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Abstract

We propose a time-delayed mutual information of the phase for detecting nonlinear synchronization in electrophysiological
data such as MEG. Palus already introduced the mutual information as a measure of synchronization [1]. To obtain estimates
on small data-sets as reliably as possible, we adopt the numerical implementation as proposed by Kraskov and colleagues
[2]. An embedding with a parametric time-delay allows a reconstruction of arbitrary nonstationary connective structures –
so-called connectivity patterns – in a wide class of systems such as coupled oscillatory or even purely stochastic driven
processes [3]. By using this method we do not need to make any assumptions about coupling directions, delay times,
temporal dynamics, nonlinearities or underlying mechanisms. For verifying and refining the methods we generate synthetic
data-sets by a mutual amplitude coupled network of Rössler oscillators with an a-priori known connective structure. This
network is modified in such a way, that the power-spectrum forms a 1=f power law, which is also observed in
electrophysiological recordings. The functional connectivity measure is tested on robustness to additive uncorrelated noise
and in discrimination of linear mixed input data. For the latter issue a suitable de-correlation technique is applied.
Furthermore, the compatibility to inverse methods for a source reconstruction in MEG such as beamforming techniques is
controlled by dedicated dipole simulations. Finally, the method is applied on an experimental MEG recording.
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Introduction

In cognitive neuroscience a central goal is the understanding of

processing information in the brain. Two basic questions of

general interest can be addressed: First, what are the underlying

mechanisms of cortical communication and second, how is

information of the environment processed? It has become clear

that synchronization plays a fundamental role in cortical

processing as a partial answer to fundamental cortical mechanisms

of communication [4–9]. To fill the gap between low-level

neuronal mechanisms and cognition, a wide diversity of methods

have been developed for recording and imaging the active brain.

The methods cover a huge range of scales ranging from single-unit

recordings on a microscopic level to whole brain imaging

techniques such as fMRI, EEG and MEG [10,11]. Each technique

has its advantages and disadvantages and offers just a partial view

of the complete system. Recording techniques with high temporal

resolution such as EEG and MEG are suitable for measuring

oscillatory dynamics in the human brain. Both methods feature a

non-invasive data acquisition and measure the primary electrical

neuronal response of a population with high temporal accuracy

(albeit low spatial precision and accuracy). In the present study, we

are especially interested in the interaction between different

cortical areas in terms of their oscillatory dynamics and

particularly in the synchronization among brain areas. The

phenomenon of synchronization is investigated in the field of

nonlinear and chaotic systems [12–14]. A huge battery of tools for

the quantification of synchronization in the field of neuroscience

on diverse temporal and spatial scales is available. Le van Quyen,

Bragin [15] and Sakkalis [16] summarize several common data-

driven concepts. Analogously to the cross-correlation the coherency

is sensitive to linear interactions among two signals in the

frequency domain [17]. A class of techniques known as as nested

oscillations, detects couplings among amplitudes and phases among

frequencies belonging to cross-frequency couplings (CFC) [18] or

the phase coherence (or phase locked value, PLV) [19–22]. The

synchronization index [23] constitute a measure of phase synchroni-

zation. These measures are sensitive to a specified order of

synchronization n:m (CFC type). However, it is not fully

understood how a cortical network and the underlying dynamics

are related, in particular which temporal and spatial scales are

sufficient to describe the system [24–26] and how a mental state is

linked to a corresponding activation pattern in terms of a transient

dynamics [27].

Our main goal in this work is to embed the mutual information

of the phase in our framework of a functional connectivity analysis

in terms of phase synchronization [3]. We are striving for a

universal analysis tool capable of assessing the synchronization of a

system in which the fundamental dynamics are not well-known,

i.e. such requirements effort a technique respecting on the one

hand a nonstationarity of the underlying system and on the other

hand being sensitive to both linear and nonlinear interactions [24–

26]. Many studies have estimated synchrony between sensor pairs

e.g. [5,23,28,29]. In our study we want to focus on the analysis of

reconstructed cortical sources e.g. [30,31]. To make our approach

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e44633



applicable to such data we implement and validate the following

aspects:

1. We customize the mutual information for trial based MEG

data-sets. This allows a time-dependent analysis of phase

synchronization of bivariate time-series with an underlying

nonstationary dynamics from trial based data. We do not enter

any information about the direction of coupling, the temporal

dynamics, the amount of time-delays nor the order of

synchronization. As a result a connectivity pattern is assembled

for each bivariate data-set, which contains the coupling

strength of two sources as a function of time and time-delay

in terms of nonlinear correlations.

2. We suggest a simple but efficient method for suppressing

artifacts generated by partially correlated time-series, which

form a well-known issue in reconstructed cortical sources. The

artifact reduction is tested by using a statistical validation and

synthetic data with a prior known coupling structure.

3. We check our approach for compatibility with beamforming

source reconstructions by the simulation of cortical sources in

MEG.

4. The method is tested with an experimental MEG paradigm by

Steinberg and colleagues on processing of emotionally relevant

stimuli [32].

In the Methods time-delayed mutual information of the phase is

explained [1]. Analogously to the phase measures of synchroni-

zation in [3] this measure is designed to be applied to trial based

bivariate data-sets. To assure an estimation with high data

efficiency and accuracy we adopt the implementation of [2].

Next, we generate synthetic data-sets with a-priori known

connective structures for testing purposes. We assemble a simple

network with time and delay dependent linear couplings based on

Rössler oscillators as already presented previously in [3]. The

Rössler oscillator is a nonlinear system holding an oscillatory

chaotic dynamics. It is used as a standard model for the

investigation of synchronization [13] and is also very common

for testing new techniques of data analysis in the field of

neuroscience [31,33–36]. Further, we modify the Rössler network

resulting in a 1=f power law in the power-spectrum, which can be

phenomenologically observed in EEG recordings [25,37,38].

Synthetic data from both the unmodified oscillatory and the

broadband 1=f system is used for testing and refining our

methods.

The Results are divided into three parts: In the first part we

benchmark the mutual information. Therefore, we address the

issue of partially mixed time-series by varying a linear superpo-

sition of two data-sets. Correlated data is typically observed in

imperfect reconstructions of cortical sources. Additionally, we

explore the robustness of the analysis outcome on data contam-

inated with additive noise, which is usually a result of thermal

effects in MEG recordings [39]. We suggest a de-correlation

procedure of the data on image level by correcting the connectivity

pattern directly. Next, we compare our de-correlation procedure

with a de-mixing on data level with the help of an independent

component analysis (ICA) [40] of the correlated time-series. We

also investigate the effect of the number of trials on the analysis

outcome and compare it qualitatively to the amplitude cross-

correlation, the phase coherence and the phase synchronization. A

statistical rating is achieved by a false discovery control (FDR)

following the suggestion of [41,42].

The second part of the results focuses on simulated MEG data-

sets by using the Fieldtrip toolbox for matlab [43]. Hadjipapas et

al. proved the principle compatibility of a source reconstruction by

beamforming with phase sensitive techniques [31]. However, they

used estimations across time and trials. Our purpose is to enter

explicitly the underlying nonstationary dynamics. Thus, we aim to

refine our approach based on a time-dependent estimate of the

mutual information by combining it with our proposed de-

correlation procedure. In the first step an MEG recording is

simulated after placing cortical sources with a prior known

coupling. In a second step the sources are reconstructed

subsequently from the simulated data-set using a beamformer.

We want to clarify if the basic assumptions of the beamformer

technique – a statistical independency of non-delayed neuronal

activities [44] – conflict with our method of investigating

synchronicity for two reasons: first, a suppression of linear

correlated sources might be problematic regarding the detection

of phase synchrony at first sight and second, the mapping of the

data might distort or destroy the modeled correlations of the

phases. In a pre-processing step the beamforming results are

improved by a noise reduction using a linear weighted moving

average (WMA), which is applied on the simulated data in the

sensor space before the beamforming to improve the results of the

reconstructed connectivity. We simulate and analyze the synthetic

MEG data-sets with varying the number of trials and the amount

of thermal sensor noise and find a much better stability of the

reproduced connectivity patterns when a noise reduction is applied

before.

In the last part we apply the functional connectivity analysis to

an MEG group study by Steinberg and colleagues on processing of

emotionally relevant stimuli [32]. In their paradigm subjects were

conditioned with hydrogen sulfide while watching faces with a

neutral expression. Steinberg and colleagues found an early

change in activity at 50–80 ms in frontal and temporal regions.

We estimate the synchronicity between both regions across the

subjects and are able to recover a significant correlation between

them providing evidence that our method can be applied to real

MEG recordings.

Methods

Estimation of the phase
The concept of phase is well-known in literature [13,14]. There

are different ways to estimate the phase of time-series. [45]

compared a complex wavelet transform with a Hilbert transform

for the analysis of neuronal data and found no essential

differences. Because we are interested in the mutual information

of the phase, the phase has to be estimated from the amplitude

time-series. The instantaneous phase w(t) of a signal s(t) can be

estimated using the Hilbert transform Htf:g:

z(t)~s(t)ziHtfs(t)g~A(t) eiw(t)

The analytic signal z(t) can be understood as an embedding of the

one dimensional time-series in the two dimensional complex

plane. The cyclic phase is computed by the following expression:

w(t)~ arctan
Imfz(t)g
Refz(t)g

� �

In the following the cyclic variable w(t) is defined in such a way

that it is periodic in the interval ½{p,p�. Strictly speaking the

phase of a signal is only defined in a physically meaningful manner

if the spectrum of a signal is narrow-banded [45,46]. In [3] we

already showed that synchronous states can even be discovered

successfully in white noise driven, amplitude coupled Ornstein-
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Uhlenbeck processes, which are broad-banded and purely

stochastic processes.

Mutual information of the phase
Rosenblum and colleagues found in their work that the

phenomenon of synchronization can be described as a certain

phase relation between interacting systems [13]. There are many

ways to measure synchronization between processes, see e.g.

[15,46]. In neuroscience it is usually assumed that synchronized

systems are connected. One can discriminate between effective

and functional connectivity [47]. A functional connectivity

typically denotes a statistical property in terms of a correlative

relation between brain areas, whereas an effective connectivity

describes a directed influence among neuronal assemblies in terms

of a driver response relationship.

In our approach we want to address the mutual information of

the phase [1]. The mutual information is a model-free measure of

the shared information among two stochastic variables in terms of

a nonlinear correlation, i.e. also correlations of second or higher

order [48]. Its correlative nature makes it belong to the class of

functional connectivities. Thus, it generally forms a symmetric

measure of correlation, which is invariant to the commutation of

the input, i.e. the direction of the covariation is not distinguishable

between the two variables. To break the symmetry we expand the

mutual information by a parametric time-delay, which makes it

sensitive to the direction of the covariation given by the temporal

order.

There are several reasons why we implement the mutual

information of the phase as a measure of synchronization: First, we

follow a data-driven approach because we want to make as few

prior assumptions as possible. With the mutual information all

orders n:m as well as nonlinear relations are included and

quantified simultaneously. Second, we decided to focus on the

signal phases and not amplitudes because in the investigation of

synchronization, relations between phases are more natural than

relations between amplitudes [14]. In cross-correlations of the

amplitude one has to deal with oscillations in the correlation

function, if the spectrum of the data is narrow-banded. If phases

are used instead of amplitudes the outcome of the correlation is

smooth in both narrow- and broad-banded signals [3]. Third,

because the mutual information covers the correlations across all

frequencies implicitly, the solution space is reduced by two

dimensions compared to CFC based techniques. Fourth, we want

to enter the time-dependent transient interactions between signals,

i.e. nonstationary processes can be analyzed. This requires an

estimation of the synchronization measure from data-sets across

trials. As we will see later the estimation of the mutual information

from trial-based data-sets of the size of a typical MEG recording is

a challenging but still feasible task. Finally, as we follow a data-

driven approach the estimated results are independent on prior

assumptions such as an initial configuration of a network or the

type of interactions within such networks. Two elements within a

certain network are analyzed independently and pairwise, i.e. an

expansion of the network by including new sources does not

influence the previous results. Because of the conceptual indepen-

dency of the elements there is no risk of an overfitting.

In our approach the flow of information between two distinct

regions indexed with k and l is addressed by estimating the phase

synchronization of bivariate time-series. In the following the terms

of driver and response denote a delayed covariation among two

variables, whereas the driver is defined with the index l and the

responder with k. The driving system l is shifted back in time with

t{t and a time lag of tw0 compared to the non-delayed driven

system k. The mutual information I forms a non-negative

dependency measure, which equals zero in the case of indepen-

dency. Applied on phases it forms a measure of synchronicity [1].

Regarding the time dependency and a time-delay t it is given for

the phases wk(t) and wl(t{t) by the expression:

I(t,t)~

ðp

{p

dwkdwlp(wk,wl ,t; t) log
p(wk,wl ,t; t)

pwk
(wk,t; t)pwl

(wl ,t; t)
ð1Þ

with the marginal densities pwk
(wk), pwl

(wl) and the formal

expression of the joint probability density:

p(wk,wl ,t; t)~Sd(wk{W(j)
k (t))d(wl{W(j)

l (t{t))T ð2Þ

Thereby d(:) denotes the Dirac delta function and W(j) a sampled

data-point corresponding to a specific time of the jth trial. Further,

we use the abbreviation S:T for a combined trial averaging and

moving time window with a window size of DT , i.e. the sample

points across the trials and within the time interval

½t{DT=2,tzDT=2� are pooled together. The joint entropy H
gives the total common information of both signals, which marks

the upper bound for the shared information. As in Eq. (1) we

consider it as an explicit function of the time and the time-delay:

H(t,t)~{

ðp

{p

dwkdwlp(wk,wl ,t; t) log p(wk,wl ,t; t) ð3Þ

We can use the joint entropy H for a normalization of I dividing

Eq. (1) simply by Eq. (3). This leads to a bounded measure of

mutual information i[½0,1�:

i(t,t)~
I(t,t)

H(t,t)
ð4Þ

The numerical implementation of Eq. (1) and Eq. (3) is not as

trivial as it may seem at first glance because the two dimensional

joint probability density function in Eq. (2) has to be obtained from

small and noisy data-sets. A naive approach considering an

equidistant binning of the density function therefore is problem-

atic. In particular sparsely and unequally distributed sample points

can lead to in erroneous deviations [49]. In a typical MEG

paradigm a data-set consists of about *102 trials. If one includes a

moving time average DT in the range of *10 to 50 ms, the total

number of samples sums up approximately from *103 up to 104

data-points per estimate. Furthermore, a sliding window technique

makes the estimate less prone to a jitter of the underlying

connectivity across the trials. Such pooling of the sample assumes a

quasi-stationary state of the system within the specified time

interval. [50] summarize a variety of approaches for the estimation

of information measures each holding specific biases or statistical

errors. We implemented the estimator by Kraskov and colleagues

[2]. They suggested a binless estimator of the entropies such as Eq.

(1) and Eq. (3), which is based on a k-nearest neighbor search. This

approach is adaptive on the density of the data-points and exhibits

a minimal bias, which makes it more accurate and more stable

compared to approaches based on binning [50]. As a rough idea of

the algorithm, the search of the neighbors can be implemented

very efficiently with help of a ranking of a distance vector. The

distance to the k-th neighbor is obtained by counting the ranked

vector. This is computed for each of the data-points and averaged

for the estimation of the entropy [2]. In our approach we include

Time-Delayed Mutual Information of the Phase
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periodic boundary conditions for the cyclic variables. We chose

the number of neighbors following the suggestions of [2]. They

found that the precision of the estimator depends on the ratio of

the neighbor parameter k and the total number of samples Ns.

Thus, we set the number of neighbors adaptively to the input with

k(Ns)~0:032 Nsz1:5. To assure a good performance in speed

the core of the algorithm is implemented in C-language and

integrated in a MATLAB environment.

The information about the synchronicity of two cortical areas is

represented by a connectivity pattern. The driver is defined with

the index l at the time t{t and the responding with k at the time

t. Each pattern forms a two dimensional map, which contains the

strength of the phase synchronization Eq. (4) as a function of the

time t on the abscissa and the time-delay t on the ordinate. A

connection between two sources is represented by a cluster of an

increased synchronization within a pattern. The extension of such

clusters provides information of the persistence and the height of

the cluster indicates the strength of a connection. Several factors,

which might have an influence on the appearance of connectivity

clusters are discussed in the Results.

To complement our connectivity analysis we suggest a statistical

evaluation based on the false discovery rate (FDR) by [42] as a

rating of significantly increased connectivity values within a

pattern. The method is adaptive to the data and easy to

implement. It is well-known in many fields such as verifying

significant voxel in fMRI [41] or testing significance in connec-

tivity analysis of EEG and MEG data [28,51]. The significance

threshold is determined with q~0:05 denoting the ratio of false

active to active values using pre-stimulus data. We assess the

distribution of the null hypothesis – roughly spoken the

unsynchronous or unconnected state – with the help of a pre-

stimulus segment from {600 to 0 ms of the pattern. t~0 ms

represents the stimulus onset.

A modified Rössler network
In this part the model is presented, which is used to generate

synthetic data-sets for testing and refining our methods. Our aim is

to detect interrelations among cortical populations which are

reconstructed from measured electromagnetic fields outside the

head. However, we are primarily not interested in setting up

physiologically realistic models such as realistic and complex

neuronal mass models, which play an important role in an explicit

and realistic modeling of cortical oscillations [52–54] because we

will apply the method to real MEG measurements (Results:

Application to MEG data). Instead, for our demands a good

controllability and high simplicity is of great importance because

our proposed method in detecting synchronicity is of universal

character and therefore ideally independent of a chosen model. In

[3] we already proposed the Rössler oscillator [55] as a basis in

generating specific data-sets. Coupled Rössler oscillators form a

well-explored standard system in the context of synchronization

and feature a complex dynamics controlled by just a few

parameters [13,20,31,33,36]. Our system is given by mutual

coupled non-autonomous stochastic ordinary differential equa-

tions of third order:

_XX k~{vkYk{ZkzCk(t)zjk(t)

_YY k~vkXkz0:15Yk ð5Þ

_ZZk~0:2zZk(Xk{10)

with k indexing the oscillator number and the intrinsic uncorre-

lated Gaussian white noise C(t) of unit variance. As a prevention

of resonance within the network the cyclic frequency vk is

Gaussian distributed with a mean of Sv(j)
k Tj~1 and a standard

deviation of sjfv(j)g~0:2. It is drawn for every trial under the

side condition that the frequency is positive. We interconnect M
oscillators with help of a linear amplitude coupling jk, which also

considers time-dependent connections with arbitrary temporal

delays.

jk(t)~
XM
l=k

ðt

0

dtekl(t,t) Xl(t{t){Xk(t)ð Þ ð6Þ

ekl(t,t) denotes the time and delay dependent coupling strength

between the driver l and response k. The iteration of Eq. (5) is

done using a Runge-Kutta method of fourth order with a step size

of 0:01 and a resampling of every 30th step. We use a randomized

initial condition near the steady state trajectories and neglect the

first 1000 iterations of transient dynamics. The computed time-

series of the y-components given by Eq. (5) serves as the signal

amplitudes in our further investigations. We generate time-series

with a length of 1200 ms each and sample the data with a

frequency of 600 Hz as in typical MEG recordings.

Two dimensional Gaussians with a standard deviation of st~25
ms and st~5 ms are arranged in ekl(t,t) of Eq. (6) as specific

connections. A simple linear chain is modeled in a 3|3 network.

Fig. 1A shows the coupling strength between oscillator 1 and 2 (in

the top half) and between 2 and 1 (in the bottom half). Until now it

is still not clear what mechanisms determine the amount of the

delay time between two cortical areas. It seems to be that the

phenomenal delay between two areas is much shorter than

physiological axonal conduction time. e.g. Roelfsema et al. found a

small time-lag of 2 ms in a visuomotor integration study using

cross-correlations [56], whereas Tallon-Baudry et al. measured

larger time-lags of 5.4 ms and 12.4 ms in visual short-term

memory study applying the phase coherence [57]. A delay of

t~16 ms was reported in the context of a connectivity analysis by

Vicente et al. in a motor task [28] and also by Hinrichs et al. in a

visual spatial attention task [58]. In our toy model we use a

constant delay of t~10 ms as a rough choice, which is in the range

of observable time-lags.

With our model we generated two types of data which differ in

their spectral properties. The first type is a conventional Rössler

oscillator with a frequency peak at approximately 30 Hz, cf. the

spectrum in Fig. 1B. For the second type a spurious background

synchronization is added heuristically. This is to emulate the

ubiquitous correlated brain noise. This background noise is added

in the coupling fields ekl(t,t). We choose a filtered spatial Poisson

noise (l~1) in the (t,t)-plane to include temporal correlations in

the coupling and to generate smooth transitions among two steps.

The filtering is done with a Gaussian kernel (s~1:7 ms) and

results in a normally distributed spatial correlated noise pattern.

Additionally, the spurious couplings to higher delays is damped

using a Gaussian envelop on the ekl(t,t) pattern with standard

deviation s~50 ms. The right pattern in Fig. 1A shows the input

of our modified Rössler system Eq. (5) including an additional

Gaussian connection, which generates a numerical stable dynam-

ics. The noise level is 10% of the maximal strength of the Gaussian

shaped connectivity. The generation of the random background

Time-Delayed Mutual Information of the Phase
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activation is repeated in every trial. In contrast to a conventional

Rössler system such a modification of the system results to a broad-

banded spectral behavior, which shows in good approximation a

1=f characteristic (Fig. 1B). The change of the spectral behavior is

a result of the collapsed Rössler attractor due to the delayed

feedback with a noise driven dynamics in the R3. A spectral 1=f

phenomenon is typical for electrophysiological recordings

[25,37,38].

Thus, we have developed two simple models, which serve as

useful and controllable tools. They are not supposed to create a

realistic physiology, but rather they support complementary tastes

regarding their dynamics: the system based on the conventional

Rössler oscillator provides a complex oscillatory dynamics and in

contrast the modified one a stochastic 1=f dynamics, cf. Fig. 1B.

Results

This Section is divided into three main parts with regard to their

content. In the first part the mutual information of the phase i(t,t)
is checked on its reliability when used on correlated and noise

contaminated data. We introduce a simple but efficient method in

removing correlations and compare our approach to an alternative

based on an ICA. Further, we address the stability of i(t,t)

Figure 1. Properties of the synthesized data. The synthetic data were generated in Eq. (5) by linear amplitude coupled Rössler oscillators. A
Linear coupling strength e(t,t) as the input of Eq.(5) for modeling a connective structure. The pattern on the left is given by a Gaussian in the (t,t)-
plane centred at t~100 ms and t~10 ms. The pattern on the right includes an additional spurious non-zero background activation (right), which is
generated by Gaussian filtered Poisson noise and decays for high time-delays. B Simulated time-series s(t) with oscillatory (left) and a more stochastic
(right) behavior. The maximum of the connectivity is shown via dashed lines: black indicates the driving system and grey the driven system. A
comparison of the corresponding power-spectra DS(f )D points out a 1=f characteristic (dotted black line) for the system including a spurious
background synchronization (dashed black line), which can be also observed in MEG recordings (grey line). C Corresponding mutual phase
information i(t,t) for N~150 trials. A high connectivity is indicated by a high mutual information. The system featuring a background synchronicity
(right) holds a damped, less extended and weaker connectivity in the (t,t)-plane.
doi:10.1371/journal.pone.0044633.g001
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regarding the total number of trials and compare i(t,t) to the

cross-correlation, phase coherence and the phase synchronization.

In the second part MEG data-sets are simulated and the

compatibility with the mutual information of the phase is verified.

The third part shows the result of our approach applied on an

MEG study of Steinberg and colleagues [32], who investigated the

processing of conditioned face stimuli and found an early change

in activation in the frontal and temporal region. We are able to

support their result by providing evidence of an increased phase

synchronization between both areas.

Verification on synthetic data
Temporal correlation of the connectivity. A connection

between two sources manifests in an extended cluster of increased

synchronization within a connectivity pattern. The cluster

extension depends on the underlying coupling of the processes

and is also influenced by a correlation in t and t direction [3]. The

origin for temporal correlation of the synchronicity are twofold:

first, it is caused by an intrinsic inertia of the process. A physical

system cannot switch instantaneously from an unsynchronized into

a synchronized state [20]. Second, pooling the sample within a

time window DT marks a crucial step to reduce noise induced

effects in the mutual information estimator. However, as a side-

effect the connectivity may be smoothed and therefore may be

correlated within the pattern. This effect is negligible as long as the

chosen window size is small compared to the intrinsic mechanisms

and one is interested in cluster sizes or time scales larger than DT ,

respectively [3]. To speed up the computation time for the

calculation of a complete connectivity pattern we do not evaluate

the mutual information on the maximal temporal resolution given

by the sampling frequency of 600 Hz. Because of the correlative

effect after pooling the data within a certain time window DT , it is

sufficient to compute i(t,t) on a coarser sampled triangular grid in

the (t,t)-plane. We choose a distance of DT=8 between two

neighbored connectivity estimates. With DT~31 bins (&50 ms)

the computation time is increased rapidly without loosing

information due to the coarse sampling technique.

In Fig. 1C the detected functional connectivity i(t,t) among two

sources is depicted. On the left the computed i(t,t) of a

conventional Rössler system is shown and on the right of our

proposed system with a spurious background coupling (cf.

Methods). Both data-sets are created by applying the coupling

strength ekl(t,t) of Fig. 1A as input to Eq. (5) and Eq. (6). The

synchronized regime of the unmodified oscillatory system is more

pronounced in terms of the strength and the temporal extension

compared to the modified stochastic one. The reason is that in the

modified Rössler network – due to the break down of the limit

cycle – a high noise input desynchronizes both system. In the

conventional Rössler system the oscillations are less damped, so

that both systems diverge slowly. This leads in contrary to the

modified Rössler system to a shift in the connectivity pattern, i.e.

the bias of onset and delay of a detected connectivity depends

strongly on the underlying dynamics.

Linear mixtures and additive noise. The investigation of

phase synchronization in human EEG or MEG data is ambitious.

In general, the investigator may be interested in causal or

correlative relationships among brain areas, which are caused by

specific underlying mechanisms of the brain. Directed effects are

usually termed as effective connectivity and correlations as

functional connectivity [47]. However, reconstructed sources

typically show artificial correlations [19,59]. In sensor space the

raw data represent a linear mixture of the underlying sources.

Inverse techniques are supposed to map the data with help of

head-models in the cortical space by a sophisticated separation of

the channels Many external factors influence the quality of the

source reconstruction procedure: measurement noise, signal

degradation through amplifying and filtering, limitations of the

head-model or artifacts (such as muscle activity, breathing or eye

blinks, to name a few), which results in an imperfect reconstruction

with partially correlated sources. Therefore, we want to introduce

a simple method, which efficiently removes the influence of an

incomplete source separation. Further, we want to assess the

performance of our proposed de-correlation and compare it to an

approach based on the independent component analysis (ICA)

[40]. The instantaneous mixture of two time-series s1(t) and s2(t)
is given by:

~ss1,2(t)~(1{a) s1,2(t)za s2,1(t)z
ffiffiffiffi
Q

p
C(t) ð7Þ

The parameter a controls the symmetry of the mixing and
ffiffiffiffi
Q
p

is

the level of the additive Gaussian white noise C(t) with unit

variance. The level is set implicitly by adjusting it relative to the

RMS value of the signal. A choice of a~0 denotes the unmixed

case and a~0:5 a complete symmetric mixture of both signals.

The bivariate data-set consists of N~150 trials of spurious

synchronized Rössler oscillators with 1=f distributed spectra as

described in the Methods (A modified Rössler network). The

estimation of i(t,t) for mixture of both time-series is depicted in

Fig. 2A. The estimate is extremely stable to additive noise. Even an

amount of 100% RMS is reconstructed with high accuracy.

However, the performance is sensitive quickly to the symmetry of

the mixture. At a mixture of 50% (a~0:25) the connectivity is

vanished almost completely by the correlated sources. High ratios

of mixtures lead to increased correlations at small delay values.

One can say that the correlation is in a good approximation a

function of the delay and not a function of the time. It reaches its

maximum at a zero time-lag and decays with higher time-lags.

Strictly speaking, the connectivity which is determined by the

coupling of both systems, is covered by the correlation of the

mixture.

Pattern de-correlation. The basic idea of our approach is to

enter the underlying connectivity by simply removing the

correlative part on pattern level which is caused by the mixture.

By this, we assume that there is no underlying specific connectivity

in the pre-stimulus interval. In an experimental design the

duration of the stimulus or the inter-stimulus interval is usually

randomized. The randomization ensures that the timing of the

pre-stimulus interval is jittered with respect to the following

stimulus. The jitter also destroys spurious phase relations in the

pre-stimulus interval across the trials. First, we need to assess a

functional relationship of the delay dependent part. The pre-

stimulus interval of i(t,t) is averaged over the time and projected

onto the t axis. Both coupling directions are processed equally,

that means the pre-stimulus interval is additionally averaged over

both directions. We find a good functional agreement with an

exponential fit model (cf. Fig. 3):

f (t; c1,c2,c3)~c1zc2e{c3t ð8Þ

The parameter ci are fitted to the data and subtracted form the

whole pattern. Afterwards a statistical rating in form of a FDR

control (q~0:05) is applied on the data. The result of the de-

correlation step are shown in Fig. 2B: the connectivity is recovered

even for high mixtures and noise values. The direction, which is

given by the symmetry of the cluster, is degraded at extreme ratios

(a~0:4). Additionally, the influence of high noise level leads to

inaccurate estimates regarding the timing of the connection.

Time-Delayed Mutual Information of the Phase
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Next we compare our approach to a direct separation of the

signals by using an ICA by [40] (FastICA is a free Matlab toolbox

downloadable at http://research.ics.tkk.fi/ica/fastica/). To avoid

that indices are mixed up incidentally and therefore the direction

is reversed after the ICA step, the cross-correlation is calculated

between the sources before and after the separation. A higher

cross-correlation assigns a separated source to the corresponding

source index. After the separation i(t,t) is estimated. The results

Figure 2. Linear correlated data with additive noise: pre-stimulus based de-correlation. The underlying bivariate data-set consists of 150
trials with a 1=f spectrum, cf. Methods (A modified Rössler network). A i(t,t) of two mixed sources. Each pattern represents a connection directed
from 1?2 (upper) and 2?1 (lower part). A sliding window DT~50 ms is applied for the estimation. The dashed line indicates the modeled
connectivity, cf. Fig. 1A. Parameter a sets the mixing strength as referred to Eq. (7). In B the pattern is de-correlated by subtracting Eq. (8), which is
fitted in the pre-stimulus interval from {600 ms to 0 ms. The i(t,t) is computed on a triangular grid with a distance of DT=8 between neighbored
estimates. Significant increased synchronization is indicated by a white dot on the grid using a FDR with q~0:05.
doi:10.1371/journal.pone.0044633.g002
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are shown in Fig. 4. The ICA works reliably for mixed or for noisy

data. But the combination of both strong correlation and high

additive noise leads to poor results of the reconstructed

connectivity. In comparison to our approach the performance is

worse for the extreme parameter settings. In addition, in some

cases of high noise the fast ICA algorithm fails and the routine is

interrupted due to a missing convergence of the solution.

To summarize briefly, we implemented and compared an

effective and important de-correlation step on pattern level by

fitting a decaying function to the pre-stimulus interval of the

pattern. Our approach is in terms of stability more reliable than a

source separation with the fast ICA [40], which fails at high noise

levels. On the next stage we want to challenge our methods on

more realistic test situations. In the Results (Dipole simulation) we

consider a set-up including correlated noise, which serves as a

basic model for brain or sensor noise after erroneous source

reconstructions.

Variation of the trial number. The analysis of nonstation-

ary dynamics typically demands a trial based data-set. In a

cognitive task the number of trials is usually split into several

experimental conditions, which makes the total number of trials

Figure 3. Applied functions for the de-correlation step. Shown are three least mean square fits using the Matlab curve fitting toolbox with the
following types: A exponential, B Gaussian and C power law function. The functions were fitted on the pre-stimulus interval of a connectivity pattern
(cf. Fig. 2A with a mixture of a~0:4 and an additive noise level of 100 RMS).
doi:10.1371/journal.pone.0044633.g003

Figure 4. Linear correlated data with additive noise: ICA based de-correlation. In contrast to Fig. 2B the bivariate time-series are directly
de-correlated with help of an independent component analysis (ICA) using a Matlab based toolbox of [40]. The resulting patterns i(t,t) of the de-
mixed sources are shown. The same data-set is used as in Fig. 2A. The computation and statistical validation of i(t,t) are performed analogously to the
results of Fig. 2A.
doi:10.1371/journal.pone.0044633.g004
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very limited. Therefore, we test the connectivity in dependence of

the number of trials.

We used the identical data as in the part before. Fig. 5A shows

the result of uncorrelated data without additive noise. The

reconstructed example with N~50 holds high background

fluctuations, which results in this case to false positive detection.

The patterns are recovered correctly with Nw75 trials. Next, we

take the worst case regarding the instantaneous mixture and the

noise level. The resulting patterns are given in Fig. 5A. The results

are much more unstable as already seen in the last part. Regarding

the results of Fig. 5B and the previous results in Fig. 2B a general

statement is difficult and depends strongly on the specified system.

The connectivity of the modified Rössler system (Fig. 1C, right) is

weaker compared to the unmodified Rössler system (Fig. 1C, left)

because the intrinsic noise level is relatively higher. However, our

impression is that in most cases a trial amount of Nw150 marks a

sufficient number which is capable detecting most interactions,

although it has some limitations regarding the correct timing. It

should be noted that such inaccuracies in the timing are a result of

an extreme degradation of the signal, i.e. the applied time-series

were mixed with 80% (a~0:4) and the noise level was with 100%

RMS identical to the signal level.

Comparison to alternative phase measures. In [3] we

already introduced the concept of connectivity patterns by

applying a parametric time-delay, where we combined this with

the phase coherence and the synchronization index. Both

techniques assess an explicit order n:m of the synchronization.

In the context of a data driven philosophy this might be a

disadvantage because of the increasing complexity of the results.

Nonlinear measures such as the mutual information reduce the

complexity significantly. Especially this property makes them very

attractive for the investigation of systems with many degrees of

freedom. In this section we want to compare the stability of the

mutual information to the cross-correlation of the amplitude r(t,t),
the phase coherence c(t,t) and the synchronization index r(t,t).
With the phase difference of order n and m among two sources

DWnm(t,t)~nWk(t){mWl(t{t) the phase coherence cnm(t,t) is

estimated by

cnm(t,t)~DSeiDW
(j)
nm(t,t)TD ð9Þ

A normalized synchronization index [23] is calculated with the

help of the probability density function of the phase differences

pnm(y,t,t)~Sd(y{DW(j)
nm(t,t))T by the following expression:

rnm(t,t)~1z
1

log 2p

ðp

{p

dypnm(y,t,t) log (pnm(y,t,t)) ð10Þ

Fig. 6 shows the results of the estimated functional connectivities.

The same data set of 150 trials is used as in Fig. 2. The patterns are

de-correlated following our approach in the Results (Pattern de-

correlation). Due to the fact that the underlying data is modeled

with a linear amplitude coupling of Eq. (6) – that means both

systems synchronize directly – we can choose the indices for the

synchronization order of n~m~1 and abbreviate with

c(t,t)~c11(t,t) and r(t,t)~r11(t,t). In Fig. 6A is shown that

the quality of all phase measures is very similar regarding the

significant values of connectivity. For the cross-correlation the

connectivity cluster is divided by a zero-crossing due to oscillatory

properties of the data. We want to emphasize again that such

typical artifacts of amplitude based methods are problematic in

our approach leading to an underlying periodic fluctuation [3].

The structure of the underlying fluctuations strongly depends on

the spectral properties, which, in turn, are in general time-

dependent. In contrast to the phase measures, it is not possible to

forecast a simple de-correlation technique as in Eq. (8), which

works for time invariant and decaying correlations in t direction.

Fig. 6B depicts the results of a degraded data-set. The mixing ratio

and noise level is identical to Fig. 5B. In this example the pattern

based on the cross-correlation r(t,t) is very noisy. Throughout the

pattern the background fluctuation is pronounced and inhomo-

geneous. Although our de-correlation step might be problematic

on amplitude based correlation measures, the FDR discovers two

small clusters symmetrically in the delay component. The cluster

location is detected correctly regarding the time component but

incorrectly regarding the delay direction. The phase coherence

c(t,t) also suffers from high inhomogeneous background noise.

Further, it seems not very robust to additive noise because of two

significant false positive extensive and symmetrical artifacts. The

results of r(t,t) and i(t,t) are very similar. In this specific data-set

both measures are biased to correlations shifted to the onset. But

compared to r(t,t) and c(t,t) the patterns are homogeneous

regarding their background noise. If one wants to restrict on linear

interactions with a direct 1:1 synchronization r(t,t) may be used

Figure 5. Variation of the total number of trials. Estimated
synchronization i(t,t) for a variate number of trials N . A Two
uncorrelated and b) two strongly correlated and noisy sources. The
same de-correlation step is applied as in Fig. 2B. The same data-set is
used as given in Fig. 2. The black dashed line indicates the center of the
modeled connectivity.
doi:10.1371/journal.pone.0044633.g005
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as an alternative to i(t,t). Both are based on an entropy estimate,

but in contrast to i(t,t) r(t,t) requires just a one dimensional

density function. [51] suggests a restriction to linear measures on

stationary data. Further, they claim that a higher sensitivity leads

to less stability. But our example shows that the results of the k-

nearest neighbor estimator are comparable in terms of its stability

to competing less complex approaches. We even show that the

analysis can be expanded to arbitrary processes, which can be

nonstationary and even include an arbitrary order of synchroni-

zation.

Dipole simulation
A brief introduction to current dipoles and

beamforming. In this section we verify, whether the method

used for the source reconstruction – focusing on the beamforming

technique – is compatible to measures of phase synchronization.

This is addressed by a connectivity analysis of data, which is

simulated as an MEG recording and subsequently reconstructed

again as cortical source activity. In a connectivity analysis one is

interested in interdependencies among sources. In MEG simula-

tions point-like sources can be modeled as equivalent current

dipoles [39,60]. We use such dipole-like sources with time-courses

from our data-sets as source waveforms to simulate measured data

of intracortical activations with a prior defined connective

structure. Although more sophisticated models of spatial extended

sources exist [61], we want to restrict to point-like sources with

dedicated complex dynamics. The cortical sources of the simulated

recordings are estimated trial-wise by using a beamforming

technique. The beamforming method can be understood as an

adaptive spatial filter, which is able to map the recorded sensor

data onto the source space as a dipolar source density by the

optimization of linear filter weights. For the optimization of the

weights the beamformer assumes that sources are not correlated in

a linear fashion at the same time [44,62–64].

Our goal is to prove if our approach of assessing functional

connectivity by the estimation of underlying connectivity patterns

can be reconciled with sources reconstructed by a beamforming

technique. We try to model under more realistic conditions by

including correlated noise of unsynchronized cortical point-wise

dipolar sources in the source space [65,66] and thermal sensor

noise in the sensor space [39]. Both types result in spurious

correlations of underlying source activities, which were not

addressed so far (cf. Results: Verification on synthetic data).

Because we demand source activities reconstructed trial-wise, the

source reconstruction cannot be applied as usually done on

averaged data. To handle a noise reduction on raw data without

the necessity of an average across the trials we want to motivate

the use of a linear WMA filter. [31] already showed that phase

sensitive measures are in principle compatible, but they did not

consider a time and a delay sensitivity in their analysis. Further,

they used symmetrically coupled systems and therefore had to

restrict to short pre-stimulus intervals in the beamformer

estimation.

Simulation of synthetic MEG recordings. The source

signals are given by time-courses generated by a coupled Rössler

system as described in the Methods (A modified Rössler network).

A pair of oscillators is connected by a linear amplitude coupling

given in Eq. (6). We use both the conventional and the modified

Rössler system as the underlying data of sources with a known

connective structure. The unmodified system holds a more

oscillatory dynamics with a distinct spectral peak at 30 Hz (cf.

left panel of Fig. 1). In contrast, the modified system shows a

Figure 6. Qualitative comparison to cross-correlation, phase coherence and phase entropy. A Unmixed case with a~0:00 and without
additive uncorrelated white noise, B strong correlated sources with a~0:40 and high additive uncorrelated white noise with 100% RMS. Dr(t,t)D
denotes the absolute value of the cross-correlation of the amplitude. c(t,t) is the phase coherence in time-domain, cf. Eq. (9) with n~m~1, r(t,t) the
phase synchronization based on the Shannon-entropy, cf. Eq. (10) with n~m~1, and i(t,t) the mutual information of the phase, cf. Eq. (4). The same
data-set with N~150 trials is used as shown in Fig. 2A. The connectivity patterns are estimated with a moving time window DT~50 ms and de-
correlated analogously to Fig. 2B. The temporal coordinate of the underlying connectivity is indicated by a black dashed line. Because Dr(t,t)D, c(t,t)
and r(t,t) are estimated in every bin, the significant increased correlation is indicated by a white area (FDR with q~0:05).
doi:10.1371/journal.pone.0044633.g006
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broad-banded 1=f distribution in the spectrum (cf. right panel of

Fig. 1). We simulate a trial-based MEG data-set, which consists of

N~75,150 or 300 epochs. Each epoch lasts for T~1200 ms with

a sampling frequency of 600 Hz including a 600 ms pre-stimulus

interval. The connective setup consists of three dipoles, which are

placed in the calcarine sulcus (V1, dipole 1), extrastriate body area

(EBA, dipole 2) and in the superior temporal sulcus (STS, dipole 3)

all of which respond to visual stimuli. The dipoles are arranged in

a linear unidirectional chain as given in Table 1. The coupling

strength e(t,t) induces a time dependent and delayed synchroni-

zation of the dipoles, cf. Table 2. The locations of the three dipoles

are fixed during all simulations. Their orientation is tangential

which means that the dipole is approximately orthogonal to the

surface normal with the shortest distance to the dipole. The

tangential direction is chosen randomly for each dipole and each

simulation, i.e. it stays constant during the epochs within a specific

simulation.

We consider two noise sources in our simulations: As a first side

effect brain noise is implemented by 50 uncorrelated disturbing

dipoles with a 1=f spectrum, which are placed in random fashion

within the grey matter. Their location, tangential orientation and

time-courses are changed randomly in every trial. A single time-

course is unique in each of the simulated recordings and is drawn

from a pool of 16200 simulated time-series modeled without an

underlying temporal defined connectivity. The amplitude of the

brain noise is set to constant 10% RMS compared to the three

connected sources. To model a variable amount of non stimulus-

locked disturbing sources each time-course of the disturbing

dipoles is multiplied by a Gaussian window function. To vary the

timing the mean value of the Gaussian is chosen from a uniform

distribution in ½0,T �. However, the interval of each of the

disturbing activations is held constant for simplicity, i.e. standard

deviation is set to fixed T=4. As a second influence thermal noise is

modeled by additive uncorrelated Gaussian noise in the sensor

space [39].

Reconstruction of sources. The sources are reconstructed

by a Linearly-Constrained Minimum Variance (LCMV) beam-

forming [44] with a 5% regularization for a spatial smoother and

more stable solution [30,59]. The LCMV beamforming belongs to

the class of the vector beamformer, i.e. the reconstructed source is

given by a dipole with a specific direction and strength, both

dependent in time. A singular value decomposition is applied to

reduce the vectorial to scalar response. In dedicated simulations of

hippocampal activations, [67] shows that vector beamformer are

significantly more stable than scalar beamformer such as the

synthetic apperture mapping (SAM). In our simulations the

covariance estimation is performed for the complete trial in the

time window {600 to 600 ms in broad frequency band 1–150 Hz

(fourth order bi-directional Butterworth filter) and is necessary for

the calculation of the beamformer weights. Both a long time

window and a large bandwidth are essential for a stable result and

the reduction of biases in the estimation of the covariance matrix

[59]. The dipole simulation and source reconstruction are

implemented in the Matlab based FieldTrip toolbox for EEG/

MEG-analysis [43] (Donders Institute, University of Nijmegen, the

Netherlands, the toolbox is downloadable at http://fieldtrip.

fcdonders.nl/). The simulated data-set is based on a 151-channel

CTF system. A multisphere head-model is used in the beamform-

ing procedure [68]. It is generated with the help of a segmented

structural MRI file of Fieldtrip’s online tutorial data-set Subject01.

The segmentation of the anatomical MRI data is applied with help

of the SPM toolbox [69] (downloadable at http://www.fil.ion.ucl.

ac.uk/spm/).

In addition to the internal dynamics, one has to consider

additive thermal noise caused by the MEG device [39], which is in

a good approximation uncorrelated in time and space. Because

uncorrelated noise is not suppressed by the beamformer effortless

[59,70], we suggest the application of a weighted moving average

(WMA) filter step with the purpose to attenuate the amount of

additive thermal noise in the sensor data by averaging sensor data

in a moving time window. In particular, we customized a linear

WMA filter composed by a set of different window lengths

DTWMA. Briefly, the main idea was find a trade off between a

sufficient noise suppression while not to deteriorate the signal too

severely by choosing exponential spaced time windows

DTWMA~1=fi with a corresponding frequency fi~2, 4, 6, 8,

10, 12, 15, 19, 23.5, 29, 35.5, 43, 52, 63, 76, 91.5, 110 and

132 Hz. The smoothing procedure of the time-series is done for

each window size i independently and averaged over the complete

set afterwards.

To reconstruct the simulated cortical sources we run the

following sequence: First, in a pre-processing step we filter the raw

data with a linear WMA filter before the beamformer is applied.

This marks a crucial step to improve the quality of the

reconstructed connectivities. We discriminate two types of

sequences for the source reconstruction with the LCMV. In one

type, called WMA+LCMV, the data is previously filtered with the

WMA before the beamformer is applied. Otherwise, the

beamformer is used on unfiltered data. In this case we call it

Conventional LCMV. In the second step the locations of the

reconstructed sources are defined. To keep it simple we take the

same coordinates as applied for the underlying simulated dipoles.

Because the beamforming procedure is spatially smoothed,

dislocalizations are not an issue [59,63,71]. In the third step the

beamformer weights are computed for each of the trials and each

predefined location. In the last step the dipolar time-courses are

Table 1. Linear dipole chain.

1 ? 2

90 ms 10 ms 100 ms

2 ? 3

120 ms 10 ms 130 ms

Schematic illustration of the model of a linear chain used in the dipole
simulations. The dipoles are placed in the cortex with fixed coordinates (located
in the calcarine sulcus, the extrastriate body area (EBA) and the superior
temporal sulcus (STS)) and a randomized tangential orientation, which is held
constant for each simulation. The time-dependent amplitudes of the dipoles are
given by the time-course of a 3|3 Rössler system.
doi:10.1371/journal.pone.0044633.t001

Table 2. Distance and timing of the dipoles.

Driver Responder Distance [cm] t [ms] t [ms] st [ms] st [ms]

1 2 5.5 100 10 25 5

2 3 8.1 120 10 25 5

3 1 5.8 – – – –

Table caption Euclidian distance between each dipole combination and the
temporal setup of the connectivities. The coupling strength is given by identical
two dimensional Gaussians in the (t,t)-plane similar to Fig. 1A. The location of
each Gaussian is set by t, t and its temporal extension by the standard deviation
st and st . All time-series used for simulations last from {600 to 600 ms and
include a pre- and a post-stimulus interval of equal length.
doi:10.1371/journal.pone.0044633.t002
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reconstructed by using the estimated weights. Finally, the results

are transformed to scalar time-courses followed by the synchro-

nization analysis.

Results of the reconstructed connectivities. In particular

we want to clarify that the functional connectivity in terms of a

phase synchronization among sources is preserved after the source

reconstruction via beamforming. Because the amount of involved

parameters is high and because we are not interested in all side-

effects of every parameter combination in detail, we restrict our

analysis to the most important parameters. In practice, the amount

of trials is set in the experimental design. The outcome of our

connectivity analysis is directly linked to the number of analyzed

trials. Thus, the variation of the trial numbers forms one aspect in

our verification. Further, thermal sensor noise forms a crucial issue

in beamforming. The algorithm maps the noise back into to the

source space because of its uncorrelated nature. To explore the

influence of the thermal noise we vary its strength as a second

parameter. As the power of the beamformer in separating sources

is limited, correlated brain noise results in a less efficient separation

of the sources. The algorithm holds a certain degree of freedom –

depending on the amount of data and even on the architecture of

the MEG device – to suppress artifacts and separate individual

sources properly. With a decreasing number of disturbing

influences the performance in separating the sources increases

consistently [44,64,72]. This results finally in correlations within a

connectivity pattern, which grow rapidly with decreasing delays.

We addressed a similar issue in the Results (Pattern de-

correlation). First, a broad-banded signal of the modified Rössler

system is applied as source waveforms (cf. Results: Verification on

synthetic data). The dipole simulation comprises 150 trials with

three connected sources, 50 disturbing dipoles and 10% RMS

thermal noise. In Fig. 7A the underlying modeled connectivity is

shown directly among the time-courses without simulation steps

(cf. the right panel of Fig. 1). The patterns in Fig. 7B are based on

a source reconstruction via a conventional LCMV method, i.e.

without the filtering by a linear WMA in the sensor space. In

Fig. 7C the thermal sensor noise is suppressed by the WMA filter.

Without any of our proposed corrections the connectivity pattern

suffers from strong correlations, which totally cover the underlying

connections (cf. left panel of Fig. 7B). By applying the WMA

smoothing and the de-correlation of the patterns both of the

underlying connections are recovered successfully (cf. right panel

of Fig. 7C). If one compares both patterns of the conventional and

the filtered LCMV (WMA+LCMV) (Fig. 7B vs. Fig. 7C) and the

de-correlation procedure (Fig. 7B and C with left vs. right) the

WMA filter seems to be crucial for the reconstruction of

connectivity. It also improves the quality of the de-correlation. If

two channels are highly correlated, e.g. the connection among 1
and 2 in Fig. 7B, the de-correlation model lacks in accuracy for

small lags. Such artifacts disappear when the data are less

correlated after the WMA based noise suppression in the

preprocessing.

As a next example we switch to time-courses exhibiting an

oscillatory dynamics. As already seen in the Results (Temporal

correlation of the connectivity) the oscillitary system features a

stronger synchronicity than the 1=f distributed system and is thus

better suited for dipole simulation purposes. We first test the

robustness to thermal noise which is captured by the MEG device.

Basically, thermal noise detected by the instruments is typically

smaller than the neuronal signals [39,66]. Therfore, we tested

noise levels at 10%, 15% and 20% RMS compared to the

measured signal level. In Fig. 8B and C the results of the simulated

and reconstructed connectivity are shown. The estimated patterns

of the conventional beamformer procedure recover two out of six

possible connections without a subsequent de-correlation (Fig. 8A,

left) and three out of six possible connections with a de-correlation

step (Fig. 8A, right). The application of the noise suppression in the

WMA step increases the amount of the reconstructed patterns on

four out of six without de-correlation and five out of six with the

de-correlation (cf. Fig. 8C). Last, we vary the number of trials to

prove the stability of the functional connectivity in the context of

dipole simulations. Fig. 9 shows the analysis outcome for N~75,

150 and 300 simulated trials. As seen in the results before, the

patterns estimated with the weighted beamforming are more

reliant compared to the results of the conventional beamforming.

In particular, the outcome seems to be satisfactory when 150 or

more trials are used.

To conclude, we showed that our approach in the investigation

of phase synchronization is compatible with a source reconstruc-

tion based on the beamforming technique. For this purpose we

simulated MEG recordings while regarding side effects such as

brain noise and thermal noise under the assumptions that

orientation, location and the temporal properties of the connec-

tions are constant during each simulation. We then applied a

LCMV beamformer provided in FieldTrip [43] and customized it

slightly to our needs, e.g. we reconstructed single trials and

expanded the reconstruction procedure with a WMA noise

suppression in the preprocessing. We successfully demonstrated

the benefit of our suggested WMA filter in the context of

beamformer applications. Although we followed a more qualita-

tive path in examining some few but representative examples, we

are able to reveal the benefit of combining diverse approaches in a

stringent sequence of analysis.

Application to MEG data
Introduction to the MEG study. After successfully demon-

strating the simulation of dipoles based on synthetic data in the

Results (Dipole simulation), the method is now applied to a real

MEG study on processing of emotionally relevant stimuli

comprising the data-sets of 24 subjects [32]. The purpose is to

show that our proposed method also works with real data from

complex experimental paradigms and with data-sets which are

non optimal regarding the requirements for the estimation of

synchronization, such as data-sets with spatially averaged sources

and a low number of trials. [32] conditioned neutral faces with

aversive odor H2S (hydrogen sulfide, unconditioned stimulus)

labeled as Negative. In a Neutral control condition faces were paired

with odorless H2O (humid clean air, control stimulus). The

stimulus set consisted of 104 individual faces with a neutral facial

expression (50% male and 50% female). Each individual face was

shown from a lateral view (450, matched in left and right) and from

a frontal view. Thus, the conditioned stimuli consisted of 208
pictures in total. The conditioning procedure was divided into

three phases: pre-training, conditioning and post-training. During

the pre-training phase (denoted as Pre) an MEG was recorded

while the participants passively viewed the stimuli. All stimuli were

presented twice and in randomized order, i.e. participants viewed

2|208 faces. In the conditioning phase 52 (i.e. 26 frontal and 26
lateral) faces were paired twice with humid air and another 52
were paired twice with hydrogen sulfide. The post-training phase

(denoted as Post), which followed the conditioning phase, was

identical to the Pre phase. A more detailed description of the

experimental paradigm can be found in [32]. Steinberg and

colleagues [32] hypothesized that distributed affective networks

including the amygdala or the orbifrontal cortex would be

activated in processing of emotional stimuli earlier than 120 ms

after stimulus onset. They found a significant change of the source

power in frontal and occipito-temporal regions at early 50–80 ms
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and at 130–190 ms, and postulated an early functional modulation

of occipito-temporal regions by frontal areas [32]. As a possible

explanation for this rapid modulation they suppose three possible

mechanisms: first, a rapid modulation by the amygdala utilizing

direct projections from the sensory thalamus, second, involvement

of fast geniculo-cortico-cortical pathways as found in macaque and

humans (less than 50 ms), or third, a bypass of V1 involving the

superior colliculus and the posterior visual thalamus (extragenicu-

lostriate pathway) as observed in some blindsight patients.

Our aim is to reproduce their result, that is to find evidence for

an early directed connection between frontal and temporal

regions, while emotionally relevant stimuli are processed.

Ethics statement. The study of [32] was performed in

accordance with the Declaration of Helsinki, and approved by the

Ethics Committee of the University of Münster. All subjects gave

their written informed consent prior to their participation.

Methods in the MEG study. Starting point is a trial-based

spatially integrated minimum-norm estimate (L2-MNE, see [73])

of the frontal and the occipito-parieto-temporal regions on the

cortex of each subject. [32] preferred a minimum-norm recon-

struction to a beamforming approach because they used a group

average. A minimum-norm estimation allows a superficial,

spatially more smoothed reconstruction of dipolar activations

without a prior knowledge of the underlying dipole configuration

[73,74]. Data for lateral and frontal view of the faces were pooled

to gain more statistical power and afterwards bandpass filtered at

3–150 Hz (fourth order bi-directional Butterworth filter) to

exclude low frequent artifacts and to attenuate activations of the

Delta band. The pooled data-set consisted in average of 94:7+9:3
trials (maximum of 104 trials) and 480 time points, i.e. {200 to

600 ms with stimulus onset at 0 ms and a sampling frequency of

600 Hz. We had to exclude six subjects from our analysis because

of strong artifacts, especially in the initial pre-stimulus interval,

which is crucial for the FDR statistic. These might be a

consequence of the pre-processing, which includes many steps,

such as artifact rejection, de-trending, filtering and the inverse

mapping to source space, for details see [32].

Results of the MEG study. In the following we want to

discuss the outcome of our analysis depicted in Fig. 10. Shown is

the averaged connectivity i(t,t) across the 18 subjects between a

Figure 7. A Connectivity i(t,t) of the input data. Modified Rössler system with a 1=f spectrum is used as time-course of three sequentially chained
dipoles, cf. Table 1 and 2. N~150 trials were simulated with an additive uncorrelated sensor noise of 10% RMS. Brain noise is adapted by 50
uncorrelated, randomly located and orientated dipoles in the grey matter. B Connectivity of the reconstructed source activation with a conventional
LCMV beamforming method. C Reconstructed connectivity by applying a weighted LCMV in a preprocessing step: data in sensor space is filtered by a
linear weighted moving average in order to suppress thermal noise of the MEG device. The smoothed signals are mapped onto the cortex and the
functional connectivity among the reconstructed source activation is estimated. In B and C patterns are unprocessed (left) and processed by an de-
correlation on pattern level (right) as suggested in the Results (Pattern de-correlation).
doi:10.1371/journal.pone.0044633.g007
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temporal and frontal region before (Pre) and after the conditioning

process (Post). i(t,t) was estimated across the trials including a

moving average of DT~50 ms. The thresholding was done with a

FDR ratio of q~0:05. In patterns with contrasts a two-sided FDR

was applied. Thereby, contrasts were computed by subtracting the

corresponding connectivity patterns. The pre-stimulus interval

Figure 8. Influence of the additive noise level 10%, 15% and 20% RMS on the reconstruction of the connectivity. A Connectivity i(t,t)
of the input data (150 trials of a Rössler system), cf. Table 1 and 2. B Connectivity of the reconstructed source activation with a conventional LCMV
beamforming. C Reconstructed connectivity by applying a WMA filter on sensor data in a preprocessing step (WMA+LCMV). In B and C the patterns
are unprocessed (left) and de-correlated (right) as suggested in the Resutls (Pattern de-correlation). Significant improvements in the connectivity
reconstruction compared to the patterns of the conventional beamformer without de-correlation are marked by white solid circles.
doi:10.1371/journal.pone.0044633.g008
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from {100 ms to 0 ms was taken as a baseline. Values below

{100 ms were truncated to avoid influence of boundary effects in

the statistical thresholding. In some connectivity patterns there are

black cross-hairs indicating the center of mass in a cluster. The

numerical results are listed in Table 3.

By taking the contrast Post-Pre the direct change of connectivity

through the conditioning is uncovered (cf. rows of Fig. 10).

However, the subjects perceived each stimulus multiple times, i.e.

in this contrast mechanisms of adaptation and fatigue are not

respected at all. The adaption in perception to the stimulus is

visualized clearly between Pre Neutral and Post Neutral: in Post Neutral

the connectivity is lowered and lost significance entirely compared

to Pre Neutral. Analogously, the Pre Negative condition lost its

temporarily extended significance after the conditioning phase

except for a distinct cluster located at (73:4,3:8) ms in Post Negative.

This cluster demonstrates the early emotional modulation

indirectly, because it even survived the conditioning process

despite of fatigue and demotivation. The Post-Pre Neutral pattern

shows a slight, but non-significant decrease of connectivity in the

range of approximately 0–150 ms. This decrease can be regarded

as an effect of fatigue and demotivation. Looking at Post-Pre

Negative there remain two significant clusters with an increased and

decreased connectivity, confirming the main results of [32]. Owing

to the still included adaptation effect and background noise the

size of the significant region is rather small.

The contrast between Negative-Neutral takes effects such as

fatigue, demotivation or adaptation into account (cf. columns of

Fig. 10). Bearing in mind that the underlying activation is

generated by different sets of faces, this holds for the assumption

that the degree of adaptation has to be equivalent in the Neutral

and Negative manipulation. Pre Negative and Pre Neutral have both

extended connectivity in the post-stimulus interval up to 300 ms.

In both patterns one expects an identical activation because of an

equivalent stimulus processing before the manipulation phase. So,

for the contrast Pre Negative-Neutral one would expect no significant

cluster. However, this contrast still shows some distributed and

weak significant changes in connectivity probably caused by a too

high noise level. The pattern in Post Negative-Neutral illustrates the

change in connectivity regarding the Neutral baseline connectivity.

Within this contrast we can clearly reproduce the important

finding of [32], that there is an early significant increased

connectivity between frontal and temporal regions after the

Figure 9. Dipole simulation and reconstruction with Rössler oscillations as source activation with a variable number of N~75 (left),
150 (center) 300 trials (right). The data is simulated with additive uncorrelated sensor noise of 20% RMS and brain noise generated by 50
uncorrelated, randomly located and orientated dipoles in the grey matter. A Connectivity i(t,t) of the connected Rössler oscillators indexed with 1
and 2, cf. Table 1 and 2. B Connectivity of the reconstructed source activation with a conventional LCMV beamforming approach. C Reconstructed
connectivity by applying a WMA filter to reduce thermal noise captured by the MEG device on sensor data (WMA+LCMV). All patterns in b) and c) are
processed by removing exponentially decaying correlations as described in the Results (Pattern de-correlation).
doi:10.1371/journal.pone.0044633.g009
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conditioning phase. Here, a locally defined cluster emerges within

the pattern at (64:5,7:4) ms as listed in Table 3.

In the last step a meta-contrast, i.e. a contrast of two contrasts,

was estimated by computing the differences Post Negative - Pre

Negative - (Post Neutral - Pre Neutral). Both, the direct change of

connectivity due to a manipulation with hydro sulfide by (Pre-Post)

and fatigue during the manipulation (Negative-Neutral) are consid-

ered in this contrast. Within this pattern a pronounced increase

emerges in the post stimulus up to 100 ms between frontal and

temporal areas. Further, a weak barely significant decrease is

located at about 200 ms from temporal to frontal direction.

Unfortunately, the background noise level is increased by

generating two contrasts in such way that the significant cluster

located at (58:8,5:0) ms is small.

We also cross checked our results with surrogate data as a null

distribution for the FDR. The surrogate data were generated by a

randomization of the phase as suggested by [1]. A threshold based

on the pre-stimulus seems more reliable and stable as the one

estimated by surrogate data (Fig. 11A). As already discussed in the

Methods (Mutual information of the phase) the pre-stimulus

baseline is more conservative compared to surrogate data. Further,

we tested several heuristic functions for the de-correlation step

(exponential, Gaussian and power law) and found that the results

in contrasts are almost identically Fig. 11B. When not using the

contrast of two conditions an exponential or power law is

preferable (see Fig. 11A). Compared to surrogate data the

statistical outcome is more conservative, i.e. it is less sensitive to

functional connections.

Conclusion of the MEG study. To conclude this section, we

were able to measure the early significant connectivity between the

frontal and temporal region as depicted in Fig. 10. Moreover, we

successfully applied our proposed de-correlation technique of the

Results (Pattern de-correlation) and additionally showed that the

estimation of simple contrasts leads to satisfactory results with a

meaningful interpretation: We could deal with mechanisms such

as adaptation or fatigue. The meta-contrast, which includes

important side-effects such as baseline activation and fatigue,

contained a small but robust significant increase of synchronicity.

Figure 10. Data from the MEG study of [32] in processing of olfactorily conditioned faces. Shown is i(t,t) for 3–150 Hz in terms of the
functional connectivity between a temporal and frontal cortical area during a passive viewing of faces with neutral expression. The interval {100–
0 ms was taken to estimate a statistical threshold with a FDR ratio of q~0:05. Significant changes are marked by white dots. The patterns were de-
correlated with f (t; c1,c2,c3)~c1zc2tc3 . The rows are given by a Negative conditioning with H2S and a Neutral control with H2O. In the contrast
Negative-Neutral the processing of faces is compensated by subtracting the Neutral baseline. The columns denote connectivity before conditioning
(Pre), after conditioning (Post) and the contrast Post-Pre, which shows the change in connectivity through the conditioning process. Cluster locations
are calculated by the center of gravity and marked by cross hairs. Numerical values of the location are listed in Table 3.
doi:10.1371/journal.pone.0044633.g010

Table 3. Connectivity in processing of conditioned stimuli.

Pre Post Post - Pre

t [ms] t [ms] t [ms] t [ms] t [ms] t [ms]

Neutral extended no no

Negative extended 73:4 3:8 62:5 5:0

Negative 216:6 {2:0

Negative -
Neutral

177:5 {17:4 64:5 7:4 58:8 5:0

Negative -
Neutral

323:7 {5:0

Negative -
Neutral

425:9 11:7

Numerical values of some cluster locations shown in Fig. 10. Each coordinate t

and t specifies the centroid of mass of the corresponding significant cluster.
The time t denotes the time after stimulus onset. Here, the directivity is
expressed by the sign of the delay time: tw0 describes a connectivity from
frontal to temporal and tv0 from temporal to frontal. The conditions Pre, Post,
Neutral, Negative and the corresponding contrasts are arranged in the same
way as the patterns of connectivity displayed in Fig. 10.
doi:10.1371/journal.pone.0044633.t003
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Figure 11. Impact of different types of de-correlations and baselines on a) the connectivity pattern Post Negative and b) the contrast
Post Negative - Pre Negative - (Post Neutral - Pre Neutral). Four types of de-correlation were implemented: None without any de-correlation,
Exponential with f (t; c1,c2,c3)~c1zc2 exp (c3t), Gaussian with f (t; c1,c2,c3)~c1zc2 exp ({c3t2) and Power law with f (t; c1,c2,c3)~c1zc2tc3 . Data
from the interval {100–0 ms provides a baseline for the FDR threshold in Pre-Stimulus. As an alternative approach Surrogate data was estimated by
destroying correlation in phases. Significant higher connectivities are marked by white dots.
doi:10.1371/journal.pone.0044633.g011
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Unfortunately, significant regions particular within the contrast

patterns were small. Especially the contrast patterns suffered from

a further reduced signal to noise ratio by subtracting signals. There

are several reasons for the weak effect in functional connectivity:

The experimental paradigm was designed in such a way, that the

discrimination between the neutral and aversive stimuli was

challenging for participants. The paradigm included the large

number of 104 individual faces and lasted for about 60 min.

Further, we had to deal with small data-sets, which consisted in

average of 95 trials per subject and condition after pooling data

from the lateral and frontal view. All in all, we were able to

demonstrate that there is a significant increase in phase

synchronization directed from the frontal to the temporal cortex

at 59 ms. Descriptively, one can observe a tendency for a change

in connectivity at about 130–190 ms, but this effect missed the

threshold of significance.

Discussion

Summary
In our study we combined three crucial aspects into a universal

and powerful tool for analyzing phase synchronization in terms of

a functional connectivity among cortical activations in MEG. First,

we implemented the mutual information of the phase as a measure

of nonlinear phase synchronization [1] using efficient and adaptive

techniques suggested by Kraskov et al. [2]. We further embedded

the mutual information in our approach of connectivity patterns

with a time and delay dimension [3]. Second, we proposed an

efficient method to deal with correlated data which addresses an

essential problem in MEG recordings. This de-correlation

operates on the pattern level and was verified regarding its

robustness on instantaneous noisy mixtures of synthetically

generated data with an a-priori known connective structure.

Third, we tested the compatibility of our analysis approach with

the beamforming technique for MEG. This was done by the

simulation of dipolar sources with a-priori known connectivity. In

our simulations we also considered random brain noise and

thermal sensor noise. We additionally suggested a noise suppres-

sion by a linear WMA filter as an intermediate step in the

beamforming sequence. This combination increases the perfor-

mance of the beamformer regarding the reconstruction of the

underlying connectivity. Finally, our approach was applied on an

MEG group study of Steinberg et al [32]. Although this data did

not suite our requirements in an optimal way, we were able to

uncover an increased synchronicity between frontal and temporal

areas which confirmed the hypothesis of Steinberg and colleagues

[32].

Because we are interested in the synchronicity with high

temporal accuracy among neuronal populations in the human

brain, non-invasive techniques such as MEG mark a good starting

point. The phenomenon of synchronization plays a crucial role as

a fundamental mechanism in neuronal communication [22]. In

the exploration of synchronization we want to make as less

assumptions as possible. On the one hand cognition can generally

be understood as a nonstationary process, which is additionally

impacted by intrinsic and instrumental noise. Therefore, the

detection of synchronicity demands an average across trials. On

the other hand the coupling mechanism as well as the spectral

properties of the signals are assumed to be generally unknown, i.e.

we take nonlinear interactions in the coupling into account and we

consider all types of spectral properties from a peaked spectra to

broad-banded spectral distributions. Both requirements – the

estimation across trials as well as the analysis of a unknown

dynamics – are respected by the mutual information of the phase.

The mutual information is both sensitive to all types of interactions

and it still converges with few data points if it is customized to ones

needs. Therefore, we combined dedicated techniques as suggested

by Kraskov et al. [2] with an additional moving time window.

Besides the unknown types of interactions, we also did not assume

any temporal properties, i.e. arbitrary underlying connective

structures were addressed by a parametric time-delay following

our previous suggestions [3].

The application of our approach on cortical activations from

MEG recordings brought some further challenges: Inverse

techniques are supposed to map the data back onto the cortex,

but the reconstructed source waveforms contain correlations

caused by an imperfect separation of the sensor data. Because

we were interested in high reliability, we proposed a de-

correlation method to remove partially mixed sources within

the estimated connectivity patterns. Our de-correlation approach

was efficient and easy to implement: For testing purposes the

performance was evaluated with linear combinations of sources.

We applied the baseline as a pre-stimulus interval assuming that

it holds no underlying connectivities across the trials. Even a

possible underlying connectivity within the pre-stimulus would be

destroyed in a trial average, because the time interval between

two stimulus on-sets is usually randomized. Therefore, the

correlation within the pre-stimulus interval describes a decaying

function regarding the time-delay, which is simply subtracted

from the whole pattern to remove the influence of the

instantaneous mixing. Heuristic exponential or power-law func-

tions produced suitable results in the de-correlation procedure.

We also compared our de-correlation to a source separation by

ICA and found that our approach delivers higher stability and

reliability in strongly correlated and noise-contaminated mix-

tures. Further, we claim that our de-correlation approach can be

termed as an adaptive and universal method: It is adaptive

because it is able do deal with arbitrary correlation lengths. The

correlation length is typically determined by properties of the

underlying process, e.g. specific frequencies or the intrinsic

friction. The de-correlation is universal because it is independent

of the underlying data, the method of phase synchronization and,

when applied on patterns of reconstructed cortical sources,

independent of the inverse technique.

Phase lag index
We encountered the issue of volume conducting by the use of a

dedicated de-correlation step of the proposed connectivity

patterns. Techniques such as the phase lag index (PLI) and the

improved version called weighted phase lag index (WPLI) also

consider correlations caused by instantaneous mixtures [21,75].

Both methods are basically modified versions of the phase

coherence [19,20]. The PLI as well as the WPLI measure the

asymmetry of the phase difference among sources. The main idea

is to make use of the fact that instantaneous mixtures exhibit a zero

phase difference among non-delayed sources, i.e. a distribution of

phase differences with a zero median is exclusively generated by a

volume conduction and shall not contribute to the overall

synchronization. In our method we explicitly compute time lagged

interactions among sources without a restriction to zero delay

values or a specific order of synchronization n:m. We also do not

explicitly exclude sources with a zero phase difference. Instead we

gain knowledge of the impact of volume conducting by the help of

a pre-stimulus baseline. However, the price of a higher generality

is probably paid with higher computation time of the mutual

information.
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Limitations
Next, we want to discuss some limitations of our proposed

methods: As universal and versatile the mutual information is

regarding the sensitivity to possible interactions on the one hand as

non-specific it is on the other hand. If one is explicitly interested in

the order of synchronization other techniques such as the ones

proposed by [22,23,76] or [31] are beneficial, but lead to a higher

dimension of the solution space. Because we followed a statistical

approach, i.e. a synchronous regime at a specific time is detected

by averaging over many repetitions, one implicitly assumes no

changes of the underlying mechanisms across the trials. During

data acquisition a decreasing level of vigilance might be a problem,

if the processing strongly depends on such influences. Besides

fatigue a subject might adapt to specific stimuli. In the Results

(Application to MEG data) we already demonstrated that a

contrast with a further control condition can help compensating

effects of fatigue in a conditioning procedure. However, a contrast

can equalize the level of synchronization but it cannot compensate

a topological or temporal change of the involved network during

the data acquisition.

So far, the statistical rating was implemented by a voxel-wise

FDR on pattern level. A region-wise FDR control on a cluster level

such as proposed by Chumbley and Friston [77,78] could be

applied on a pattern level as well as for a comparison across many

patterns in an extended network to reduce the amount of false

positive results.

Our proposed de-correlation step does not respect a back-

ground synchronicity caused by stationary resting state activities

within the pre-stimulus interval. An increased synchronization

caused by a resting state would result in a decreased and thus more

conservative estimation of synchronization in the post-stimulus

interval. Unfortunately, the pre-stimulus interval cannot be

substituted effortlessly by a baseline using trial-shuffling as used

e.g. by Vicente et al. and Wibral et al. [28,79]. The reason is that

the important auto-correlative part caused by the linear superpo-

sition in the instantaneous mixture is destroyed by the shuffling

procedure. However, we found no pre-stimulus artifacts caused by

a spurious resting state in the data of Steinberg and colleagues

[32]. In future work it would be of relevance to investigate the

quantitative impact of spurious resting state activities in the pre-

stimulus interval on our proposed de-correlation step.

We followed a data-driven approach to avoid restrictive

assumptions regarding the investigated process. As most of the

data-driven approaches the mutual information belongs to the

class of measures termed as functional connectivity. Such are

conceptually limited to correlative statements, i.e. a common

driver of two source results in a correlation among the two driven

sources. In contrast, effective connectivity [47] enters a causal

relationship as defined by Wiener [80]. For example two processes

indexed with l and k are said to be connected in a causal fashion, if

including additional knowledge of the past of l improves the

prediction of the future of k. In this case information is transferred

from l to k. In the next section we will briefly discuss some

methods measuring effective connectivity in MEG.

Granger causality and dynamic causal modeling
In neuroscience the most popular model-based methods in

quantifying effective connectivity can be categorized into two

general classes, namely Granger causality (GC) and dynamic

causal modeling (DCM). Such methods are capable of assessing a

causal relationship across cortical sources. In the following we give

a brief overview of the two methods and emphasize the differences

to our approach. GC based techniques are defined either in the

time-domain by a linear regression model [81] or in the frequency-

domain by a spectral transfer function [82,83]. Both approaches

are generally restricted to linear interrelations and assume a

stationarity of the underlying process. Further, GC is sensitive to a

high level of noise [28,84]. Sources including a memory structure

cause problems in the case that they are partially correlated and

differ in their channel noise. Especially, these constraints are

typically present in imperfect source separations of EEG or MEG

recordings and lead to false positive detections of causality [85]. As

a parametric model-based approach the model has to be chosen

carefully and has to be matched to the investigated system in terms

of the underlying dynamics and its network topology. In case of

model misspecification, a bias in causality might occur.

DCM was originally introduced by [69] in the context of

causality analysis in fMRI. In contrast to GC, DCM is a more

physiologically driven approach and belongs to the Bayesian

framework. The main idea behind DCM is to choose the most

plausible among a variety of generative models by the explanation

of the observed data. To select the best among the competitive

models the evidence is computed, which incorporates the accuracy

and the complexity of the model [86]. The models are based on a

network of distributed sources including physiologically motivated

parameters [87]. Recently, DCM has also been expanded to MEG

and EEG recordings [54,88] by considering parametrized

connections among and within sources and a neural-mass model

based upon the Jansen-Rit model [52]. Such models are capable of

generating event-related responses, but are much more sophisti-

cated compared to models used for fMRI data. However, a DCM

analysis demands prior information about the investigated system:

First, the cortical dynamics has to be emulated explicitly in a

physiologically realistic manner. So far, this is usually achieved by

deterministic models. Because of the complexity of the system

stochastic models including intrinsic brain noise should be taken

into consideration [89]. Second, a family of competitive networks

has to be predefined, i.e. the topology of sources and connections

among them is hypothesis driven. Third, an input given by the

stimulus has to be modeled as an explicit modulation of

connections within the proposed system.

Both GC and DCM are capable of assessing the effective

connectivity among cortical regions in terms of a causal

relationship. But both method underlie strong model assumptions

regarding the interrelations among sources and the topology.

Especially the last aspect might be a problem in more exploratory

studies. A data-driven approach, such as the one proposed in this

work, could be used as a profitable complement to a model driven

approach by supporting a pre-selection to match the model

topology or as a prior in a Bayesian framework.

Transfer entropy
With the mutual information we are able to detect nonlinear

correlations shared among bivariate data which can be classified as

a functional connectivity. In our approach the symmetry between

driver and response is addressed by a parametric time-delay in

terms of a delayed covariation among phases. Of course, with this

approach a common driver leads to a false positive connection

among two driven systems. As a measure of effective connectivity

the transfer entropy (TE) is capable of detecting interactions in a

causal sense as stated by Wiener [80]. It breaks the symmetry of a

common driver by considering a conditional probability in the

definition of the entropy, which includes past states of the system

as an explicit side condition [90]. This expansion leads to a higher

dimension of the probability density function resulting in a more

challenging computation of its estimator. Gómez-Herrero et al.

[91] generalized the approach of Kraskov et al. [2] for estimation

of a time-dependent TE. They proved their approach with an
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autoregressive process (AR) and data from an electronic circuit

based on two unidirectionally coupled nonlinear Mackey-Glass

circuits. Vicente et al. tested the TE on instantaneous mixtures

and applied it to MEG recordings on a sensor level of a self-paced

finger lifting [28]. They demonstrated that the TE, which is

formally a specific case of the mutual information, is capable of

detecting strong nonlinear interactions such as quadratic or

threshold nonlinearities in AR processes. Vicente et al. and

Wibral et al. encounter the problem of partially correlated time-

series, which reduce the specificity of the method, by comparing

the TE of a shifted with a non-shifted time-series [28,79].

Vakorin et al. address this issue with the help of a multivariate

form. Their approach is based on a conditional mutual

information which includes sources from the environment and

leads to a more robust result than the bivariate approach [92]. In

the studies of Wibral et al. [79] as well as Vakorin et al. [93] the

TE was applied on reconstructed sources by using a broad-band

time-domain beamformer. However, both studies did not focus

on the signals’ phases and instead applied a time-delayed

embedding of the time-series in a higher dimensional space as

proposed by Takens [94]. The combination of the TE of the

phases could also be promising because this would allow the

assessment of an directed synchronization and is thus in general

robust against a common driving. Moreover, the application of

the TE on the phase should be less demanding because on the

one hand a smaller amount of data is required and on the other

hand the TE on the phase could be implemented more easily. In

general, the idea of a connectivity pattern could also allow an

efficient de-correlation of the connectivity used in the framework

of the TE.

Conclusions and outlook
In this study we demonstrated that a customized measure of

functional connectivity on the basis of the mutual information of

the phase is applicable on MEG recordings. It allows the detection

of phase synchronization without any assumptions regarding the

underlying mechanisms. In particular we turned our attention on a

time-dependency of the connectivity, which requires an efficient

computation across trials. Following a data-driven way of analysis

we decided to use FDR control in the pre-stimulus interval. Beside

the statistical rating the pre-stimulus interval also allows an elegant

and efficient way of removing correlations caused by an

instantaneous mixing of the data. Because partial correlations

are an inherent problem in MEG recordings our technique is of

high practical relevance. We also verified our approach on

simulations of MEG recordings to point out the feasibility of our

method in combination with the beamforming technique. Finally,

we tested our approach to an MEG group study in processing of

emotionally relevant stimuli. Although the data was far from

optimal regarding the requirements of our method, we were able

to underpin a postulated connection between frontal and temporal

region. To summarize, we contributed in closing the gap between

methodical and practical aspects of the analysis of functional

connectivity within the human brain. Our approach holds a lot of

potential for future works: On the methodical side, our approach

can be refined by expanding the estimator of mutual information

with an estimator of transfer entropy, which allows the detection of

an effective connectivity. On the experimental side, this form of

analysis can be used for MEG recordings.

Acknowledgments
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