody,MSP = 1, Yantibody,i = 1 for minor epitope-specific
antibodies, and 0.4 for PfEMP-1. The green curve is the same as before, but with Yantibody,i = 0.3 for PfEMP-1 specific immunity, which is the level at
which antibody is first released. The cyan curve is for Yantibody,i = 0 for the expressed PfEMP-1 variant. To the right of this curve, new variants cannot
grow in the presence of maximum non-specific antibody responses to merozoites and minor epitopes. Finally, the dark blue curve corresponds to
Yantibody,i = 0.3 for all three antibody responses. These curves can be used to constrain realistic parameter ranges.
doi:10.1371/journal.pone.0044950.g002

Mechanistic Model of P. falciparum with Immunity
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Duration of Infections
Malaria campaign planning is impacted not only by the mean

duration of infections, but by the distribution of durations,

especially any long-duration tail. Important work has been done

to understand the distribution of infection durations [11,32], and

mechanistic models can explore which immune and parasite

mechanisms create these distributions and how the distribution

changes with respect to their parameters. The model reproduces

empirical duration distributions entirely through the mechanistic

implementation of antigenic variation and immune responses. The

high probability-density region near the mean corresponds to the

time for the infecting pathogen to exhaust all available variants in

its antigenic repertoire. The tails extending from this region

correspond to early clearances in which the infection is cleared

without exhausting its antigenic repertoire and to long duration

infections which use the repertoire more than once. Clustering

observed in the epoch of these early clearances has a simple

explanation. Infections are characterized by successive peaks of

parasitemia that introduce new antigenic variants before they are

suppressed. Clearances occur in troughs, and observed correla-

tions in peak times create correlated troughs.

A blood concentration of 200 parasites/ml corresponds to ,109

total parasites in an adult human, and for early parasite clearances

to be possible, the probability of an IRBC expressing a novel

variant and not the prior one needs to be close to that reciprocal.

This could be the product of a high on-switch rate and low off-

switch rate or vice versa [27], but it needs to be #1029 or no early

clearances occur. Higher switch rates are possible for either the on

or off rate [27,35]. In the model, Kantigen is the overall probability

of a singly-expressed variant switching to another singly-expressed

variant.

Figure 3A presents a series of curves showing mean measured

duration over a range of switch rates for different values of

cminormod, the immune response to shared minor epitopes. At

sufficiently fast switch rates, soon all available antigens have been

expressed, have evoked a response and have been cleared. At

sufficiently low switch rates, new antigens do not appear fast

enough, and clearance occurs; in an intermediate range, however,

longer infection durations appear. Lower parasite densities reduce

the effective variant introduction rate, slowing parasite and

immune dynamics, so maximum infective durations increase with

nonspecific immunity. Slower switching exhausts variants at a

slower rate, extending the duration of infection until further

slowing fails to outrace adaptive immunity. Although the

parameters are different, the qualitative feature of an optimal

switch rate is preserved, and it is thus interesting to observe the

duration distributions near this peak, as parasites should have been

selected for optimizing transmission.

Figures 3B,C show duration distributions from the cminormod =0.3

curve in Figure 3A. These change from being very narrow to more

closely resembling curves from the malariatherapy data as the switch

rate approaches values that maximize infective durations. In Figure 3B,

for fast switching, the distributions are narrow and increase in their

mean as the switch rate decreases. As the switch rate slows past 1029,

the mean begins to drop again and the distribution widens. Two longer

tails become visible, one extending to shorter durations, corresponding

to clearance before exhaustion of available variants, and the other to

longer durations. As the switch rate continues to fall, distributions are

composed of mostly early clearances. The full transition can be seen in

Figure 3C. The general shape of curves is robust to parameter

variation, and these characteristically-shaped curves appear when the

switching rate is slightly slower than that which produces the maximum

expected duration. It is feasible to specify parameter sets that closely

match each of the three strains by changing the number of variants in

the repertoire, variants available to switch, and the switch rate per

available variant.

The memory level for the adaptive immune response has its

strongest effects on re-infection, but it also changes the long-

duration tail of the distribution for initial infections. One of the key

results of this model concerns the motivations for the parasite to

maintain a sufficiently large repertoire of antigenic variants and to

use them sparingly. Immune responses to earlier antigens wane

over long intervals without their expression. Not only does this

Figure 3. Measured infection durations governed by host
immune reponse and parasite antigenic switching. A) Effect of
antigenic switch rate on mean infection duration for five values of non-
specific antigenicity cminormod (X50,innate = 1000, X50,antibody = 10 with min
stimulation 1/100, Cantibody = 1.5, nonspec_growth = 0.5, Cinnate = 0.2,
merozoite growth 0.05, merozoite antibody invasion blocking 0.5); B)
Duration distributions for a range of antigenic switch rates Kantigen with
cminormod = 0.3; C) Duration distributions for antigenic switch rates near
maximum duration have the characteristic distribution shape for P.
falciparum.
doi:10.1371/journal.pone.0044950.g003
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allow for future reinfection, but if the original variants are no

longer suppressed and are allowed to be expressed after a long

interval, another passage through the parasite’s repertoire is

possible.

One may argue that the size of the antigenic repertoire is driven

to allow durations beyond the durability of the human hyperim-

mune response, allowing reruns utilizing the same repertoire. This

‘‘another time around’’ is quite different from the first pass, since

now present memory B cells generate swifter antibody responses.

As Ymemory tends towards zero, the tail of the distribution extends

(Figure 4A) although all infections are eventually cleared, with

clearances each time through the repertoire. The interval from

one high transmission season to the next also drives repertoire size,

as humans provide a more reliable low-season reservoir than

mosquitoes. In much of the world, a 200–240 day mean duration

suffices.

The duration distribution is also influenced by the rate of

development of merozoite-blocking immunity KMSP (Figure 4B).

Slow development maintains higher parasitemia, which limits the

number of early clearances and speeds the progression through the

antigenic variants for a given switch rate. As merozoite-specific

immunity develops more rapidly, parasitemia is suppressed,

increasing the probability of early clearances, slowing exhaustion

of the antigenic repertoire, and extending the durations of

infections for a given switching rate.

Peak Parasitemia
Simulations can be used to study the peak parasite count

experienced during an infection and the effect of heterogeneity in

individual immune responses. Stochastic simulation of the model

with fixed parameters gives the desired broad distributions for

duration, but the first wave of parasitemia is more deterministic

due to the short interval and the large number of parasites. Thus,

fixed parameters in the present model don’t capture the

distribution of peak parasite counts (Figure 1 B,D,F), almost all

of which occur during the first wave of parasitemia.

It’s possible to capture this variation with modifications of

parameters intrinsic to the parasite (e.g., the asexual cycle

reproductive rate per variant), or of parameters intrinsic to the

immune response (e.g., thresholds), or both [6,7,13]. This

variation is modeled with heterogeneity in individual immune

responses, particularly in the inflammatory innate immune

response, the variation thereof being well-known, and variations

in Cinnate and X50,innate do modify the peak parasite count

(Figure 5C). Varying a single one of these parameters is enough to

match the distribution, with a fixed threshold and a uniformly

distributed kill rate performing best. For fixed Cinnate and varying

X50,innate to match the data, the threshold must vary over many

orders of magnitude. If the variations in observed peak parasitemia

are explained through heterogeneity in Cinnate, the implication is

that higher parasitemia will be observed in individuals for whom

the innate immune response is weaker at clearing parasites or

limiting growth.

Simulated infections recreate the characteristic series of parasite

peaks with a spacing of 16–21 days, with a gradual descent in

parasite peaks (Figure 5A). The simulation tracks actual parasite

levels, even below detection thresholds, and exhibits a realistic

pattern of recrudescence. Examining the distribution of expressed

variants through early, middle, and late-infection in a simulated

infection shows an initial high count of a limited number of

variants, then a bloom of variants at intermediate densities. These

are followed by scattered variants at low densities (Figure 5B).

Other parameters, such as the merozoites per hepatic schizont

Nlivermerozoites, have minimal effect on durations and peak

Parasitemia for low numbers of hepatic schizonts. The number of

initially expressed variants can affect peak Parasitemia, and a very

high number of initial schizonts can affect acute phase dynamics as

well. If the number of initially expressed variants depends on the

number of liver schizonts, that would provide a possible

mechanism for protection against severe outcomes by a pre-

erythrocytic vaccine limiting sporozoite success. The effect of the

number of initially expressed variants is stronger for a weaker

innate response.

The time between successive parasite peaks is influenced by a

variety of factors. Higher switch rates seed the wave of variants

with more parasites expressing new variants. This results in fewer

required multiplication cycles to get to the next peak. Merozoite-

blocking immunity and immunity to shared minor epitopes

suppress parasite populations, slow both their growth and the

resulting development of antibody defenses to new variants, and

extend the interval between peaks.

Infectiousness
Human infectiousness to blood-feeding mosquitoes informs

population-level models of malaria. It is difficult to develop a simple

relationship between gametocyte densities and infectivity at higher

gametocyte counts [12,36]. Previous models sidestep this difficulty

Figure 4. Effects of immunological memory and merozoite
invasion-blocking immunity. A) Effect of memory level Ymemory on
duration distribution; B) Effect of merozoite-specific antibody capacity
growth rate KMSP on duration distribution. Infection parameters are the
same as they are in Figure 3, but KMSP is fixed at 0.05 in a), and Ymemory

is fixed at 0.1 in b).
doi:10.1371/journal.pone.0044950.g004

Mechanistic Model of P. falciparum with Immunity
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either by fitting time-lagged asexual parasitemias [37], assigning

discrete values of infectivity based on symptomatic state [1], or fitting

a sigmoidal curve through the data. Current research focuses on the

characteristics and dynamics of transmission-blocking immunity, its

age-dependence, and the role of the adapted response.

The model contains a raw count of mature gametocytes with

explicit dynamics for production and decay. The number of female

gametocytes per mosquito bloodmeal is then multiplied by a success

factor and an inflammatory immune factor. Figure 6A shows the

effect of varying the success factor with no inflammatory immune

effects. Changing the success factor per female gametocyte merely

shifts the sigmoid on a log scale (Figure 6A), and the sigmoid

transition is far steeper than the averages in the Jeffery and Eyles

data [38] (Figure 6C). Adding in the probability of male

gametocytes can be done explicitly or implicitly as one of the

factors that reduces the success of female gametocytes. When the

success factor depends on male gametocyte density, it does not affect

the high gametocyte density part of the infectivity curve where male

and female gametocytes are plentiful, but reduces the low density

success rate. This makes the transition from low to high infectivity

even sharper, or opposite that observed in the mosquito-feeding

infectivity data.

Mechanistic models can provide a testbed for hypotheses about

the effect of different components of the immune response upon

transmission. Adapted immunity reducing the asexual parasitemia

will indirectly reduce gametocyte densities by reducing their

source term. One proposed direct immune mechanism would be

naturally-acquired transmission-blocking immunity based on

gametocyte-specific antibody production. Such adapted responses

would develop over time and exposure to antigens. As a result,

however, these gametocyte-specific responses will occur at lower

gametocyte counts driven by suppressed asexual parasitemia, to

which adapted responses have also developed. As a result, adapted

immunity to gametocyte antigens will tend to reduce the lo-

gametocyte density part of the infectivity curve rather than its

high-density section, and will tend to rotate the sigmoid the wrong

direction. Such concerns would not apply to a transmission-

blocking vaccine, which could reduce transmission over broad

density ranges.

This discrepancy suggests that some additional factor decreases

the success per female gametocyte at higher densities. Thus, it is

reasonable to examine potential immune responses which are

stronger at higher gametocyte densities. Gametocytes are

produced by a subset of IRBC’s and thus, higher gametocyte

densities tend to follow higher asexual densities. Higher asexual

densities, especially those that occur while a specific adapted

immune response is still low, are often correlated with high levels

of inflammatory cytokines. Experiments with crisis serum transfer

show transmission-blocking immunity [39] due to cytokine-

mediated inactivation [40], confirming a potential role for the

innate response in limiting transmission. Such a role is indeed

suggested by model simulations and harmonizes a series of studies.

An inactivation factor based on the level of inflammatory

cytokines decreases the effectiveness of gametocytes in the

calculation of infectivity to the mosquito. Varying the strength of

this effect shapes the infectivity curve appropriately (Figure 6B).

Individual heterogeneity in the innate immune response would then

drive some heterogeneity in infectivity, but even for a fixed set of

parameters, there is a broad scatter in model outputs for gametocyte

densities versus the inactivation factor which increases with the

factor (Figure 6B). A given gametocyte density does not map to a

single cytokine level; the relationship depends on the stage of the

current infection and antigenic history prior to a given infection. As

inflammatory cytokine levels decrease for a given asexual parasite

density, the infectivity for a given gametocyte density approaches

the original unperturbed sigmoid in Figure 6A. In the present

model, immune response thus limits transmission in two ways: by

suppressing asexual parasitemia on reinfection, thereby lowering

gametocyte density; and innate immune responses limiting the

overall transmission effectiveness per gametocyte.

Reinfection
A final set of questions which can be examined through a

mechanistic model focus on the effects of pre-existing immunity on

new infections. Reinfection with homologous or heterologous

strains has been previously described empirically by Jeffery and

Collins [29]. Immunity to severe malaria is seen after as few as 1–2

Figure 5. Sample infection with antigenic variation and the
effect of inflammatory response. A) Sample infection with daily
reports of IRBC/ml; B) Change in the distribution of expressed variants
over the course of infection;. C) Effect of innate immune effective
threshold X50,innate and inflammatory kill rate Cinnate on peak parasite
count.
doi:10.1371/journal.pone.0044950.g005

Mechanistic Model of P. falciparum with Immunity
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infections [41], but it can take much longer to attain effective

parasite immunity [1,4,5]. Malaria infections do not result in

sterilizing immunity (patients were reinfected with an identical

strain after clearing their primary infection [29]). Peak parasite

counts were less than those in the primary infection, showing some

immunological memory even years after the initial infection.

Compared to the primary infection, fever was lower and IRBC

and gametocyte densities tended to be reduced [29]. It is useful to

study in silico how durations, severity, and transmission may vary

on reinfection.

In addition to the antigenic variation of expressed PfEMP-1

variants during a single infection, different clones of P. falciparum

can have different repertoires of available variants [42]. The total

number of available variants in a given geographical area, let

alone in the world, is unknown, but similar variants have been

found in distant areas [43]. The greater the number of variants,

the longer it takes to build up the array of protective, but not

sterilizing, immune response, and ‘holes’ in the antibody repertoire

exist even after years of exposure. The present model with specific

antibody responses to an array of possible antigens allows study of

the effect of parasite diversity upon the acquisition of protective

immunity through varying the parasite antigenic repertoire upon

reinfection.

The outcomes of repeated reinfection depend on the degree of

overlap of the infection’s antigenic repertoire with prior experi-

enced antigens. Antigenic variation has also been observed for the

protein AMA-1 in merozoites, which has been observed to be an

immune target [44]. Several variants for the merozoite antigen

type are included in the model (with MSP-1 in the model

representing the collection of immune targets on merozoites), and

different available sets of minor epitopes. Each infection in the

model is characterized by a single merozoite antigen type, a single

set of minor epitopes, and 50 PfEMP-1 variants. If there are m

merozoite antigen types and n sets of minor epitopes, then there

are m*n possible combinations of non-specific antigenic profiles

for infections, with different degrees of cross-immunity due to

shared antigens.

The present simulations implement a strain population with 300

possible PfEMP-1 variants, 4 MSP-1 variants, and 4 sets of 5

minor epitopes. In the first case, individuals are infected with a

series of strains with a 300-day interval from clearance to

reinfection to allow immunity to return to Ymemory. Each strain

has a set of 50 PfEMP-1 antigens drawn at random from the 300,

1 MSP-1 variant, and 1 set of 5 minor epitopes. Each of the 50

PfEMP-1 variants receives 1 of the 5 minor epitopes at random. As

an individual develops a broader immunological repertoire, fewer

cases have high peak parasite counts. Infections are shorted by

pre-existing immunity, but the effect on peak parasitemia is much

more dramatic than that on duration (Figure 7 A,B).

Durations are prolonged when the MSP-1 variant and set of

nonspecific antigens are maintained, but each set of PfEMP-1

variants is entirely novel (Figure 7C). Although pre-existing

immunity to MSP-1 and minor epitopes limit parasitemia, it’s

not enough for clearance of novel PfEMP-1 variants. Lower

parasite counts slow progression through available variants and

result in longer durations. Whether immunity speeds or slows

clearance has been the subject of extensive debate, and

investigating fundamental immune and parasitological mecha-

nisms in the context of this model illuminates the conditions under

which each effect would be observed.

The earlier analysis maximized average duration of infection for

the primary infection, but reinfection also affects optimal antigenic

switch rate. During a secondary infection with homologous

antigens, a higher switch rate allows variants to be introduced at

lower parasite densities. This is typical of secondary infections with

previously experienced antigens. Thus, the optimal switch rate for

secondary infections is higher. In moderate to high transmission

areas, where most infections are secondary, an evolutionarily-

driven switch rate should be higher. Conversely, it should be lower

in low-transmission areas, where primary infections make up most

cases. It is worth noting that most of the malariatherapy strains

were from low- to moderate-transmission regions [26].

Figure 6. Infectivity to mosquitoes is governed by gametocyte
density and other factors. The probability of mosquito infection
versus gametocyte count for A) varying survival factors; B) varying effect
of inflammatory immune response on gametocyte success. Inflamma-
tory cytokine mediated gametocyte inactivation can explain widely
varying mosquito infection rates even for a single individual; and C)
data for the probability of mosquito infection with a model example
survival factor of 100 and a cytokine effect of 0.94.
doi:10.1371/journal.pone.0044950.g006
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For different transmission intensities, the detected prevalence

and geometric mean parasitemia can be determined as a function

of age (Figure 8). These simulations do not track maternal

antibodies or different biting rates as a function of age, so these

curves attain adult equilibrium levels more rapidly than are seen in

data [10]. Development of immunity has been observed to be

faster in adults, although they had a higher rate of clinical cases

when exposed [45]. With the same parasite strain population from

Figure 7A, the adult equilibria match observed patterns well: from

a daily Entomological Inoculation Rate (EIR) of 0.01 to a daily

EIR of 0.05, equilibrium adult-measured prevalence rises from

approximately 30- to 50%, with minimal further increases at

higher transmission rates. Equilibrium mean detected parasite

densities are between 10 and 100 parasites/ml, with densities

slightly lower in high-transmission settings. The main discrepancy

with data is then the rate of transition from 1-yr-old measured

prevalence and parasite densities to the 20-year-old values. This

transition can be matched through various means [1,10], but these

approaches do not explicitly track antigenic history or strain

structure, which is possible in this context.

In the present model, for well-mixed infections, an individual

rapidly develops partial immunity to the entire antigen population

at high transmission intensities, and the adult equilibrium is attained

at a younger age. If it takes longer to be exposed to all antigens, the

rate of approach to adult equilibrium can be slowed up to and

beyond 20 years of exposure. Increasing the number of locally

circulating MSP or nonspecific antigen variants can also increase

the time required to develop broad immunity. Figure 8C,D repeat

the age-prevalence study for a parasite population with 300 PfEMP-

1 variants, 10 MSP-1 variants, 10 sets of minor epitopes, with

individual infections a random selection from the local population.

For a given level of transmission, it takes longer to develop

immunity, and parasite rates can be higher. Thus, variation in local

parasite population antigenic structure can help explain age-

prevalence curves.

The detection threshold of the diagnostic will affect the field

measurements: a higher detection threshold leads to lower detected

parasite prevalence, but higher mean parasites per detected case.

Simulation models allow specification of different diagnostics and

provide the true prevalence data along with what would have been

field-measured by different diagnostics. This is an important feature

when comparing model results to field data or when estimating the

effect of novel diagnostics on campaigns, such as mass screen and

treat [46,47].

Discussion

The present model contains a detailed mechanistic representa-

tion of parasite and immune processes. It not only describes

phenomena such as the duration of infection, but its exercising can

improve the understanding of the processes that drive them. The

distinctive shape of the duration distribution emerges from a

balance of host immune responses and parasite antigenic

switching. When the antigenic switch rate is close to the value

that provides the maximum mean duration for a given set of

immunological parameters, the characteristic distribution shape

emerges, with a high probability density near the mean and tails

characteristic both of long durations and of early clearances. The

early clearances are due to the parasite’s failure to introduce a new

variant before existing variants are cleared. A small number of

early clearances can be tolerated by the parasite since slow

switching rates result in a longer period to exhaust its antigenic

repertoire. A mean duration greater than ,200 days helps the

parasite as the intense hyperimmune response that cleared the

variants expressed early in the infection subsides, effectively

allowing re-expression of early variants. This extends the infection,

albeit with less success than during the first pass, due to the host’s

immunological memory. This is a specific example of the

principles of antigenic variation impacting transmission and

overall pathogen fitness that are exhibited in many diseases and

transmission types [48].

Mechanistic modeling of within-host parasite dynamics provides

a test environment for in silico experiments that improve

understanding of malaria infections. The peak parasite count is

limited primarily by innate immune response and heterogeneity in

both the level of parasitemia that provokes the response and the

strength of innate immune effectors. These can explain variation

in individual responses to early-stage infection. Infected human

infectivity to mosquitoes cannot be explained by either a constant

infectivity or a simple probability of female gametocyte presence in

Figure 7. Measured durations and peak parasite counts for
reinfection. Reinfection studies for the changes in A) peak parasite
density; B) measured duration for random antigen selection; and C)
measured duration for fixed minor epitope set and MSP variant but
disjoint PfEMP-1 sets. The distributions of peak parasite count and
measured duration are compared for the 1st–5th infection. Effect of
reinfection on duration depends on the antigenic overlap between
primary and secondary infections.
doi:10.1371/journal.pone.0044950.g007
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a bloodmeal, but requires additional factors. The first is the success

at infecting the mosquito of a female gametocyte in a bloodmeal,

which depends on mosquito and host-derived factors. The second

is due to the host immune response, which is proposed here as

being more likely the innate inflammatory response as the effect

must be proportionally stronger at higher parasite counts, which is

true of the innate response but not necessarily for the adaptive

response. This does not rule out the effect of transmission-blocking

antibodies, which have been shown to have an effect. However,

within-host boosting may be weaker due to the shielding of the

red-blood cell membrane [36]. These antibody levels will be

important when modeling transmission-blocking vaccines, but the

role of natural transmission-blocking adaptive immunity is less

clear.

Accounting for the effects of parasite population strain structure

on population-level prevalence and parasite counts are also

important. Different degrees of explicit cross-immunity help

explain field observations. Intrahost modeling can be extended

along many important avenues. The first is to embed these

intrahost dynamics within a population-level simulation such as

[1,3,4,28,49] to observe the effects on transmission and on

eradication campaign outcomes. In addition, it is necessary to

incorporate age-dependence of initial response [45] to accurately

determine severity of outcomes among children. Severe malaria

has various causes [50], and this model will be extended to

simulate infection outcomes, such as death, clinical malaria,

anemia, and sequelae, as has been done particularly well by the

Swiss Tropical Institute [4].

New research is continually expanding knowledge of many less

well-understood areas of the immune response to malaria [51].

The detailed, flexible framework of the present model enables

facile incorporation of new findings. For instance, in addition to

the immune response affecting the parasite, the parasite can

modulate the immune response through a variety of modalities.

Infections have been found to interfere with dendritic cell

maturation and to cause an increase in anergic or regulatory T-

cells [52]. Active infections have been seen to damage T-cells

[50,53], an effect that may be associated with poorer-than-

expected immunological memory. These mechanisms are not

implemented directly in the present model, but appear indirectly

Figure 8. Age prevalence studies for different parasite population antigenic diversity. Age prevalence studies for A) detected parasitemia;
B) geometric mean parasitemia binned by age range for a parasite population with each infection having 50 of 300 PfEMP-1 variants, 1 of 4 MSP-1
variants, and 1 of 4 sets of 5 minor epitopes; C,D) the same analysis for a parasite population with 300 PfEMP-1 variants, 10 MSP-1 variants, and 10
sets of 5 minor epitopes. Immunity takes longer to develop with a more varied parasite population.
doi:10.1371/journal.pone.0044950.g008
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in the level to which antibody capacity falls as well as the rates of

its rise and decline. Drug [46,54,55] and potential vaccine actions

[4,56] will soon be incorporated in this model as well. It may be

important to model co-infection with multiple species [57], which

entails modeling of P. vivax and P. malariae at least. This could also

be explored within the current framework.

Modeling a malaria infection at this level of detail can be

challenging, and many prior models have illuminated the way

forward. Modeling basic mechanisms constrained by specific

experiments allows understanding of broader, more complicated

high-level effects, such as infection durations. In contrast, models

that rely heavily on non-physical parameters or fit many free

parameters to observational datasets can make it difficult to

generalize reliably or to gain new insight. Dramatic gains in

computing power characterized by Moore’s Law currently confer

on almost any research group computing capabilities adequate to

model disease in much deeper levels of fidelity and detail than was

feasible even a decade ago.

The present model implements a collection of experimentally-

verified low-level processes that naturally reproduce complex

characteristics of P. falciparum infections. It yields reasonably

compelling explanations for subtle features of infection dynamics

while maintaining clear connections to past, present, and future

experiments. It also highlights several areas of study that may be

critical to successful eradication.

Materials and Methods

Model Structure
The model implements a hybrid of discrete and continuous

processes. Discrete events such as latencies in the infected

hepatocyte stage, the length of the asexual cycle from merozoite

invasion to schizont rupture, and gametocyte maturation are

represented by timers and no state change occurs until the timer

has completed. Other processes such as the decay of antibodies

and the clearance of parasites are represented by continuous-time

processes which are solved with a one-hour time step Euler

method. All parasite quantities such as number of hepatocytes,

number of merozoites, number of infected red blood cells of each

antigenic variant, and gametocytes of each stage are represented as

discrete integers, and the infection is not cleared until each

category is reduced to zero, which allows resolution of model

dynamics at sub-detection levels. Immune variables such as

antibody levels for each antigen, inflammatory cytokine levels,

and immunological memory are represented by continuous

floating-point variables. Discrete and continuous processes work

together to capture system latencies and discrete events inherent in

the asexual cycle. Most model parameters have a specific physical

interpretation and can be rationally constrained by defined

experimental measurements.

Each infection is represented by a number of currently infected

hepatocytes, the number of infected red blood cells of each

PfEMP-1 variant, and the number of gametocytes in each stage of

development, both male and female. The immune response is

represented as the levels of non-specific inflammatory cytokines,

the current antibody levels against each PfEMP-1 variant and each

shared minor epitope, and the current capacity to produce

antibodies of each type. For each component of the model, the

sections below review what is known of the specific mechanisms,

identify the relevant rates and magnitudes from the literature

where available, and explain how these numbers are integrated

into the model structure. Model sensitivities to these literature-

derived rates are evaluated, and where specific numbers are not

available for a particular mechanism and parameter, such as for

the slower antigenic switching rates in the tail of the infection, the

malariatherapy data or parasite prevalence data from field sites are

used to constrain the parameter value through comparisons to

model outputs.

The parameterization of the model follows several steps. First,

several parameters are obtained from literature and used directly

without fitting. These include the duration of the liver stage, the

duration of the asexual stage, the number of merozoites per liver

schizont, the number of merozoites per red blood cell schizont,

and various other time constants governing antibody responses.

The next set of parameters includes the pyrogenic threshold and

the antibody stimulation threshold, which are constrained within

an order of magnitude by literature estimates. That approximate

magnitude is the starting point for simulations, and the results

presented in this paper show the effects of varying these over the

range consistent with literature estimates. The values of the effects

of different immune effect strengths, which in this model are often

simplified combinations of multiple mechanisms, upon parasite

clearance or merozoite invasion are explored in Figure 2. Only

certain ranges of combinations are consistent with observed

infection behaviors, and it is within these compatible ranges, that

extensive simulations were conducted and ensembles of simulated

infection trajectories were generated. Malariatherapy data are

then used to constrain and fit model simulation outputs to the high

first parasite density peak, lower secondary peaks, and even lower

peaks after 100 days, the possibility of reinfection with homologous

strains, the interval between peaks, and the distribution of

measured durations. The most uncertain parameter is the per-

parasite antigenic switching rate. This was varied over many

orders of magnitude to find the range for which distributions of

infection durations were compatible with those observed in

malariatherapy patients. In many cases, the desired output from

the parameterization process was not a single best set of

parameters, but an understanding of how parameters co-varied

and affect the dynamics and true observables. This sequential

process allows detailed exploration of the relative impacts of

different immune and parasite parameters upon disease dynamics,

as demonstrated in the Results section, and it provides a

mechanistic explanation for the shape of the duration distribution.

The model is a micro-simulation of a single infection within a

single individual and outputs the parasite and immune dynamics

over time. Many infections are simulated in order to construct

distributions of outcomes such as the measured duration of

infection. This micro-simulation model can be embedded in a

population-level transmission model and can also support super-

infection, but these implementations are not explored here.

Parasite Dynamics by Life Cycle Stage
The model tracks sporozoite infection of the liver, infected

hepatocytes, infected red blood cells (IRBC’s) for the asexual cycle,

and the production of gametocytes and their maturation. The

population of each parasite stage is represented as a discrete

integer, with the IRBC’s further subdivided by expressed surface

antigen, and the resulting concentration per microliter is

calculated from the population for use in immune response

functions. Plasmodium’s journey begins when a female Anopheles

mosquito with sporozoite-infected salivary glands feeds on a host

[58,59]. Sporozoites journey through the skin until reaching a

capillary and entering the bloodstream, eventually arriving at the

liver and infecting hepatocytes [60]. Each sporozoite-infected

hepatocyte will develop into tens of thousands of merozoites [50].

The pre-patent period (time from inoculation to first detected

parasites, not to emergence from liver) for malariatherapy patients

infected with sporozoites ranges from 7 days up to 16 days for El
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Limon, 14 days for Santee-Cooper, and 28 days for McLendon

[26]. Infectious bites can be modeled as a sporozoite count

Gaussian distribution with a mean and standard deviation of 20

(negative counts truncated to 0), with a low probability of success

per sporozoite which can depend on a variety of factors [61]. In

the present model, these features correspond to an overall

infectious bite success probability b [62,63], which includes an

intrinsic success of invasion and the probability of hepatocyte

survival to release of merozoites. Successful sporozoites result in

infected hepatocytes, which are modeled to release Nlivermer-

ozoites = 40,000 merozoites [16] after a fixed latency Thepatocyte of

7 days [61].

When this micro-simulation model is embedded in a popula-

tion-level agent-based simulation of the local human population,

multiple homologous infectious bites in a day for a person can be

replaced by the probability of at least one successfully infected

hepatocyte. This gives a probability of infection with a given strain

at a given time step as (12e2bB) for b the probability of success per

bite and B the number of bites in a given time step, after adjusting

for interventions such as bednets. When embedded in a

population-level simulation, a one-day time step is used between

mosquito population feeding events to represent night-time biting.

A one-hour time step is used to simulate the immune and parasite

dynamics within each individual between mosquito-population

feeding events.

Merozoites invade RBCs and begin asexual reproduction to

produce more merozoites [64]. The asexual reproductive cycle for

P. falciparum lasts approximately two days, and each IRBC

produces an average of 16 merozoites [16], but that figure can

climb to 32 [7]. In vivo growth rates before the onset of immune

responses have been measured between 12 and 15 second-

generation IRBCs for each original IRBC [61,65]. In the model,

the asexual cycle is tracked with a fixed latency Tasexual = 48

hours rather than a continuous growth rate of the population, at

the end of which surviving IRBCs release NIRBCmerozoites = 16

merozoites, and the number of resulting second-generation IRBCs

depends on merozoite invasion-blocking immunity and the

availability of uninfected RBCs.

IRBCs express surface proteins, such as PfEMP-1 [66], and

each parasite genome has a repertoire of approximately 50

variants for PfEMP-1 encoded by the var gene family [67]. As these

surface proteins are highly visible immunologically, antigenic

variation through the var gene repertoire assists in immune escape,

with each IRBC exhibiting mutually exclusive expression of a

variant [68]. Data show switch rates of 2% per generation [69], or

variable rates ranging from undetectably small to 2% [35].

Horrocks et al. found that instead of explicitly sequential

transitions, expression of given variants appeared to switch on

and off, with separate on and off rates for a single variant, different

on/off rates across variants in the repertoire, and conserved on/off

rates for a given var gene in genetically similar IRBCs. There

appears to be deep expression-dependent epigenetic silencing of

certain var genes [35] and a structured switching pattern which can

be represented by a network of switching pathways [70]. Due to a

lack of sufficient data to constrain such a switching mechanism, the

present model extracts a subset of features of antigenic switching

and avoids the introduction of enough free parameters for variant-

specific on/off rates and variant-specific deep silencing of other

variants, each of which has several orders of magnitude in

experimentally-measured variability.

The variable on- and off-rates, coupled with mutually exclusive

expression and the silencing mechanisms result in a time-sequence

of antigenic expression looking backwards in time for each IRBC

and its ancestors, with one set of dominant variants in the

population replacing a prior set suppressed by immune responses.

In the model, a single infection is represented with a queue of

Nvariants variants, with IRBCs of a given variant probabilistically

switching to new variants among the next several in the queue.

Simulations explore variations of nantigenswitch, the number of

available non-suppressed variants, and results show simulations for

a value of 7. Limiting the number of available non-suppressed

variants prevents the parasite from exhausting its antigenic

repertoire during peak parasitemia, but excessive limitation

increases the risks of early clearance upon reinfection. This

implies that initially deeply-silenced or extremely low on-rate

variants correspond to those later in the queue. A uniform switch

rate Kantigen is defined per IRBC rather than per variant

population; hence, large populations exhibit a higher probability

of introducing new variants. A switching model with on and off

rates was examined by several researchers [27] who determined

the basic sensitivities and some of the effects of varying these rates.

As better data on constraining the distribution of on/off rates or

on defining a network of structured switching become available,

they will be incorporated into the model as the preferred method.

The equations governing antigen switching are displayed below:

Nnzi,n~Poisson KantigenNn

� �
,1ƒiƒnantigenswitch

for which Nn+i,n is the number of IRBC’s switching from

expressing antigen n to expressing antigen n+i, where Nn is the

number of IRBC’s currently expressing antigen n. The next

generation IRBC’s expressing the same antigen in the next

generation N1
n is then

N1
n~ 1{kgametocyte

� �
Nn{

Xnantigenswitch

i~1

Nnzi,n

 !

NIRBCmerozoitesZMS

in which ZMS is the merozoite success rate which is dependent on

red blood cell availability and the merozoite invasion-blocking

antibody response described below. The number of IRBC’s

expressing an antigen in the next generation is then incremented

for each of the switching IRBCs as follows:

N1
nziz~Nnzi,nNIRBCmerozoitesZMS

for all n, and 1#i#nantigenswtich.

The blood stage of the parasite’s life cycle exists to produce an

adequacy of gametocytes in the sexual stage of Plasmodium

[12,15,71,72]. Gametocyte maturation occurs sequestered in the

vasculature of internal organs rather than in peripheral circulation

[73], and the process takes about 10 days for P. falciparum [74].

The half-life of the population of mature gametocytes is

approximately 2.5 days for P. falciparum [75]. In the mosquito

gut, gametogenesis occurs in response to the drop in temperature,

the increase in pH, and the activation factor xanthurenic acid

[76]. Blood meals can contain submicroscopic levels of gameto-

cytes (,10/ml), as a bloodmeal may consist of several ml of

peripheral blood) and still infect mosquitoes [77]. At submicro-

scopic densities, there is a positive relationship between gameto-

cyte densities and infectivity to mosquitoes [77] which is lost at

higher densities [36]. This phenomenon of infectivity of gameto-

cytes to mosquitoes and the probability of mosquito infection

[36,38,75,78] can be explored through mechanistic simulations.

Mechanistic Model of P. falciparum with Immunity
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Successful infection of a mosquito allows that mosquito to

eventually infect humans following parasite development through

its mosquito stages [36,79,80]. In the present model, a fixed

fraction kgametocyte of IRBCs per generation produce gameto-

cytes, which then progress through five stages of development to

maturity over the course of 10 days. This framework supports

stage-specific susceptibility to drugs.

Immune System
The human immune system responds to the diverse stages of the

Plasmodium parasite with an array of responses and effectors.

Immune response to infected hepatocytes is mediated by CD8 cells

[81], but NK cells are also important, as well as IL-12 and IFN-c
[82]. The model includes these pre-erythrocytic responses for

vaccines.

Constructing the model for the immune response to blood stage

P. falciparum requires modeling both the inflammatory innate

response and the adaptive antibody-driven response. The innate

immune response begins with the release of pro-inflammatory

cytokines associated with a cell-mediated attack on the parasite

[83]. Immune cells, such as macrophages, release TNF-a, IFN-c,

and NO [50]. In P. chabaudi infections in mice, NK cell-released

IFN-c and TNF-a are important to the initial control of the

infection [84,85], and disruption of the inflammatory response is

dangerous to the host. Hemozoin provokes an additional innate

immune response upon schizont rupture [86], which is partly

responsible for the waves of inflammation and fever associated

with the periodic large-scale rupture of schizonts. TNF-a and IFN-

c appear within 12 hours, stimulated by schizont ruptures and

intact IRBCs once they are beyond the ring stage and express

surface proteins [87]. IFN-c appears rapidly due to NK cells

stimulated by infected erythrocytes, with optimal production at

ratios between 1–10:1 IRBC:PBMC [88]. On average, the

inflammatory response to primary infection tends to become

important as concentrations surpass 100 IRBC/1000 PMBC or

100 IRBC/ml, with stronger responses correlated with an increase

in parasite densities towards 10,000 IRBC/ml, and this is the range

explored in model simulations.

The pro-inflammatory cytokine cascade activates fever and cell-

mediated inflammatory responses. Fever is associated with TNF-a
[89], and high levels of TNF-a are associated with clinical

symptoms, with increased transcription of TNF-a is associated

with risk of cerebral malaria [83]. Clinical symptoms tend to be

inversely related to adaptive antibody responses, with clinical

disease associated with expression of antigenic variants for which

patients lacked pre-existing antibody responses [90].

The model includes the effect of the development of the

antibody response shifting the immune response away from

inflammatory cytokines. Specific antibody responses to GPI in

MSP-1 and MSP-2 help limit the inflammatory response [91].

Clinical disease associated with the inflammatory response tends to

result from novel antigens to which an antibody response has not

yet developed. This helps explain differences among primary and

secondary infections and the differences in time scales for

development of clinical and parasitological immunities [1,41].

The inflammatory response is regulated by anti-inflammatory

cytokines, such as IL-10 and TGF-b. Low levels of IL-10 are

present in patients who experience severe malarial anemia [92],

and IL-10 appears as an anti-inflammatory component of

acquired immune processes [93]. In mice, early appearance of

TGF-b suppresses the inflammatory response and is harmful,

while later appearance helps prevent severe malaria [83,94,95].

The present model represents the above features, time

constants, and parasite density thresholds for the innate inflam-

matory response as follows: a variable Yinnate representing pro-

inflammatory cytokines, such as TNF-a and IFN-c, is stimulated

by rupture of IRBCs and by the presence of live IRBCs expressing

variants for which there is no antibody response. The degree of

stimulation has a functional form that depends on a pyrogenic

threshold X50,innate, a common concept in intrahost models

[6,10,27]. Stimulation of the innate response is reduced as the level

of antibody to that variant, Yantibody,i, increases. Heterogeneity

observed in the strength of an individual’s NK-IFN-c response

[88]can be represented by varying the threshold for stimulation

and the efficacy of the response. With Xi the concentration of

IRBCs of variant i, the equations for the innate immune response

are

dYinnate

dt
~

1

tinnate

P
i Xi(1{Yantibody,i)P

i Xi(1{Yantibody,i)zX50,innate

An additional variable, Yfever, represents fever, which is a scalar

function of the level of pro-inflammatory cytokines Yinnate, scaled

to the appropriate temperature range in C.

Yfever~kfeverYinnate

Cytokines respond to stimulation by live cells and decay with a

time constant of tinnate = 12 hours, but are modeled as responding

immediately to the large-scale rupture of schizonts with a step-

function increase.

DYinnate~

P
XschizontP

XschizontzX50,innate

The innate inflammatory response gives way to an adaptive

antibody response, characterized by growth in antigen-specific

antibody production and concentrations [52,96,97]. In mice

without B-cells, acute infections of P. chaubaudi are controlled but

not cleared [83]. This shows that while the inflammatory response

is necessary for rapid control, the adaptive response is needed for

final clearance. In mouse models, increased levels of anti-

inflammatory cytokines are associated with parasite clearance by

antibodies [98]. As new antigenic variants are expressed, the

repertoire of effective B-cells expands and better protects the

individual against future infections [90,96].

The model includes antibody responses to single PfEMP-1

variants, including the time course of activation, rapid prolifera-

tion of antibody response during hyperimmunity, slow loss of

hyperimmunity, and residual immunological memory. Specific

antibody levels tend to rise within the first week after clinical

diagnosis [96], setting the time constant between 4–7 days.

Antibody response to different merozoite-associated proteins has

also been observed [44,99], and antibodies to gametes can

interrupt fertilization in the mosquito gut [72]. Human heteroge-

neity characterizes both innate and adaptive immune responses.

HIV-1 co-infection, for example, impairs an effective antibody

response to malaria [100]. The antibody response is separated into

variables for antibody production capacity Ycapacity,i and

antibody level Yantibody,i for each antigen.

In the model, if any antigen is present, there is growth in

Ycapacity,i towards a maximum value of 1 for response to that

antigen with a growth rate dependent on the concentration of the

antigen. Values of Ycapacity,i above 0.4 correspond to hyper-

Mechanistic Model of P. falciparum with Immunity

PLOS ONE | www.plosone.org 13 September 2012 | Volume 7 | Issue 9 | e44950



immunity, and Ycapacity,i then grows towards 1 with a time

constant of thyperimmunity = 3 days, regardless of antigen concen-

trations. This corresponds to the rapid (,10 hour doubling time)

proliferation of antibody-producing cells during a hyperimmune

response. Many models for malaria infection incorporate a

threshold for the antibody response [6,13,27], and the density of

each antigen modulates the growth in Ycapacity,i until hyper-

immunity is attained. A maximum growth rate of 0.1, representing

an initial growth rate of 4 days until hyperimmunity, is multiplied

by the antigenic factor

dYcapacity,i

dt
~

1

tcapacity

Xizkantibody minX50,antibody

XizX50,antibody

(1{Ycapacity,i),Ycapacity,iv0:4

dYcapacity,i

dt
~

1

thyperimmunity

(1{Ycapacity,i),Ycapacity,i§0:4

in which Xi is the density of parasites expressing that antigen, and

X50,antibody is analogous to the adaptive immune threshold in

other models, but here is the density at which growth in Ycapacity,i

is half its maximum. kantibodymin is the minimum growth rate at

low antigen concentration, occasionally relevant upon reinfection

in certain parameter regimes. This Ycapacity,i represents both the

helper T-cell and antibody-releasing B-cell repertoires specific to

that antigen. If Ycapacity,i .0.3, antibody is released in the

presence of antigen, and antibody levels Yantibody,i rapidly

approach Ycapacity,i with a time constant tabprod = 6 hours if Xi

.0.

Antibody levels are multiplied by a kill rate. The higher values

of antibody during hyperimmunity correspond to both higher

antibody densities and enhanced antibody affinity for antigen after

somatic hypermutation resulting in affinity maturation. The

resulting antibody levels during the initial infection resemble the

growth in specific antibody levels measured in clinical patients

[96].

In addition to antibodies to different PfEMP-1 major variants,

the model includes antibodies to minor epitopes on IRBC surfaces

[33]. In the present model, each IRBC has a major PfEMP-1

variant and 1 minor epitope variant. The number of minor

epitope variants available per clone is unknown, but several

options were explored, with results shown for 5 minor epitopes per

clone. Since the minor epitopes are less immunogenic, the growth

rate of this antibody response is reduced by a factor kminor-

mod = 0.5.

The merozoite antibody response is a single Ycapacity,MSP and

an antibody level Yantibody,MSP which gathers the responses to all

important merozoite proteins, such as MSP-1 and AMA-1.

Antibody responses have been measured for several merozoite

proteins [44,99,101], and as antibody levels increased, merozoite

invasion was inhibited in vitro by 50–75% [101]. A recent study

found protection associated with increasing levels of MSP-1

antibodies, but not MSP-2 [102]. The Ycapacity,i for merozoite

proteins is modeled differently than for other antigens, since the

merozoites are visible extremely briefly as they transit between

RBCs. Every two days when the schizonts rupture, Ycapacity,i

increases by a constant KMSP multiplied by the density sigmoid

from above, with the number of released merozoites as P.

DYMSP~KMSP

P
XschizontP

XschizontzX50,antibody

(1{YMSP)

This KMSP is unknown, and the effects of its variation are

explored. Once Ycapacity,i .0.4, hyperimmunity begins as with

dynamics as for the other antibodies.

Immunological memory is an important component of the

human immune system, but many questions remain about how it

operates against Plasmodium [51]. One study showed that counts of

memory B-cells were much lower for tested malaria antigens than

for tetanus, and some subjects had antibody but no detected

memory cells [103]. However, a report from Madagascar found

sustained defenses years after the interruption of most malaria

transmission [104].

The parameter Ymemory defines the strength of immunological

memory. In the absence of antigen, if Ycapacity,i . Ymemory,

Ycapacity,i decays towards Ymemory with a time constant tcapdecay

corresponding to loss of hyperimmunity approximately 120 days

after disappearance of antigen. Antibody levels Yantibody,i decay

towards zero with a time constant tabdecay of 20 days.

Immunological memory is modeled as Ycapacity,i staying at

Ymemory in the absence of antigen, which is closer to a return to

hyperimmunity than 0. The growth rate upon reinfection is as

before, but starting at Ycapacity,i = Ymemory and with suppressed

IRBC counts compared to primary infection. Once Ycapaci-

ty,i = 0.4, hyperimmunity returns with a rapid proliferation of

antigen-specific B-cells and T-cells. These different thresholds

represent fundamental details of the antibody response, such as the

shortened response time upon reinfection, the rapid growth in the

strength of the antibody response during hyperimmunity, and its

decay over intervals of several months. These threshold values are

fixed in the present model, but the growth rates can be varied to

change the effect. Future versions of the model may include a

gradual decay of Ycapacity,i from Ymemory towards 0 in the

absence of stimulation with a 2–10 year time constant.

Parasite-Immune System Interaction
This section describes the model component for the effects of

immune responses on different stages of the parasite’s life cycle.

The model incorporates an antibody response that limits the

success of merozoite invasion, an innate inflammatory response

that both assists in clearing asexual-stage parasites and limits

gametocyte success in the mosquito, and an antibody response to

PfEMP-1 and minor epitopes that clears asexual-stage IRBCs.

Antibodies to merozoite surface proteins have been found to

inhibit merozoite invasion [101] with invasion success reduced to

25–50% compared to controls, at high antibody levels for two

different strains. In the model, merozoite invasion is blocked by

the factor CmerozoiteYantibody,MSP, such that ZMS = (1 - Cmer-

ozoiteYantibody,MSP). The kill rate for IRBC’s due to the

inflammatory immune response is due to TNF-a and other

components of the inflammatory wave that can damage asexual

stages as mentioned earlier [36,105]. The present model groups all

these effects into the single inflammatory kill rate parameter,

Cinnate, and the resulting kill rate is set to be a sigmoidal function

of Yfever to limit clearance at low levels and saturate at high levels

of fever. The saturation in the effect of fever allows parasite growth

to outrace the limiting effect in certain parameter regimes.

Mechanistic Model of P. falciparum with Immunity
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Cinnate

Yfever

1zYfever

The model also includes clearance of IRBC’s mediated by the

adaptive antibody response to specific antigens. Knobless IRBCs

experience increased clearance by the spleen [106], and antibody

interference with adhesion mediated by surface proteins in the

knobs could increase IRBC clearance via this modality. Antibody-

MN interaction inhibits IRBC development and kills the parasite

[107]. Other possible mechanisms include antibody mediated

activation of innate immune effectors. These antibody-dependent

effects are included in the kill rate. Although due to separate

antibody populations, all responses to a specific antigen are

grouped into a single kill rate Cantibody in the model. In future

versions, these effects could be separated as the mechanisms

become better understood. The kill rates Cinnate and Cantibody

each include the collective effects of several mechanisms, and

thus, are not well-constrained by direct data. These two

parameters can be varied, and the observed effects on peak

parasite count and durations provide constraints on their possible

values when compared to malariatherapy data. The parameter

cminormod modulates Cantibody for minor epitopes, and variation

in this parameter from 0 (no effect) to 1 (same strength and effect

as antibodies to PfEMP-1) is explored. The probability of

destruction for a single IRBC of a given variant is then calculated,

with binomial distribution of the number of cleared IRBCs of that

variant

Pkill,i~1{ exp {Dt Cinnate

Yfever

1zYfever

z

��

Cantibody Yantibody,izYMinorepitope,icMinorMod

� ��

The present model supports a detailed implementation of

superinfection. An individual can maintain multiple infections, all

interacting with the same immune system. Identical antigens from

different infections are summed across infections for immune

stimulation, with the immune system responding to the total

specific antigen, regardless of its parent infection.

Summary of Model Equations
There is a 1-day time step for the interaction of an individual

with the vector population, and over a given night of vector biting,

an individual will receive B bites, each with a probability b of

success. The probability of adding a new infection that time step is

then

Pinf~1{e{bB

A random draw for that individual determines whether a new

infection on that time step will occur. If so, another infection is

added to that individual, and a new hepatocyte timer thep is

started and initialized at Thepatocyte = 7 days.

thep,0~Thepatocyte

For the disease dynamics within the individual, a 1-hour time

step Dt is used, and thep counts down to start of blood-stage

infection.

thep,nz1~thep,n{Dt

When thep#0, the liver schizonts rupture and the blood stage

begins. The antigenic repertoire for the blood stage is set up with

50 random antigens arranged in an array, each with one out of 5

minor epitopes. The asexual stage timer tasexual is initialized to

Tasexual = 48 hours.

tasexual~Tasexual

The Nlivermerozoites = 40000 merozoites from the liver create

the initial set of IRBC’s that make up the blood stage. These are

divided equally among the first five antigens in the array of 50.

For i = 1:5, Ni~Nlivermerozoites=5
While the asexual timer decreases towards zero, both inflam-

matory and antibody immune responses are stimulated and IRBCs

are cleared, with dynamics governed by the equations below. Note

that Xi is the concentration of IRBCs of a given antigen, so that

Xi = Ni/(number of microliters of blood).

tasexual,nz1~tasexual,n{Dt

dYinnate

dt
~

1

tinnate

P
i Xi(1{Yantibody,i)P

i Xi(1{Yantibody,i)zX50,innate

Yfever~kfeverYinnate

For i = 1 to 50, if Xi .0,

dYcapacity,i

dt
~

1

tcapacity

Xizkantibody minX50,antibody

XizX50,antibody

(1{Ycapacity,i),Ycapacity,iv0:4, PfEMP{1

dYcapacity,i

dt
~

kmin ormod

tcapacity

Xizkantibody minX50,antibody

XizX50,antibody

(1{Ycapacity,i),Ycapacity,iv0:4, minorepitopes

dYcapacity,i

dt
~

1

thyperimmunity

(1{Ycapacity,i),Ycapacity,i§0:4

dYantibody,i

dt
~

1

tabprod

Ycapacity,i{Yantibody,i

� �
,Ycapacity,iw0:3

Pkill,i~1{ exp {Dt Cinnate

Yfever

1zYfever

z

��
Cantibody Yantibody,izYMinorepitope,icMinorMod

� ��

Ni,nz1~Ni,n{Binomial Ni,n,Pkill,ið Þ,

the n and n+1 indicate successive time steps
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For i = 1 to 50, if Xi = 0,

dYcapacity,i

dt
~{

1

tcapdecay

Ycapacity,i{Ymemory

� �
,Ycapacity,iwYmemory

dYantibody,i

dt
~{

1

tabdecay

Yantibody,i

Once the timer tasexual reaches zero, a series of discrete steps

occur and these dynamics are not continuous like the above

equations. The schizonts rupture, there is additional transient

inflammatory stimulation, merozoite-specific immunity develops,

antigenic switching occurs, and immature gametocytes advance a

stage.

DYinnate~

P
XschizontP

XschizontzX50,innate

DYMSP~KMSP

P
XschizontP

XschizontzX50,antibody

(1{YMSP)

Calculate the number of IRBCs of antigen n switching to

express antigen n+i:

Nnzi,n~Poisson KantigenNn

� �
,1ƒiƒnantigenswitch

Calculate the number of IRBCs of antigen n created by

previous generation expressing antigen n:

N1
n~ 1{kgametocyte

� �
Nn{

Xnantigenswitch

i~1

Nnzi,n

 !

NIRBCmerozoitesZMS

For all n, i = 1 to nantigenswtich, add in the switching IRBCs.

N1
nziz~Nnzi,nNIRBCmerozoitesZMS

In which

ZMS~ 1{CmerozoiteYantibody,MSP

� �

Finally, gametocytes are produced and mature through stages,

Ngametocyte,i~Ngametocyte,i{1,i~5 : 1

Ngametocytes,0~
X

n
NnkgametocyteNIRBCmerozoitesZMS

and the asexual timer is reset for the next generation.

tasexual~Tasexual

A summary of the computational algorithm per time step is

provided in Supporting Information S1. Biological input param-

eters are listed in Table S1, and the model variables are found in

Table S2.

Supporting Information

Table S1 Biological input parameters of the model.

(DOC)

Table S2 Key model variables.

(DOCX)

Supporting Information S1 Summary of the computa-
tional algorithm per time step.

(DOC)
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