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Abstract

Background: HIV transmission among injecting and non-injecting drug users (IDU, NIDU) is a significant public health
problem. Continuing propagation in endemic settings and emerging regional outbreaks have indicated the need for
comprehensive and coordinated HIV prevention. We describe the development of a conceptual framework and calibration
of an agent-based model (ABM) to examine how combinations of interventions may reduce and potentially eliminate HIV
transmission among drug-using populations.

Methodology/Principal Findings: A multidisciplinary team of researchers from epidemiology, sociology, geography, and
mathematics developed a conceptual framework based on prior ethnographic and epidemiologic research. An ABM was
constructed and calibrated through an iterative design and verification process. In the model, ‘‘agents’’ represent IDU, NIDU,
and non-drug users who interact with each other and within risk networks, engaging in sexual and, for IDUs, injection-
related risk behavior over time. Agents also interact with simulated HIV prevention interventions (e.g., syringe exchange
programs, substance abuse treatment, HIV testing) and initiate antiretroviral treatment (ART) in a stochastic manner. The
model was constructed to represent the New York metropolitan statistical area (MSA) population, and calibrated by
comparing output trajectories for various outcomes (e.g., IDU/NIDU prevalence, HIV prevalence and incidence) against
previously validated MSA-level data. The model closely approximated HIV trajectories in IDU and NIDU observed in New
York City between 1992 and 2002, including a linear decrease in HIV prevalence among IDUs. Exploratory results are
consistent with empirical studies demonstrating that the effectiveness of a combination of interventions, including syringe
exchange expansion and ART provision, dramatically reduced HIV prevalence among IDUs during this time period.

Conclusions/Significance: Complex systems models of adaptive HIV transmission dynamics can be used to identify
potential collective benefits of hypothetical combination prevention interventions. Future work will seek to inform novel
strategies that may lead to more effective and equitable HIV prevention strategies for drug-using populations.
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Introduction

Although the global incidence of HIV infection has declined by

over 20% since its peak in 1997, the persistent large number of

new infections annually, estimated at 2.6 million in 2009 [1],

demonstrates that the need for effective HIV prevention strategies

remains urgent. A series of recently published efficacious

interventions [2,3,4] have renewed interest in placing preven-

tion-centered approaches at the center of global HIV elimination

strategies. However, as it is increasing likely that no single

biomedical intervention will be sufficient to control HIV/AIDS

and also that social and behavioral aspects of implementing such

biomedical interventions need to be considered [5,6], there is an

emerging consensus that combination HIV prevention (i.e.,

packages of evidence-based interventions tailored to specific

populations) provides the best opportunity to significantly reduce

HIV transmission at the population level [7,8,9]. In this paper, we

will adopt the term ‘‘highly active HIV prevention’’ to refer to the

additive (and potentially interactive) effect of combining treat-

ment-centered approaches, biomedical strategies, behavioral

interventions, and structural changes to suppress and eventually

eliminate HIV transmission [10].

Although the Joint United Nations Programme on HIV/AIDS

(UNAIDS) has formally adopted combination prevention as a key

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e44833



component in a new global HIV strategy and has recommended

that these programs be expanded immediately [11], epidemiologic

evidence to guide the implementation of ‘‘highly active’’ HIV

prevention continues to be scarce. Given that adverse effects may

arise from combining interventions that have been found to be

efficacious in individual randomized controlled trials or from the

inclusion of unproven interventions within combination pre-

vention packages [12], there is a need to investigate which sets

of programs produce maximal sustained benefit under limited

resource allocation scenarios [13,14].

In this paper we examine how complex systems approaches can

contribute to the evolving field of HIV epidemiology and

prevention. As an illustration of these techniques, we then describe

the construction and calibration of an agent-based model (ABM)

of HIV transmission within a population-based sexual and

injecting network. ABMs are computational models used to

simulate autonomous ‘‘agents’’ (i.e., individuals) interacting within

a shared environment. ABMs can and have been used to examine

how multi-level policies and programs shape population health

[15].

Although many different combinations of biomedical, behav-

ioral, policy, and structural interventions can be integrated into the

model and will be examined in future work, we will focus this

paper on four evidence-based approaches (i.e., needle and syringe

programs [NSPs], substance abuse treatment, voluntary counsel-

ing and HIV testing [VCT], provision of highly active antire-

troviral therapy [HAART]) used to prevent HIV transmission

among injection and non-injection drug users (IDU, NIDU). As

such, a brief overview of the epidemiology of drug use and HIV is

provided for readers. We conclude with a discussion of the benefits

and challenges of incorporating complex systems methods within

epidemiology and HIV prevention science.

Complex Systems Approaches in Epidemiology
The use of traditional epidemiologic studies to assess the

effectiveness of combination HIV prevention strategies is limited

by several factors, including methodological challenges, ethical

considerations, cost, and the scale necessary to observe intended

effects [16]. In order to identify both the independent and

synergistic effects of multiple interventions, very large studies using

complicated factorial designs are required [17]. For example, even

with only four interventions, 24 = 16 randomized blocks would be

required. Furthermore, traditional epidemiologic approaches,

including those relying on regression analyses, seek to identify

the independent risk factors for a specific health outcome, and are

thus often unable to account for the interdependent, non-linear,

and adaptive processes that occur as individuals interact with each

other and their environments [18]. Under these research

paradigms, important systems-level processes, including interactive

feedback loops among system components and across levels of

analysis, social learning in networks, and individual-level reciproc-

ity may go unrecognized [19]. In the absence of models that

account for these dynamics, interventions (including for example

programs that target one exposure or risk factor in the absence of

others) may inadvertently increase health disparities and many

even lead to outbreaks in vulnerable sub-populations [20].

In contrast, complex systems methods rely on computer

algorithms to model dynamic and evolving interactions among

individuals and their environments [21]. They permit the re-

searcher to study the impact of particular perturbations (including

hypothetical interventions) on population health in simulated

environments [22]. The methods can be used to integrate empiric

data from a large number of studies and contexts, which permits

the simulation of interventions within various population struc-

tures with greater efficiency than the replication of observational

studies and trials. Given these advantages, it is not surprising that

complex systems approaches have been used extensively to model

a wide variety of health behaviors and other social phenomena

[23,24,25]. Furthermore, calls to integrate complex systems

approaches within public health science are increasingly common

[22,26,27,28]. Although these methods are gaining traction in

epidemiology, their practical utility to address ‘‘real-world’’ public

health problems largely remains to be realized.

One type of complex systems method is agent-based modeling

(ABM). Although a complete discussion of ABM approaches is

beyond the scope of this paper and has been published elsewhere

[18], a brief overview of the method is provided. Unlike many

modeling approaches which seek to identify states of equilibria,

ABMs simulate (inter)-actions of heterogeneous, autonomous

actors (i.e., ‘‘agents’’) that may produce non-linear, adaptive,

and non-equilibrium dynamics [25]. The model simulates the

passage of time in discrete time steps. At each time step, agents

update their own internal states based on pre-programmed rules,

interactions with other agents, and feedback from their environ-

ment. Agents can possess static or varying attributes that influence

how behaviors are executed over time. Even simple sets of rules

and attributes can result in nonlinear, adaptive, or threshold

behavior patterns, which result in the emergence systems-level

dynamics [29]. Given that many health and social behaviors are

described by these types of processes, ABM have been recognized

as crucial for addressing complex public health issues [22,28]. Of

relevance to the work described in this paper, these techniques

have been used to understand how substance use is affected by

complex and interacting social and environmental factors

[15,30,31]. Although ABM has been used to investigate infectious

disease dynamics for some time [32,33,34], few studies have

employed these methods to elucidate evolving patterns of HIV

transmission, particularly within concurrent sexual and drug-using

networks.

Epidemiology of Substance Use and HIV
Injection drug use is a growing global health concern. Recent

estimates suggest that, globally, 16 million people inject drugs,

among whom approximately 3 million are HIV positive [35].

Injection drug use is a primary driver of HIV transmission in many

settings, including for example parts of Eastern Europe and

Central Asia [1].

In North America, interventions to reduce injection-related risk

behavior have led to significant declines in HIV incidence among

Table 1. Initial population distribution of the agent-based
model (row percentages).

Population
Group Male Female Total

MSM HM WSW HF

IDU 7.0% 63.0% 5.1% 24.9% 1.9%

NIDU 7.8% 57.2% 6.0% 29.0% 6.4%

NU 2.4% 45.3% 1.7% 50.6% 91.7%

Total 3.0% 47.0% 2.5% 47.5% 100.0%

Abbreviations: HF – heterosexual female; HM – heterosexual male; IDU –
injection drug user; MSM -men who have sex with men; NIDU – non-injection
drug user; NU – non-drug user; WSW – women who have sex with women.
Note: proportions estimated empirically from:
[68,69,71,72,73,74,75,76,77,78,79,80,107,163].
doi:10.1371/journal.pone.0044833.t001
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IDU populations [36,37]. Recently however, these reductions

have been offset by a continuing rise in HIV prevalence among

NIDU [38]. In some settings, including New York City, sexual risk

behavior and non-injection drug use have replaced injection-

related behaviors as the primary risk factors for HIV infection

among IDU, even in the presence of well-established HIV

prevention programs [39,40]. Novel methodologic approaches

are required to inform more effective interventions that address

evolving time- and place-specific risk factors operating at multiple

levels to produce and perpetuate drug-related harms.

Considerable research has demonstrated the effectiveness of

a wide array of interventions to decrease HIV transmission

among IDU and NIDU [41]. In 2009, the World Health

Organization (WHO), the United Nations Office on Drugs and

Crime (UNODC), and UNAIDS published a guide for

achieving universal access to a combination of evidence-based

HIV prevention services for drug users, including NSPs, VCT,

opioid substitution therapy (OST) and other forms of substance

abuse treatment, and, for HIV positive IDU/NIDU, access to

HAART [42]. However, evidence demonstrating the effective-

ness of these combination prevention approaches is scarce.

Table 2. Key parameter values for injection drug-using (IDU) agents

Parameter MSM HM HF WSW Sources

Baseline Prevalence (%)

HIV 55.0 42.0 39.0 53.0 _ENREF_14CVAR, [47,102]

AIDS 5.8{ CVAR

Mortality Rate (per 1,000 person-years)

HIV negative 15 [164,165]

HIV positive, not on HAART 100 [166]

HIV positive, on HAART 23 [63,167]

AIDS 200 [168,169]

Progression to AIDS (annual probability)

Not on HAART 0.167 [143,144]

On HAART and $90% adherent to therapy 0.067 [63]

On HAART and ,90% adherent to therapy See Table 5

Number of contacts (per time step) Poisson (l= 5) [88,89,90]

Sexual Behavior (annual probability)

Unprotected intercourse{ 0.75 0.75 0.75 0.75 [83,102,103,104]

Unprotected intercourse{ at t = j, given VCT= + at t , j* 0.65 0.45 0.45 0.45 [83,111,112,113]

Injecting Behavior (annual probability)

Consistent NSP use", given t ,1995, no treatment 0.65 [47,116]

Consistent NSP use ", given t ,1995, treatment 0.85 [66,170]

Consistent NSP use ", given t $1995, no treatment 0.80 [44]

Consistent NSP use ", given t $1995, treatment 0.90 [66,170]

Substance Abuse Treatment (annual probability)

Treatment initiation at t = j, given no NSP use at t = j 0.09 [53,118]

Treatment initiation at t = j, given NSP use at t = j 0.18 [53,55,56]

Discontinuation1 at t = j, given initiation at t , j 0.50 [53,119]

Voluntary HIV Testing (annual probability)

Access VCT at t = j, given no NSP use at t = j 0.25 [54]

Access VCT at t = j, given NSP use at t = j 0.45 [54]

HIV Treatment (annual probability)

HAART initiation, given t #1996 0.00 [171]

HAART initiation, given t .1996, no treatment 0.08 [65]

HAART initiation, given t .1996, treatment 0.14 [65,172]

Discontinuation at t= j, given initiation at t,j 0.45 [65,139,140,141]

Abbreviations: AIDS – acquired immune deficiency syndrome; HAART – highly active antiretroviral therapy; HIV – human immunodeficiency virus; HF – heterosexual
female; HM – heterosexual male; MSM – men who have sex with men; NSP – needle and syringe exchange program; VCT – voluntary counseling and HIV testing; WSW –
women who have sex with women.
Notes:
{AIDS prevalence within the entire IDU population;
{,100% correct condom use between agent dyads; * defined as accessing VCT at t , j and testing positive for HIV;
"synonymous with 100% sterile syringe use;
1agents who discontinue treatment at t = j can re-initiate treatment at some t . j with probability P=0.18.
doi:10.1371/journal.pone.0044833.t002
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Observational studies have suggested that the presence of

multiple HIV prevention interventions (e.g., NSPs and OST

combined with VCT) can reduce HIV prevalence among some

IDU populations to below 10% [43,44], although in severe

epidemics and among particularly disenfranchised sub-groups

(e.g., ethnic and sexual minority drug users), these reductions

may be more difficult to achieve. A recently published study

utilized a compartmental model to suggest that while the

provision of NSPs, OST and HAART may result in modest

reductions in HIV transmission among IDU, only high-

coverage, combination scenarios produce significant popula-

tion-level benefit [45]. However, it is not clear whether

synergistic effects – over and above the additive benefits of

implementing multiple interventions – are observed when

prevention measures are combined, collocated, or offered in

tandem. Furthermore, the precise mechanisms through which

combined approaches act to influence systems-level HIV

dynamics largely have yet to be elucidated. Accordingly, using

complex systems modeling, we sought to assess the hypothetical

impact of various combinations of interventions as a means of

informing more effective HIV prevention efforts for IDU and

NIDU.

Methods

An Agent-Based HIV Transmission Network Model
We describe an ABM that represents HIV transmission and

other transition states (e.g., injection drug use initiation, pro-

gression to AIDS) within an artificial society of three categories of

agents: IDUs, NIDUs, and non-drug users (NUs). To be consistent

with a variety of New York City-based studies of drug users

[46,47,48,49,50], we defined IDUs as agents who are actively

injecting drugs (i.e., injected an illicit drug in the past year), and

NIDUs as agents who are actively using hard drugs (e.g., crack,

heroin, cocaine, methamphetamine) by non-injection routes of

consumption (e.g., snorting, smoking). Agents are also stratified by

two additional characteristics: sex (female, male), and sexual

behavior (men who have sex with men [MSM], heterosexual men

[HM], heterosexual women [HW], and women who have sex with

women [WSW]). Note that MSM agents include those who

engage exclusively in sex with other men and those who have sex

with men and women (and analogously for WSW). At each

annualized time step, agents interact with other agents and with

simulated HIV prevention interventions. A time scale of ten years

in annual increments was chosen, as these estimates can be

calibrated against empirical data and surveillance statistics.

We implemented our model using an open-source program-

ming language known as PythonTM (version 2.7.2). The simulation

Table 3. Key parameter values and sources for non-injection drug-using (NIDU) agents.

Parameter MSM HM HF WSW Sources

Baseline Prevalence (%)

HIV 18.0 4.8 4.8 4.8 CVAR, [40,79,81,95]

AIDS 2.0{ 0.2{ CVAR, [173]

Mortality Rate (per 1,000 person-years)

HIV negative 7 [165]

HIV positive, not on HAART 25 [173]

HIV positive, on HAART 18 [173]

AIDS 80 [173]

Progression to AIDS (annual probability)

Not on HAART 0.100 [143,144]

On HAART and $90% adherent to therapy 0.010 [63]

On HAART and ,90% adherent to therapy See Table 5

Number of contacts (per time step) Poisson (l= 3) [91,92,93]

Sexual Behavior (annual probability)

Unprotected intercourse{ 0.40 0.70 0.70 0.75 [78,80,106,107]

Unprotected intercourse{ at t = j, given VCT= + at t , j* 0.40 0.35 0.35 0.45 [60,61,115]

Voluntary HIV Testing (annual probability)

Access VCT 0.25 0.06 [82,174]

HIV Treatment (annual probability)

HAART initiation, given t #1996 0.00 [171]

HAART initiation, given t .1996 0.14 [175]

Discontinuation at t= j, given initiation at t,j 0.35 [141,142]

Abbreviations: AIDS – acquired immune deficiency syndrome; HAART – highly active antiretroviral therapy; HIV – human immunodeficiency virus; HF – heterosexual
female; HM – heterosexual male; MSM – men who have sex with men; NSP – needle and syringe exchange program; VCT – voluntary counseling and HIV testing; WSW –
women who have sex with women.
Notes:
{value represents the prevalence of AIDS within the entire population of NIDU;
{defined as ,100% correct condom use between agent dyads;
*defined as accessing VCT at t , j and testing positive for HIV.
doi:10.1371/journal.pone.0044833.t003

Agent-Based Models and Combination HIV Prevention
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Table 4. Key parameter values and sources for agents who do not use drugs (NU).

Parameter MSM HM HF WSW Sources

Baseline Prevalence (%)

HIV 8.0 1.5 1.2 1.2 [69,81,176]

AIDS 2.0{ 0.03{ CVAR

Mortality Rate (per 1,000 person-years)

HIV negative 5 [177]

HIV positive, not on HAART 40 [178]

HIV positive, on HAART 10 [62,63]

AIDS 80 [144]

Progression to AIDS (annual probability)

Not on HAART 0.100 [143,144]

On HAART and $90% adherent to therapy 0.010 [63]

On HAART and ,90% adherent to therapy See Table 5

Number of Contacts (per time step) Poisson (l= 1.5, 1.0)1 [73,82,97,98,99]

Sexual Behavior (annual probability)

Unprotected intercourse{ 0.40 0.70 0.70 0.75 [101,108,109,110]

Unprotected intercourse{ at t = j, given VCT= + at t , j* 0.40 0.35 0.35 0.45 [60,61,115]

Voluntary HIV Testing (annual probability)

Access VCT 0.25 0.06 [82,174]

HIV Treatment (annual probability)

HAART initiation, given t #1996 0.00 [171]

HAART initiation, given t .1996 0.14 [179]

Discontinuation at t= j, given initiation at t,j 0.35 [141,142]

Abbreviations: AIDS – acquired immune deficiency syndrome; HAART – highly active antiretroviral therapy; HIV – human immunodeficiency virus;
HF – heterosexual female; HM – heterosexual male; MSM – men who have sex with men; VCT – voluntary counseling and HIV testing; WSW – women who have sex with
women.
Notes:
{value represents the prevalence of AIDS within the entire population of NU;
{defined as ,100% correct condom use between agent dyads;
*defined as accessing VCT at t , j and testing positive for HIV;
1MSM and WSW partners sampled from a Poisson distribution with mean 1.5, HM and HF are sampled from a Poisson distribution with mean 1.0.
doi:10.1371/journal.pone.0044833.t004

Table 5. Relationship between adherence to HAART, the per-partnership annualized probability of HIV transmission between
serodiscordant agents, and progression to AIDS.

Adherence – A (%)
Probability of
achieving A Annualized per-partnership probability of HIV transmission

Annual Probability of
Progressing to AIDS

Annual Probability
of Progressing to
AIDS, if IDU

Syringe sharing

Unprotected
sex between
men

Unprotected
heterosexual
sex

Not on HAART N/A 0.0340 0.0489 0.0100 0.100 0.167

0–29 0.1 0.0340 0.0489 0.0100 0.100 0.167

30–49 0.1 0.0272 0.0391 0.0080 0.082 0.131

50–69 0.1 0.0136 0.0196 0.0040 0.064 0.106

70–89 0.1 0.0068 0.0098 0.0020 0.046 0.083

$90 0.6 0.0005 0.0008 0.0002 0.010 0.067

Note: per-partnership transmission values derived from a series of Bernoulli distributions, assuming 10 unprotected sexual acts and 5 syringe sharing events (‘‘trials’’) per
partnership [97,128,129], and per-event transmission probabilities of 0.007, 0.005, and 0.001 for syringe sharing, unprotected sex between men, and unprotected
heterosexual sex, respectively [123,124,125,126,127]. We also assume that the relationship between adherence, viral load, and per-event probability of HIV transmission
is linear [132,133]. The relationship between probability of AIDS progression and adherence is also assumed to be linear [63,143,144,145]. Values shown above are
multiplied by a factor of four during the first time step following seroconversion to account for increased probability of HIV transmission during early stage infection
[130,131].
doi:10.1371/journal.pone.0044833.t005
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consists of an arbitrary population of 100,000 agents, with new

agents replacing those who exit the model in a stochastic manner.

To initialize the transmission model, agents are constructed and

placed in a network space, represented as nodes and links. HIV

transmission between serodiscordant agents can occur through

unsafe sex, or, if both are IDU, through syringe sharing. The

probability of engagement in risk behavior and the conditional

likelihood that HIV transmission occurs varies by sex, sexual

orientation, and drug use status. The probability of HIV

transmission per agent pairing (i.e., across linked nodes) is also

dependent on whether agents are engaged in one or more

interventions within the model environment. We have focused our

initial modeling efforts on four programs (i.e., NSP, substance

abuse treatment, VCT, and HAART) which are described by the

WHO/UNAIDS/UNODC as ‘‘core interventions’’ within a com-

prehensive package of HIV-related services for drug users [42].

These interventions have the strongest body of scientific evidence

to support their effectiveness [51], and thus constitute the

minimally recommended set of interventions to ensure sufficient

levels of HIV prevention, treatment and care for IDU populations.

Specifically, probability functions stochastically assign each agent

in a given time period to: seek substance abuse treatment (a

general function that represents all forms of treatment, including

OST); if HIV positive initiate HAART, which itself is dependent

on accessing VCT; and if an IDU, obtain sterile syringes from

NSPs. We hypothesize that the simulated interventions will

decrease HIV prevalence, HIV incidence, and AIDS incidence

in the agent population through the following pathways of action:

1. Utilization of NSPs will reduce HIV transmission through the

provision of sterile injecting equipment [52]. NSP use will also

result in an increased uptake of other HIV prevention services,

namely substance abuse treatment [53,54,55,56].

2. HIV-infected agents who access VCT can initiate HAART.

Studies have demonstrated that early initiation of HAART can

effectively eliminate HIV transmission between serodiscordant

partners by suppressing viral load [4,57,58,59]. HIV positive

agents who initiate HAART will also be less likely to engage in

sexual risk behavior and are less likely to progress to AIDS

[60,61,62,63].

3. Drug-using agents can enroll in substance abuse treatment,

which increases the probability of initiating HAART and

reduces engagement in syringe sharing [64,65,66].

In order for ABM simulation systems to produce reasonable

values for unobserved variables (i.e., distributions of risk behaviors

among subgroups of users), model parameterization and calibra-

tion should be based whenever possible on empiric data [67]. In

addition to previously published estimates, this model has been

calibrated against data collected as part of a study known as the

Community Vulnerability and Responses to Drug User-Related

HIV/AIDS (CVAR). As described previously [68,69,70], robust

methods were used to estimate annual IDU prevalence, HIV

prevalence, and AIDS incidence between 1992 and 2002 within

the 96 largest metropolitan statistical areas (MSAs) in the United

States. Although one objective of future modeling work is to

replicate historical HIV prevalence and predict HIV dynamics in

any given MSA, the model presented here has been parameterized

and calibrated using HIV prevalence estimates for the New York

MSA (population 11.7 million in 2010).

Network Structure: Modeling Risk
At model initialization, initial conditions are set such that the

agent population represents a population-based sex and drug-

using network of individuals living in the New York MSA in 1992.

When the model is initialized, sexual orientation and drug use

status are attributed randomly to agents, such that 6.0% of male

agents are MSM [71,72], and 5.0% of female agents are WSW

[73]. We consider 1.9% of the total 1992 population to be IDUs,

70% of whom are male [68,69], while 6.4% of the initial

Figure 1. Conceptual framework of the HIV transmission agent-based model. Arrow represents causal effects between two phenomena in
the model. For example, NSP use increases an agent’s probability of HIV testing, which is turn can result in both the knowledge of an HIV positive
status and initiation of antiretroviral therapy. Green boxes represent agent characteristics that influence individual agent behavior, denoted in blue.
Purple boxes represent interventions that influence these behaviors. Red boxes represent model output.
doi:10.1371/journal.pone.0044833.g001
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population is an NIDU [74], 60% of whom are male [75].

Additionally, MSM and WSW are overrepresented among drug-

using agents [76,77,78,79,80]. Conditional distributions of agent

characteristics are shown in Table 1.

At model initialization and at each time step thereafter,

a network is constructed such that each index agent interacts

(i.e., has sex or injects with) k others in the agent population, where

k is greater than or equal to zero. Agents are only connected to

other agents with whom sexual- or injecting-related risk behavior

can occur (i.e., we model a risk network as opposed to a social

network). For example, two heterosexual male NUs cannot be

connected to each other, whereas two heterosexual male IDUs can

be linked since syringe sharing between the pair can occur. For

non-IDU MSM agents, we incorporate assortative mixing (i.e.,

favoring links between nodes with similar characteristics) such that

90% interact exclusively with other MSM [81,82], while the

remaining 10% are connected randomly to other agents with

whom they can have sex (i.e., other MSM, WSW, and

heterosexual females). Given studies suggesting that a high pro-

portion of IDU-MSM engage in sexual activity with women

[83,84,85], we assume only 50% of this group interacts exclusively

with other MSM. For WSW agents, 50% are sexually connected

to WSW exclusively [73]; the remaining 50% are assigned random

agents with whom they can have sex (i.e., other WSW, MSM, and

heterosexual males). The value of k for each agent varies per time

step, and is specified by a random variable sampled from

a probability distribution function for the following five categories

of agents: IDU, NIDU, NU MSM, NU WSW, and the general

population (i.e., non-IDU, non-NIDU, non-MSM, non-WSW

agents). Although alternative degree distributions (e.g., negative

binomial, discrete Pareto) can be implemented and will be

explored in future research, we have defined k as a random

variable sampled from a series of Poisson distribution functions.

This distribution assumes partners are acquired at a fixed

homogeneous rate (l) over time [86]. Although real-world social

and sexual networks are often highly skewed and can deviate

substantially from the Poisson model, the node degree distribution

of the widely used Erdős-Rényi random network follows a Poisson

distribution and thus will be used as an approximation [87]. For

IDU, we assume a mean (l) of five annual injecting and/or sexual

contacts [88,89,90]. For links between IDU through which both

sexual and injecting behavior can occur, we define a random

probability of engaging in sex only at 0.20, a probability of

injecting only at 0.60, and a probability of doing both at 0.20

[88,89,90]. We incorporate assortative mixing for IDU, such that,

at any given time step, IDUs are four-fold more likely to establish

a connection with another IDU compared to other agent types

[88,89,90]. For agents who are NIDU, we let l= 3 [91,92,93]. We

also incorporate assortative mixing for NIDU, such that each

NIDU agent has a 0.12 probability of being connected to at least

one IDU per time step [94,95]. Additionally, each NIDU has

a 0.50 probability of being connected to at least one other NIDU

Figure 2. Risk network structure at model initialization of a representative subsample of 1000 agents, stratified by drug use status
(IDUs, NIDUs, and NUs are represented by red, blue, and green nodes, respectively). Links indicate sexual activity and/or (if a pair of IDU)
injecting event(s) between two agents. In the figures shown above, the average node degree is 1.198.
doi:10.1371/journal.pone.0044833.g002
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during each time step [96]. These attachment probabilities (and

those governing mixing for MSM and WSW) are applied at each

time step such that the assortative mixing patterns specified at

model initiation are retained. For non drug-using MSM and WSW

agents, we assume a Poisson distribution with l= 1.5 [73,82,97].

For all other agents, the number of contacts per time step is

sampled from a Poisson distribution with a mean (l) of 1.0, which

corresponds to empirically observed distributions of sexual

partnerships in the general US population [98,99].

We note that randomly re-assigning contact values (k) at each

time step would overestimate sexual and injecting partnership

turnover and underestimate partnership duration. Therefore, we

incorporate a counting process, whereby agents are added or

removed from index agent i’s network according to the random

number drawn at each time step. For example, assume k= 7 for

Figure 3. HIV prevalence among IDU (panel A) and NIDU (panel B) obtained from a Monte Carlo simulation of the agent-based
model. Black lines indicate empirical trajectories [70]. Error bars represent two standard deviations of the bootstrap estimates; CVAR data for HIV
prevalence among NIDU is not available.
doi:10.1371/journal.pone.0044833.g003
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agent i at t= 0. If the random variable sampled from the Poisson

distribution at t= 1 produces a value of k= 9, agent i adds two new

agents to the seven she/he is already connected to. If at t= 2 the

random variable produces k= 5, agent i loses 4 links from its

network, chosen stochastically. The simulation proceeds sequen-

tially through the list of agents such that the population’s degree

distribution is updated in an iterative manner. For example, if

agent i loses agent j from its network, and agent j’s degree

Figure 4. HIV incidence among IDU obtained from a Monte Carlo simulation of the agent-based model. Data shown in black represent
empirically observed estimates HIV incidence among IDU in New York City [36]. Error bars represent two standard deviations of the bootstrapped
estimates.
doi:10.1371/journal.pone.0044833.g004

Figure 5. HIV prevalence among MSM agents obtained from a Monte Carlo simulation of the agent-based model, stratified by drug
user status. Error bars represent two standard deviations of the bootstrap estimates. Abbreviations: MSM=men who have sex with men; NU=non-
drug user; NIDU=non-injection drug user; IDU= injection drug user.
doi:10.1371/journal.pone.0044833.g005
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distribution is specified to remain constant at that time step, a new

link will be formed between j and a third agent k, who is chosen

from the remaining agents who have not yet been updated at that

time step. This algorithm produces estimates for partnership

duration and turnover that are similar to those observed in

a network study of IDU in Bushwick, Brooklyn [47], a population-

based study of MSM in New York City [82], and other nationally

representative sexual behavior studies [73,98,100,101].

Agent Risk Behavior
Agents engage in two types of HIV risk behavior: unprotected

intercourse, and, if both agents are IDUs, syringe sharing.

Unprotected intercourse is defined as the annual probability of

less than 100% correct and consistent condom use between two

agents. The probability that two agents engage in unprotected

intercourse varies by drug use status and sex/sexual orientation,

the values of which are shown in Tables 2, 3, 4. These values have

been parameterized by a nationally representative survey of sexual

behavior among US adults [101], and population-specific cohort

studies for IDU, NIDU, WSW, and MSM

[78,80,83,102,103,104,105,106,107,108,109,110]. Since studies

have shown that persons who are aware of their HIV positive

status are less likely to engage in sexual risk behavior

[60,111,112,113], we assume the probability that a pair of agents

engages in sexual risk will be 50% lower if one or both has tested

positive (i.e., accesses VCT). While evidence suggesting risk

behavior change following HIV diagnosis among MSM is mixed

and evolving [114], several reviews have suggested that testing

positive has a negligible impact on sexual risk behavior in this

population [61,115]. Therefore, we assume that for MSM, the

probability of engaging in sexual risk behavior is not dependent on

VCT.

IDU agents practice sexual risk behavior and can also share

used syringes with other IDUs. Several studies of New York City

IDU have shown that the annual probability of consistent NSP use

(i.e., no syringe sharing) among IDUs in 1992–1994 was

approximately 0.65 [47,116]. Due to an expansion of NSPs and

other policy and programmatic changes in the mid-1990’s the

probability of NSP use in later years increased to 0.80 [44]. To

match these two time periods [44], we model a step function such

that P(NSP use)t= 1992–1994 = 0.65 and P(NSP use)t$1995 = 0.80.

Agents who are IDU can also enter substance abuse treatment.

We note that NIDU do not interact with substance abuse

treatment, an assumption that will be relaxed in future iterations

of the model. At model initialization, we stochastically assign 9%

of IDUs to be in substance abuse treatment [117]. Based on

previously published estimates, we set the annual probability of

entering substance abuse treatment for IDU to be 0.09 [53,118].

Once an IDU enters treatment during time step t, the probability

of remaining in treatment at t+1 is 0.5 [53,119]. Once a user

relapses, the probability of (re)-entering treatment doubles for all

future time points, based on literature demonstrating that prior

treatment exposure is a strong predictor of re-entering treatment

[53,118,120]. A recently published Cochrane review has demon-

strated that in-treatment IDUs are approximately 50% less likely

to share syringes than out-of-treatment IDUs [66]. Therefore, in

our model, we will assume that enrollment in substance abuse

treatment increases the likelihood of NSP use (i.e., decreases the

probability that a pair of IDU share syringes), such that: P(NSP

uset |treatmentt )t= 1992–1994 = 0.85 and P(NSP uset |treat-

mentt)t$1995 = 0.90. We assume no change in sexual behavior

while IDUs are in treatment [66,121]. We also assume that the

networks of IDUs in treatment are the same as IDUs out of

treatment. Finally, given studies demonstrating that consistent

NSP utilization doubles the likelihood of accessing drug treatment

[53,55,56,122], we assume the probability of entering treatment

during time t given NSP use at time t is twice the value for IDUs

who do not use an NSP. In this manner, the likelihood of

engagement in either or both of these interventions is explicitly

linked and interdependent.

Agents access VCT with probabilities shown in Tables 2, 3, 4.

Note that for an IDU who utilizes an NSP at time t, the probability

of VCT at time t increases by a factor of 1.25 [54]. An agent who

tests HIV positive after 1996 can initiate HAART. The likelihood

of initiating therapy varies by drug use status; for IDU, being

enrolled in substance abuse treatment increases the probability of

commencing HAART [65].

HIV Transmission and Progression
The probability that an HIV negative agent acquires infection

from a serodiscordant partner is derived from empirical estimates

of per-act HIV transmission: 0.007 for syringe sharing [123],

0.005 for unprotected intercourse between men [124,125,126],

and 0.001 for unprotected heterosexual intercourse [125,127]. To

obtain the per-partner probability of HIV transmission between

serodiscordant agents, we model a series of Bernoulli distributions,

ppartner = 1– (1– pact)
n, where ppartner is the annualized per partnership

risk of HIV transmission, pact is the per act ‘‘transmission event’’

probability described above, and n is the number of ‘‘trials’’ per

partnership per time step. We assume that, if two agents practice

a risk behavior during a time step, the pair engages in a total of 10

unprotected sexual acts (‘‘trials’’) and/or, if IDUs, 5 syringe

sharing events per annum [97,128,129]. The resulting annualized

per partnership risks of HIV transmission are shown in Table 5. In

order to accommodate increased transmission risk during early

stage HIV infection and to be consistent with studies of per-coital

rates of HIV transmission by stage of infection [130,131], we

multiplied these probabilities by a factor of four during the first

time step following seroconversion.

In order to examine the potential influence of HAART on

disease acquisition at the individual and population level, we

model the relationship between adherence, viral load, and per-

event HIV transmission. A landmark study by Bangsberg et al

demonstrated that the relationship between adherence and

log10(viral load) is approximately linear and highly correlated

(r = 0.8) [132]. Furthermore, an important study by Quinn and

colleagues and a recently published meta-analysis allow us to

model the relationship between viral load and probability of HIV

transmission between serodiscordant partners [133,134]_EN-

REF_80. Once an agent initiates HAART, we stochastically

assign an adherence value that we assume does not change over

the course of therapy. Higher values of adherence reduce the per-

event probability of transmission (and thus the per-partner

transmission probability) as shown in Table 5. Based on prior

literature and a systematic review [135,136,137,138], we assume

60% of agents achieve $90% adherence upon initiating HAART

(all other adherence values are assumed to be equally likely).

Although some studies have shown that IDU tend to be less

adherent than non-IDU [135,137], a recent meta-analysis

suggested that this may not be the case [138]. Therefore, we

assume no relationship between drug use and adherence.

Prospective cohort studies have shown that approximately 45%

of IDU who initiate HAART discontinue therapy after 1 year

[65,139,140,141]. In contrast, approximately 35% of NIDU and

NU who initiate HAART discontinue therapy after 1 year

[141,142]; therefore, we assume P(HAART discontinuation|

IDU, NIDU) = 0.45 and P(HAART discontinuation| NU,
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NIDU) = 0.35. Agents who discontinue therapy during time t = i

can re-initiate therapy at any time t . i.

HIV positive agents progress to AIDS in a stochastic manner.

For HIV positive agents who are not on HAART, the annual

probability of AIDS progression is 0.10 [143,144], while those on

HAART with $90% adherence progress to AIDS at an annual

probability equal to 0.01 [63]. We also model the relationship

between ,90% adherence on the probability of AIDS pro-

gression; empiric values are shown in Table 5 and derived from

previously published data [145]. As shown in Table 5, IDU have

an increased likelihood of progressing to AIDS [144].

Rates of Drug Use Transitions and Mortality
At each time step, an NU who interacts with an NIDU can

transition to being an NIDU (and vice versa), and an NIDU who

meets an IDU can transition to being an IDU. We assume the

probability that an NU transitions to becoming an NIDU (and vice

versa) is 0.001 per time step. If an NIDU has contact with an IDU

during time t, the probability that the agent will transition to an

injecting state is 0.018. These values were estimated inductively

from the calibration procedure (see below) that sought to

reproduce the observed empirical prevalence of drug use (from

CVAR data) over the lifetime of the model. In addition to

transitions in drug use that are dependent on social contact, IDU

and NIDU have a 0.017 probability of spontaneous drug use

cessation per time step [146]. Once IDU cease injecting, they take

on the behaviors and networks of NIDUs, and when NIDUs cease

drug use, they take on the properties of NUs.

At each time step, agents exit the model according to

a probability that is dependent upon three factors: HIV status,

drug use status, and HIV treatment status. These probabilities are

derived population-based mortality studies and other relevant

prospective cohorts and are shown in Tables 2, 3, 4.

Model Calibration
To calibrate the ABM, we used an iterative indirect approach

that has been described in detail previously [147]. Briefly, we first

identified which real-world phenomena we were interested in

reproducing (i.e., drug use prevalence, HIV prevalence/in-

cidence), and subsequently developed a conceptual framework to

guide the selection of processes and behaviors that would be

modeled in the agent-based environment (see Figure 1). As

a second step, we sought to construct a model that reflected known

empirical and experimental evidence about these behaviors.

As a third step, we calibrated the model through an iterative

process by which model output was compared to CVAR data and

other empirical estimates. Model refinement was conducted by

comparing model output with these datasets, adjusting key

parameters (e.g., probability of sexual and injection risk behavior,

interaction with various interventions) to minimize differences, and

running a revised set of simulations. The central tenet of this

approach is that the artificial generation of patterns in modeled

output that reflects empirically observed phenomena helps to

affirm (but does not necessarily guarantee) the validity of the ABM,

and has been used successfully in a number of recent studies

[148,149]. This process permitted the identification of parameter

spaces and network structures that did not adequately reproduce

the empirical data; for example, network structures without

assortative mixing significantly underestimated HIV prevalence

and incidence in some subpopulations (data not shown). We

continued refining the model parameters and initial conditions

until the output from simulations qualitatively matched the

empirical estimates.

As a final step, we employed Monte Carlo techniques to

examine the degree of variation in model outputs arising from the

many processes and behaviors that are stochastic. A simulation of

100,000 agents over 11 time steps was repeated 1,000 times. To

run the simulation, we used a Beowulf computing cluster

consisting of 6 compute nodes and 1 head node, each with two

quad-core IntelTM CPUs and between 8 and 24 GB of RAM. In

the figures below, we show the mean and two standard deviations

for each estimate from the sampled distributions.

Results

The Risk Network
A representative network structure of a random subsample of

1,000 agents at model initialization is shown in Figure 2. The

findings are qualitatively similar to empirical sexual and injecting

network studies in New York City and Colorado Springs [85,150].

Namely, the ABM risk network consists of a very large central

‘‘core’’ component, with a cluster of IDU at its center.

Furthermore, we observed both cyclic (multiple pathways between

network members) and dendritic (linear chains of connections

between nodes) microstructures, which are common character-

istics of sexual and drug-injecting networks [151]. Finally, we note

the presence of network members who appear to act as ‘‘bridges’’

between smaller components and the central core. Although

beyond the scope of this paper, a formal network analysis will be

conducted to confirm quantitatively whether the modeled network

accurately reflects real-world sexual and injecting network

topologies.

HIV Trajectories among Injecting and Non-injecting Drug
Users

The model generated injecting and non-injecting drug user

prevalence approximately similar to that reported by CVAR [68],

including a steady decline in the proportion of agents who are

IDU (data not shown). In figures 3, 4 and 5, we show the model

predictions for HIV prevalence and incidence among key sub-

populations of interest, including for example an approximately

linear decrease in HIV prevalence among IDU observed between

1992 and 2002 [70]. The estimated prevalence of HIV among

NIDU (i.e., 7% at 2002) is consistent with a previously published

estimate [95], but lower than one other study that found an HIV

prevalence of 12% among never injectors [38]. Although HIV

incidence data were not estimated by CVAR, the ABM generated

HIV incidence trajectories that are similar to previously published

estimates (Figure 4) [36]. Finally, the model produced estimates of

AIDS incidence that are consistent with unpublished CVAR data

(not shown).

HIV Trajectories among MSM
In addition to modeling HIV prevalence and incidence among

IDU/NIDU, the population-based nature of the ABM also

permitted an examination of HIV trajectories in other subgroups,

including MSM. In Figure 5, we demonstrate that trends in HIV

prevalence among MSM vary substantially by drug use status.

While HIV prevalence among MSM-IDU declines over the

lifetime of the model, infection in MSM-NIDU and MSM-NU

increases significantly. These findings are broadly consistent with

findings from the New York site of the CDC National HIV

Behavioral Surveillance system and other studies, demonstrating

declining HIV prevalence among MSM IDU between 1990 and

1999 [102], and continuing propagation among NIDU and NU

MSM over the past two decades [152,153]. For example, HIV

prevalence in a probability sample of New York City NIDU and
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NU MSM in 1997 was 12 and 24 percent, respectively [81], which

are similar to those generated by the ABM (i.e., 14 and 27

percent).

Discussion

Through the development and calibration of an agent-based

model, we were able to closely approximate trends in the HIV

epidemic observed historically in New York City. In contrast to

deterministic compartmental models such as SIR models (see for

example [45,154]), our model allows for the monitoring of

individual agent behavior and HIV disease progression among

infected persons. Additionally, the agent-based model allows for

greater heterogeneity in the simulated population (e.g., gender,

sexual orientation, drug use status, HIV disease status) than most

existing network models, including for example several exponen-

tial random graph network models of HIV transmission [155,156].

Finally, the ABM allows for an examination of how interdepen-

dence and feedback between simulated sets of prevention

interventions influence population-level HIV transmission dynam-

ics over time. Although future work is required to confirm these

exploratory results, explicit specification of non-independent

agent-intervention interactions reproduces estimates that approx-

imate empirically observed phenomena.

Although combination HIV prevention has garnered much

recent attention and will likely be a central component of

successful worldwide HIV strategies over the coming decade

[8,13,14], several authors have noted the absence of data to inform

how best to combine available evidence-based interventions and

how to optimize their effectiveness [45,157]. We have demon-

strated the capacity for complex systems approaches to overcome

many of the methodologic challenges inherent in observational

studies (e.g., cost, difficulty capturing non-linear adaptive dynam-

ics), and the potential for these methods to model ‘‘real-world’’

policy scenarios. In future work, we will use the calibrated ABM

described herein to formally model the hypothesis that interven-

tions operating in a coordinated and comprehensive manner will

substantially reduce (and potentially eliminate) HIV transmission

at the population level.

In addition to informing future studies that seek to investigate

combination HIV prevention approaches, these results also

illustrate the utility and relevance of complex systems approaches

within social epidemiology and HIV prevention science. Although

agent-based models are increasingly common in the field

[31,149,158], the methods are not without challenges and

skepticism [18,159]. For this reason, a key objective of this paper

was to provide readers with a detailed protocol for model

development and calibration that can be duplicated and improved

upon. Although standard protocols for reporting complex systems

methods have been published in other fields including ecology

[160], acceptable standards and conventions for reporting the

results of epidemiologic ABMs require further development and

implementation.

The construction and calibration of this ABM was not absent of

challenges, and the study has a number of important limitations

that bear mentioning. First, the replication of historical patterns

does not necessarily imply that model assumptions and processes

have been correctly specified [149]. To further support model

validity, findings derived from ABM simulations should be robust

to changes in critical assumptions regarding network topology and

agent behavior, parameter values, and initial conditions [161].

This will be the primary focus of future work. Second, although we

have based model parameters on existing data wherever possible,

for some features (e.g., drug use transitions) empirical data were

not available. In order to realize the full potential of the complex

systems methods, model development should proceed in tandem

with empirical data collection, such that the two scientific

processes inform each other. Third, ABM behavior can be heavily

dependent on system size [161]. Although we conducted

simulations over a range of model sizes and did not identify

effects of system size on resulting behaviors, we cannot preclude

the possibility that a relationship between model size and system

behavior exists. Fourth, although we chose a relatively coarse

timescale (i.e., annual time steps) to reduce computational resource

requirements and to model HIV trajectories over a long time

period (e.g., 11 years for model calibration), the model likely

underestimates the effect of short-term behavioral dynamics,

including for example partner concurrency. A time domain of

finer resolution might have allowed for the modeling of these

short-term effects that are currently not considered and will be the

focus of future work.

We conclude by emphasizing that the model has substantial

room for continued refinement and validation. For example, the

network topology is relatively basic, and important aspects of real-

world networks (e.g., social norms and the network and individual

properties that shape who forms a relationship with whom) were

not considered. For example, while some empirical research

suggests that IDUs enrolled in substance abuse treatment have

fewer drug-using network members and are more likely be to

located at the periphery of the network [47,162], we assumed in-

treatment IDUs have the same network characteristics as IDUs

out-of-treatment. Furthermore, although we have explicitly in-

corporated sex and sexual orientation in the model, other

sociodemographic characteristics (e.g., ethnicity) are not included.

Finally, we must continue to test model robustness, particularly in

terms of the ABM’s sensitivity to changes in parameters, network

topologies, and other key assumptions.

ABMs constitute a novel analytic approach that complements

other scientific modes of inquiry, offering key insights into the

properties, dynamics, and evolution of complex systems. Although

not without challenges, these methods hold much promise for

improving our understanding of HIV risk, drug use, and other

health behaviors as they operate within adaptive environments

and complex social systems.
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