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Abstract

Background: Induced pluripotent stem cells (iPSC) provide means to study the pathophysiology of genetic disorders.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a malignant inherited ion channel disorder predominantly
caused by mutations in the cardiac ryanodine receptor (RyR2). In this study the cellular characteristics of CPVT are
investigated and whether the electrophysiological features of this mutation can be mimicked using iPSC -derived
cardiomyocytes (CM).

Methodology/Principal Findings: Spontaneously beating CMs were differentiated from iPSCs derived from a CPVT patient
carrying a P2328S mutation in RyR2 and from two healthy controls. Calcium (Ca2+) cycling and electrophysiological
properties were studied by Ca2+ imaging and patch-clamp techniques. Monophasic action potential (MAP) recordings and
24h-ECGs of CPVT-P2328S patients were analyzed for the presence of afterdepolarizations. We found defects in Ca2+ cycling
and electrophysiology in CPVT CMs, reflecting the cardiac phenotype observed in the patients. Catecholaminergic stress led
to abnormal Ca2+ signaling and induced arrhythmias in CPVT CMs. CPVT CMs also displayed reduced sarcoplasmic reticulum
(SR) Ca2+ content, indicating leakage of Ca2+ from the SR. Patch-clamp recordings of CPVT CMs revealed both delayed
afterdepolarizations (DADs) during spontaneous beating and in response to adrenaline and also early afterdepolarizations
(EADs) during spontaneous beating, recapitulating the changes seen in MAP and 24h-ECG recordings of patients carrying
the same mutation.

Conclusions/Significance: This cell model shows aberrant Ca2+ cycling characteristic of CPVT and in addition to DADs it
displays EADs. This cell model for CPVT provides a platform to study basic pathology, to screen drugs, and to optimize drug
therapy.
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Introduction

Catecholaminergic polymorphic ventricular tachycardia

(CPVT) is a severe inherited cardiac disorder characterized by

stress-induced polymorphic ventricular tachycardia in a structur-

ally normal heart. Approximately 30% of CPVT patients have

symptoms before the age of 10 and the mortality rate is 30–35%

by the age of 30. b-blockers are recommended for CPVT, but this

treatment often fails to prevent even fatal arrhythmias [1].

CPVT is caused by mutations in the cardiac ryanodine receptor

(RyR2) or calsequestrin (CASQ2) gene. RyR2 is involved in the

release of calcium (Ca2+) from the sarcoplasmic reticulum (SR) and

thus plays a key role in excitation-contraction coupling. Calse-

questrin is a regulatory calcium-buffering protein associated with

RyR2 in the SR. RyR2 mutations can be detected in about 70% of

patients with CPVT. These mutations are thought to result in

increased release, or leak, of Ca2+ from the SR potentially leading

to diastolic oscillations of intracellular Ca2+, delayed afterdepolar-

izations (DAD), and polymorphic ventricular tachycardia [1].

However, our understanding of the detailed pathophysiology

behind CPVT remains incomplete.
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Although the pathomechanisms have been clinically studied in

CPVT patients with exercise stress tests, genetically engineered

mouse models have been significant to the understanding of

CPVT. Most of the CPVT-studies related to RyR2 mutations have

been performed in autosomal dominant transgenic knock-in

mouse models expressing mutations which have shown Ca2+ -

mediated arrhythmogenesis [2].

Induced pluripotent stem cell (iPSC) technology where plurip-

otent stem cells are generated by reprogramming differentiated

cells into a pluripotent state provides a way to study the

pathophysiology of various disorders in human cells. iPSCs can

be differentiated into the desired cell type, retaining the original

genotype. Recently CPVT-specific iPSCs -derived cardiomyocytes

(CMs) from individuals carrying RyR2 mutations [3,4] have

demonstrated DADs as the electrical abnormalities.

The P2328S mutation in RyR2 has been found in families with

CPVT. Here we introduce a functional cell model for CPVT

caused by this mutation. We investigated the mechanistic

characteristics of this disease in vitro using iPSC –derived CMs.

Importantly, we demonstrate the presence of EADs in addition to

DADs as a pathophysiological mechanism of CPVT.

Methods

Generation of Patient-Specific iPSCs
The study was approved by the ethical committee of Pirkanmaa

Hospital District (R08070) and written informed consent was

obtained from all the participants. Patient-specific iPSC lines were

established as described earlier [5]. Two CPVT-specific iPSC lines

(UTA.05203.CPVT and UTA.05208.CPVT) were generated

from a 25-year-old male carrying a RyR2-P2328S mutation. iPSC

lines UTA.00112.hFF (derived from foreskin fibroblasts) and

UTA.04602.WT (from skin fibroblasts of a healthy 55-year-old

female) were used as controls.

Characterization of iPSC Lines
Genotyping. The RyR2-P2328S mutation was assayed with

PCR amplification of genomic DNA with primers for RyR2 exon

46 (forward: ttt gtt tac tta tct tcc cca ttc, reverse: tat gga tca ctc gtg

agg gt) and HaeIII digestion (New England Biolabs, Ipswich, MA,

USA). DNA for wild type was 170 and 87 and for P2328S

heterozygote 257, 170 and 87 base pairs long. For confirmation of

the mutation by direct sequencing, the RyR2 exon 46 PCR

products were sequenced with BigDye Terminator v3.1 and ABI

3730xl DNA Analyzer (Applied Biosystems, Carlsbad, CA, USA).

Karyotype analysis. Karyotypes of the cell lines were

determined using standard G-banding chromosome analysis

(Medix laboratories, Espoo, Finland).

Reverse transcription polymerase chain reaction (RT-

PCR). Endogenous and exogenous gene expressions were

studied from iPSCs by RT-PCR. The PCR reaction consisted of

1 ml cDNA and 500 nmol/L of each primer. PCR primers for

iPSC characterization and detailed reaction conditions have been

described earlier [5]. b-actin served as a housekeeping gene.

Immunocytochemistry. The iPSCs were fixed with 4%

paraformaldehyde (Sigma-Aldrich, Saint Louis, USA). Primary

antibodies anti-SOX2, anti-NANOG, anti-stage-specific embry-

onic antigen (SSEA)4, and anti-tumour-related antigen (TRA)1–

81 (all 1:200, from Santa Cruz Biotechnology, Santa Cruz, CA,

USA), anti-OCT3/4 (1:400, R&D Systems) and anti-TRA1–60

(1:200, Millipore) were used. Cells were mounted with Vectashield

(Vector Laboratories, USA) containing 49, 6-diamidino-2-pheny-

lindole (DAPI) for staining nuclei.

Embryoid body (EB) formation. EBs were maintained in

EB-medium (KO-DMEM with 20% FBS, NEAA, L-glutamine

and penicillin/streptomycin) for 5 weeks. The expression of

markers characteristic of ectoderm (Nestin), endoderm (AFP), and

mesoderm (a-cardiactin) development in EBs were studied (primers

in Table 1).

Teratoma formation. The study was approved by ELLA-

Animal Experiment Board of Regional State Administrative

Agency for Southern Finland (ESAVI/6543/04.10.03/2011).

iPSCs were injected into nude mice under the testis capsule and

tumor samples collected 8 weeks after injection. This was followed

by fixation with 4% paraformaldehyde and staining of the sections

with haematoxylin and eosin.

Cardiomyocyte Differentiation and Characterization
Differentiation into cardiomyocytes (CMs) was carried out by

co-culturing iPSCs with murine visceral endoderm-like (END-2)

Table 1. Primer sequences for RT-PCR.

Gene Forward Primer Reverse Primer GenBank ID

Endodermal

AFP AGAACCTGTCACAAGCTGTG GACAGCAAGCTGAGGATGTC 174

Ectodermal

Nestin CAGCTGGCGCACCTCAAGATG AGGGAAGTTGGGCTCAGGACTGG 10763

Mesodermal

a-cardiactin GGAGTTATGGTGGGTATGGGTC AGTGGTGACAAAGGAGTAGCCA 70

Ca2+ cycling

RyR2 TAGATTTATAAGGGGCCTTG GATTCTTCAGGGCTCGTAGT 6262

Cav1.2 TGACATCGAGGGAGAAAACT ACATTAGACTTGACTGCGGC 775

Serca2a GAGAACGCGCACACCAAGA TTGGAGCCCCATCTCTCCTT 488

Phospholamban CTGCCAAGGCTACCTAAAAG AGCTGAGCGAGTGAGGTATT 5350

NCX TTCCAGAATGATGAAATTGTGAAGAT TCCTCAAGCACAAGGGAGAAAC 6546

TNTT2 ATCCCCGATGGAGAGAGAGT TCTTCTTCTTTTCCCGCTCA 7139

GAPDH AGCCACATCGCTCAGACACC GTACTCAGCGGCCAGCATCG 2597

doi:10.1371/journal.pone.0044660.t001
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cells (Humbrecht Institute, Utrecht, The Netherlands) as described

earlier [6]. The beating areas of the cell colonies were

mechanically excised and treated with collagenase A (Roche

Diagnostics) [6].

Immunocytochemistry. Single beating CMs were immuno-

stained with anti-cardiac-troponin-T (1:1500, Abcam, Cambridge,

MA, USA), anti-a-actinin (1:1500, Sigma-Aldrich) and anti-

connexin-43 (1:1000, Sigma-Aldrich).

RT-PCR for cardiac Ca2+-cycling protein analysis. RNA

was isolated from iPSC-derived CMs. The expression of troponin

T (TNTT2), RyR2, SR Ca2+ ATPase (SERCA2a), L-type Ca2+

channel (Cav1.2), phospholamban (PLN) and sodium-calcium

exchanger (NCX) were assessed. Primer sequences are listed in

Table 1. GAPDH served as a housekeeping gene.

Ca2+ imaging. Dissociated CMs on a coverslip were loaded

with 4 mmol/L Fura-2 AM (Invitrogen, Molecular Probes) for 30

minutes in HEPES based medium, followed by a 30-minute de-

esterification. The coverslip was then transferred to an RC-27NE

or an RC-25 recording chamber (Warner Instruments Inc., CT,

USA) and continuously perfused with 37uC HEPES based

perfusate. The perfusate was preheated by an SH-27B inline-

heater controlled by a TC-324B unit (Warner Instruments Inc.,

USA) and consisted of (in mmol/L): 137 NaCl, 5 KCl, 0.44

KH2PO4, 20 HEPES, 4.2 NaHCO3, 5 D-glucose, 2 CaCl2, 1.2

MgCl2 and 1 Na-puryvate (pH was adjusted to 7.4 with NaOH).

Ca2+ measurements were conducted on an inverted IX70

microscope (Olympus Corporation, Hamburg, Germany) where

spontaneously beating CMs were visualized with a UApo/340 x20

air objective (Olympus). Images were acquired with an ANDOR

Figure 1. Characterization of CPVT-iPSCs. A, Mutation analysis confirming the RyR2-P2328S mutation with altered DNA cleavage (arrow). B,
Morphology of an iPSC colony. Scale bar 200 mm. C, Normal karyotype. D, Expression of pluripotency markers at passage 4 shown by RT-PCR, b-actin
serving as a housekeeping gene. All studied endogenous pluripotency genes are turned on. None of the exogenous genes are expressed at passage
4. E, Immunocytochemical staining showing expression of pluripotency markers. Scale bars 1000 mm. F, Teratomas made from a CPVT-iPSC line
further confirms pluripotency. G, EBs express markers from all the three embryonic germ layers.
doi:10.1371/journal.pone.0044660.g001
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iXon 885 CCD camera (Andor Technology, Belfast, Northern

Ireland) synchronized with a Polychrome V light source by a real

time DSP control unit and TILLvisION software (TILL Photon-

ics, Munich, Germany). Fura-2 in CMs was excited at 340 nm and

380 nm light and the emission was recorded at 505 nm. For Ca2+

analysis, regions of interests were selected for spontaneously

beating cells and background noise was subtracted before further

processing. The Ca2+ levels are presented as ratiometric values of

F340/F380 or as DF/F0.

CMs were paced with 10–50 ms pulses (27–32 mA) (DS3

Constant Current/Voltage Isolated Stimulators, Digitimer LTD,

USA) at a frequency of 0.1–0.3 Hz higher than the spontaneous

beating rate. The changes in Ca2+ were recorded during

spontaneous baseline beating, electrical pacing, spontaneous

beating during 1 mmol/L adrenaline (Sigma-Aldrich) perfusion

and electrical pacing during adrenaline perfusion. The SR Ca2+

content was measured by releasing all the SR Ca2+ with

instantaneous and high concentration (40 mmol/L) caffeine

(Sigma-Aldrich) puffs after each measurement, after which the

relative amplitude change in calcium release in CPVT versus

control CMs was quantified. Viability of CMs was confirmed

after the experimental protocol. Amplitudes, beating frequency

and caffeine induced Ca2+ peaks were analyzed with Clampfit

version 9.2 (Molecular devices, USA). Analysis was performed

blinded to genotype of CMs.

Measurement of action potentials. Action potentials (APs)

were recorded in current-clamp mode using the standard patch-

clamp technique in the perforated patch configuration [7]. The

HEPES based extracellular perfusate for current-clamp recordings

consisted of (in mmol/L): 143 NaCl, 5 KCl, 1.8 CaCl2, 1.2 MgCl2,

5 glucose, 10 HEPES, pH was adjusted to 7.4 with NaOH and the

osmolarity set to 30062 mOsm (Gonotec, Osmomat 030, Labo

Line Oy, Helsinki, Finland). The intracellular solution consisted of

(in mmol/L): 122 KMeSO4, 30 KCl, 1 MgCl2, 10 HEPES. KOH

was used to set pH to 7.15 and the osmolarity was set to 29562

mOsm. Amphotericin B (Sigma-Aldrich) was used as membrane

perforation agent and dissolved in DMSO to a final concentration

in the patch pipette of 0.24 mg/ml. Spontaneously beating CMs

were patched in same bath conditions as in Ca2+ imaging. Patch

pipettes (model PG150T, Harvard Apparatus, UK) were pulled

with a PC-10 puller and flame polished with Microforge MF-900

(Narishige, UK) to a resistance of 2.0–2.5 MV measured in the

bath perfusate. APs were recorded in gab-free mode with pClamp

10.2 using the Axopatch 200B patch-clamp amplifier connected to

Figure 2. Characterization of iPSC-derived CPVT CMs. A, Immunocytochemical staining of cardiac markers, blue represents DAPI-staining for
nuclei. Scale bars 100 mm. B, The expression of Ca2+ cycling genes in differentiated CMs shown by RT-PCR. GAPDH is used as a housekeeping gene.
doi:10.1371/journal.pone.0044660.g002
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an acquisition computer via AD/DA Digidata 1440 (Molecular

devices, USA). Current-clamp recordings were digitally sampled at

20 kHz and filtered at 5 kHz using the lowpass Bessel filter on the

recording amplifier. AP duration at 50% and 90% of repolariza-

tion (ADP50 and ADP90), AP amplitude (APA), maximum diastolic

potential (MDP) and beats per minute (BPM) were extracted from

AP recordings using an automated script in Microcal OriginTM

8.6.

Monophasic Action Potential Recordings
Monophasic action potentials (MAPs) were previously recorded

from CPVT patients and healthy controls as reported [8]. Briefly,

MAPs were recorded from the right ventricular septum with a

bipolar silver-silver chloride catheter (model 006248, Bard Inc.,

Lowell, MA, USA). Data were recorded during sinus rhythm and

atrial pacing at a constant cycle length of 600 ms, both during

baseline and adrenaline infusion (maximum rate 0.05 mg/kg/min).

Custom-made software was used for analysis.

Definition of DADs and EADs
EADs were defined as low-amplitude depolarizations that occur

during phase 2 or 3 of the AP, before completion of repolarization,

and have an amplitude of $3% of the preceding AP. DADs were

defined as low-amplitude depolarizations that occur after comple-

tion of repolarization, and have an amplitude of $3% of the

preceding AP [9].

24h-ECG Recordings
24h-ECGs were previously recorded from CPVT patients and

healthy controls as reported [10]. Briefly, 24-h ECGs were

recorded using commercial tape recorders (model 8500; Mar-

quette Electronics Inc., Milwaukee, WI, USA). The tapes were

initially analyzed with a Marquette 8000 Holter Analysis system

(version 5.8 software) to label the QRS complexes to normal,

ventricular extrasystoles, or aberrant complexes.

Definition of T1-, T2-, and U-waves
The first peak during repolarization was considered as a T1-

wave. The second peak was considered as a T2-wave if it

occasionally merged with the T1-wave, or as a U-wave if it never

merged with the T1-wave. The third peak, which never merged

with the T1-wave, was also considered as a U-wave [10,11,12].

Statistical Analysis
The significance of differences between two groups was

evaluated with the unpaired Student’s t-test. The significance of

changes within a group was evaluated with the paired Student’s t-

test. P,0.05 was considered statistically significant, where (*)

represents P,0.05 and (**) P,0.01. Data are expressed as means

6 S.E.M. and n (where indicated) refers to the number of cells or

experiments.

Figure 3. Intracellular Ca2+ cycling and analysis of rhythm. A, representative traces of the four different rhythm categories. Regular rhythm of
calcium release with stable amplitude R, regular rhythm with varying amplitude Ra, irregular rhythm with stable amplitude I, irregular rhythm with
varying amplitude Ia. B, doughnut charts indicating the percentage of CPVT and control CMs under each rhythm category.
doi:10.1371/journal.pone.0044660.g003
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Results

Characterization of iPSC Lines Confirms Pluripotent Stem
Cell Characteristics

The presence of the P2328S mutation was confirmed in the two

CPVT-P2328S iPSC lines (Figure 1A). The iPSC colonies were

morphologically round-shaped and the iPSC lines had normal

karyotype (Figure 1B–C). All studied endogenous pluripotency

genes were turned on and expression of retrovirally encoded

reprogramming factors was silenced (Figure 1D). iPSC lines

expressed endogenous pluripotent markers at the protein level

(Figure 1E). Pluripotency was confirmed by teratoma formation

and with in vitro embryoid body (EB) formation expressing all three

germ layers (Figure 1F–G).

iPSC-derived CMs Express Cardiac Markers
iPSCs were differentiated into spontaneously beating cells and

the differentiated CMs expressed cardiac markers at the protein

level (Figure 2A). RT-PCR was performed to confirm the

expression of genes related to Ca2+ cycling (Figure 2B).

CPVT-P2328S CMs Display Aberrant Ca2+ Cycling
Ca2+ cycling properties of CPVT and control CMs were

compared in four conditions: spontaneous baseline beating,

pacing, spontaneous beating during adrenaline perfusion, and

pacing during adrenaline perfusion. Ca2+ cycling was categorized

into four different rhythm categories in which three of them the

Ca2+ cycling was characterized abnormal due to varying

amplitude and/or irregular rhythm (Figure 3A). Ca2+ cycling

abnormalities were more common in CPVT CMs than in control

CMs in each studied condition (Figure 3B). At baseline a higher

percentage of CPVT CMs (14%) showed abnormal Ca2+ cycling

when compared to control CMs (8%). Pacing stabilized Ca2+

cycling partially in CPVT CMs and completely in control CMs.

Adrenaline increased Ca2+ cycling abnormalities to 30% of the

CPVT CMs. In control CMs adrenaline had no effect on Ca2+

cycling. Pacing with adrenaline abolished all Ca2+ cycling

abnormalities in controls but did not have an effect in CPVT

CMs.

Under baseline and electrical pacing conditions, CPVT and

control CMs presented similar diastolic Ca2+ levels (Figure 4B).

However, adrenaline with and without pacing produced signifi-

cantly more elevated diastolic Ca2+ levels in CPVT CMs.

In CPVT CMs significantly lower SR Ca2+ load was seen at

baseline and in the presence of pacing during adrenaline

(Figure 4C). Caffeine-induced Ca2+ release via RyR2 was studied

under the four different aforementioned conditions (Figure 4A).

To determine the fractional Ca2+ release, the amplitude of the

Ca2+ transients were divided by the amplitude of the following

caffeine-induced Ca2+ transient. Fractional SR Ca2+ release was

significantly higher in CPVT CMs during spontaneous beating

Figure 4. Intracellular Ca2+ cycling and SR Ca2+ stores. A, representative traces from a single CPVT cell demonstrating the experimental
protocol. Bl; spontaneous baseline beating, Adr; adrenaline perfusion. Caffeine was added following 10 spontaneous or paced beats. B, diastolic level
of intracellular Ca2+. C, amplitude of caffeine-induced Ca2+ transients. D, amplitude of Ca2+ transients divided by amplitude of caffeine-induced Ca2+

transient, indicating fractional SR Ca2+ release. Units in A and B are Fura-2 ratio units, in C DF/F0. Numbers of control vs CPVT CMs analyzed: Bl n = 54
vs n = 90, Bl+paced n = 25 vs n = 50, Adr n = 27 vs 47, Adr+paced n = 19 vs n = 35, respectively. Error bars, SEM. *P,0.05, **P,0.01, with student’s t-
test.
doi:10.1371/journal.pone.0044660.g004
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and during electrical pacing with and without adrenaline perfusion

(Figure 4D).

Current-clamp Reveals DADs and EADs in CPVT-P2328S
CMs

Using the perforated patch technique in current-clamp mode

APs of 16/18 control and 14/14 CPVT CMs were ventricular-

like. The basic AP characteristics were similar in control and

CPVT CMs (Table 2). Eleven CPVT and five control CMs were

exposed to adrenaline and a similar increase in beating rate and

decrease in APD50 and APD90 were observed in all of them. In

general, control CMs had robust synchronized beating throughout

the recordings, but in 3/16 CMs (19%) DADs were randomly

observed during baseline recordings (1–2 DADs/60 APs). At

baseline DADs were observed in 6/14 (42%) of CPVT CMs. In 6/

11 CPVT CMs exposed to adrenaline, wash-out recovered the

beating rate to normal as in control CMs. However, in the

remaining 5/11 CPVT CMs, adrenaline subsequently evoked

DADs and resulted in decreased beating rate (Figure 5A and 5B).

In three other CPVT CMs spontaneous EADs were seen at

baseline (Figure 5C and 5D). Additionally phase 3 burst episodes

were seen in one cell showing EADs and DADs (Figure 5C). All

solitary EAD upstrokes were seen above 225 mV. The MDP of

the burst was 250 mV. The maximum upstroke amplitude for

solitary EADs was 45 mV and during the bursts 95 mV. No EADs

or spontaneous bursting were observed in control CMs.

MAP Recordings of CPVT-P2328S Patients Reveal EADs
and DADs, ECGs Show Simultaneous T2 and U-waves

We examined MAP recordings for EADs and DADs and 24h-

ECGs for their ECG counterparts, T2 and U-waves. MAP

recordings demonstrated DADs (Figure 6A) and EADs (Figure 6B).

24h-ECGs showed occasional simultaneous T1, T2, and U-waves

(Figure 6C). These changes were observed repeatedly, and no

similar changes were seen in healthy controls.

Discussion

We report, for the first time, that in addition to DADs, CPVT

patient-specific iPSC-derived CMs display EADs, providing novel

insight into the arrhythmogenic mechanisms in CPVT. Our

findings demonstrate the applicability of iPSC-derived CMs in

studying the pathophysiology of CPVT-causing RyR2 mutations.

CPVT CMs show disturbances in intracellular Ca2+ cycling in

response to catecholaminergic stimulation with adrenaline. These

changes in Ca2+ cycling indicate increased diastolic SR Ca2+ leak,

which may lead to DADs and the generation of triggered

arrhythmias [13]. In accordance with a previous report [14],

upon perfusion with adrenaline, CPVT CMs develop frequent

DADs, which occasionally suppress the following AP, preventing

the increase in the beating frequency.

Adrenaline produced significantly more elevated diastolic Ca2+

levels in CPVT CMs. Adrenaline also failed to increase caffeine-

induced Ca2+ release and fractional Ca2+ release compared to

control cells. The Ca2+ measurements with adrenaline were

recorded after 3 minutes of perfusion with the drug. During this

time Ca2+ leaked from the SR to the cytosol in the CPVT CMs, as

indicated by the elevated diastolic Ca2+ levels in the cytosol and

the reduced caffeine-induced SR Ca2+ release.

Fractional SR Ca2+ release increases steeply with elevation of

SR calcium. [15,16]. Therefore, it is expected that continuous

adrenaline perfusion without pacing will only transiently increase

fractional SR Ca2+ release in the RyR2 mutant CMs, which will

soon find a new equilibrium, balanced by increased sensitivity to

SR Ca2+ and decreased SR Ca2+ stores. On the other hand,

transient pacing (10 beats) increases SR Ca2+ load. When the

fractional SR Ca2+ release is measured immediately after the

pacing, increased values are observed. As expected, in this case the

fractional SR Ca2+ release is greater in the RyR2 mutant CMs,

which are more sensitive to luminal SR Ca2+ release.

Traditionally, EADs have been thought to result from

spontaneous reactivation of the L-type Ca2+ channel (LTCC)

during conditions of prolonged APD, such as LQT2 [17].

However, recent understanding highlights the role of Ca2+

overload and spontaneous Ca2+ release as the main triggers

behind EADs [18,19]. Conditions leading to Ca2+ overload

include heart failure, digitalis toxicity, and CPVT. Under

conditions of SR Ca2+ overload or leaky RyR2s, spontaneous

release of Ca2+ from the SR leads to activation of the sodium-

calcium-exchanger (NCX), which results in a depolarizing current

that reactivates the LTCC, leading to an EAD. It has been shown

that early Ca2+ aftertransients are the primary events that induce

EADs, and not vice versa [20,21]. In addition to early EADs, late

EADs arising from membrane potentials more negative than the

threshold potential of LTCC (235 mV), are reported to be NCX-

mediated and share similar properties with DADs [22–24].

Further support for the role of cytosolic calcium in EAD induction

comes from recent findings that despite prolonging APD,

ranolazine suppresses EADs by stabilizing RyR2 [25]. However,

ranolazine’s ability to prevent EADs is also likely to be mediated

by late sodium current inhibition, which decreases cytosolic Ca2+

by reducing NCX-mediated Ca2+ influx [26,27]. Lower cytosolic

Ca2+ will less likely cause SR Ca2+ leak, which would lead to

forward-mode NCX activation and afterdepolarizations. Accord-

ingly, we must acknowledge the potential role of the late sodium

current in EAD provocation.

Table 2. Characteristics of spontaneous ventricular-like APs in control and CVPT-CMs during regular beating.

Baseline BPM APD50 (ms) APD90 (ms) APA (mV) MDP (mV)

control (n = 16) 4166 204.4620.3 329.7622.4 117.8562.61 268.3561.87

CPVT (n = 14) 4365 238.6622.4 305.4625.7 114.8062.70 267.5561.51

Adrenaline BPM
% increase

APD50
% decrease

APD90
% decrease

APA
DmV

MDP
DmV

control (n = 5) 23.260.9 18.461.8 16.862.1 25.8261.17 +2.5560.61

CPVT (n = 11) 16.0612.3 21.565.5 24.063.5 28.2562.15 +4.5960.82

doi:10.1371/journal.pone.0044660.t002

Afterdepolarizations in Cell Model of CPVT

PLOS ONE | www.plosone.org 7 September 2012 | Volume 7 | Issue 9 | e44660



Figure 5. CPVT-P2328S CMs display DADs and EADs. A, Time course of APD50 (empty squares) and APD90 (filled squares) Adr indicates
perfusion with adrenaline. B, bars 1–3 are 9 sec time courses enlarged from A. (1) baseline with DADs, (2) DADs in the presence of adrenaline, (3)
DADs continue after adrenaline perfusion. MDP 270 mV. Arrows indicate DADs. C, A CPVT-P2328S CM showing an EAD (grey arrow) and a DAD (black
arrow) followed by a spontaneous burst episode (MDP 250 mV, maximum upstroke amplitude 45 mV). D, Current clamp recording of a CPVT-P2328S
CM showing occasional EADs (arrows). MDP 270 mV. Dashed lines indicate the zero reference potential.
doi:10.1371/journal.pone.0044660.g005
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Our results support this emerging consensus on the role of

NCX-mediated generation of EADs. We found that CPVT CMs

display irregular spontaneous calcium release events, DADs, and

EADs. Furthermore, MAP recordings in CPVT-P2328S patients

show both DADs and EADs. Although not experimentally shown,

it has previously been suggested that CPVT patients with RyR2

mutations are susceptible to both EAD and DAD-mediated

arrhythmia mechanisms [10]. As shown here, these patients show

both T2 and U-waves, the ECG equivalents of EADs and DADs,

respectively [10].

We could not demonstrate increased arrhythmogenicity with

pacing. At baseline, pacing stabilized beating in both control and

CPVT CMs. When arrhythmias were provoked in CPVT CMs

with adrenaline, pacing on top of that did not have any affect on

the recorded arrhythmias. This is contrary to previous CPVT

reports using either spontaneously beating CMs with a CASQ2

mutation [14] or resting CMs with a RyR2 mutation [4]. This

observation suggests that there are mutation-specific differences.

Our P2328S-RyR2 mutation presents arrhythmias only in the

presence of catecholaminergic stimulation, but not if increased

beating rate is generated by pacing.

Our findings demonstrate that in addition to DADs, CPVT-

P2328S CMs display EADs which may be involved in arrhythmo-

genesis in these patients. This broadens the mechanistic under-

standing of arrhythmias linked to RyR2 mutations and helps to

direct efforts to optimize therapy in these patients. Our iPSC-

derived CM model offers a promising platform for further research

into the pathophysiological mechanisms of CPVT, as well as a safe

tool for screening and optimizing drug therapy with patient-

specific CMs.

Study Limitations
We studied iPSC-derived CMs from two CPVT and two

control iPS cell lines. However, both CPVT lines were from the

same patient. The control lines were from two healthy controls. It

is therefore unclear whether the changes we saw are typical of all

CPVT patients, of this specific mutation, or only this specific

patient. In the future we need to extend our studies, looking at

various RyR2 mutations and several cell lines from multiple

patients harboring a specific mutation.

The type of CM (nodal, atrial, or ventricular) under investiga-

tion was unclear in the Ca2+ imaging studies. Part of the variability

in the results may stem from differences between the CM types. To

address this in the future, simultaneous recording of APs and

intracellular Ca2+ will help to distinguish cell type and additionally

give temporally synchronized info on the interplay between Ca2+

handling and APs.

Additionally, further development of cardiac differentiation and

maturation procedures will hopefully improve the homogeneity of

iPS cell lines.
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