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Abstract

EEG/MEG source localization based on a ‘‘distributed solution’’ is severely underdetermined, because the number of sources
is much larger than the number of measurements. In particular, this makes the solution strongly affected by sensor noise. A
new way to constrain the problem is presented. By using the anatomical basis of spherical harmonics (or spherical splines)
instead of single dipoles the dimensionality of the inverse solution is greatly reduced without sacrificing the quality of the
data fit. The smoothness of the resulting solution reduces the surface bias and scatter of the sources (incoherency)
compared to the popular minimum-norm algorithms where single-dipole basis is used (MNE, depth-weighted MNE, dSPM,
sLORETA, LORETA, IBF) and allows to efficiently reduce the effect of sensor noise. This approach, termed Harmony,
performed well when applied to experimental data (two exemplars of early evoked potentials) and showed better
localization precision and solution coherence than the other tested algorithms when applied to realistically simulated data.
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Introduction

The EEG (electro-encephalography) method is based on

amplifying and recording weak electrical currents produced by

an active brain. Compared to other brain-imaging methods EEG

is truly non-invasive and inexpensive. EEG, along with its

‘magnetic’ cousin MEG, is the only non-invasive brain-imaging

method that has high-enough temporal resolution to track the full

dynamics of brain events. Because the method has a limited spatial

resolution EEG was not considered to be an ‘imaging’ technique

until recently. Skull has low conductivity compared to adjacent

head tissues which strongly diffuses electrical currents generated by

brain activity. The problem of reconstructing brain activity from

its blurred image recorded by sensors positioned outside of the

head is an example of the inverse problem termed ‘‘source

localization’’.

Source-localization includes the two steps: creating a head

model which describes how the head volume conducts electrical

current, and fitting the model into the recorded data. Since the

introduction of the MRI technique anatomical aspects of head

modeling have became more manageable (tissue conductivities still

remain a topic of debate as discussed in chs. 4 and 6 of [1] and also

in [2–5]), and many source-localization algorithms based on fairly

realistic boundary element (BEM) and finite element (FEM) head

models have been proposed ([6–8], for examples).

The localization results also strongly depend on what technique

is used to fit the observed data. The focus of this study is on the

‘distributed’ or ‘nonparametric’ type of the inverse solution, where

thousands of current dipoles (sources) at fixed locations are used to

fit the data using the minimum-norm (L2) metric. The purpose

was not to propose a new golden standard, but simply to show how

choosing the source basis made of globally smooth functions

improves source reconstruction within the L2 norm framework.

Such choice can be considered as the first step in more complex

source localization algorithms (see the Discussion). Conversely, a

‘parametric’ or equivalent source dipole (ECD) solution finds

unknown locations for a small number of source dipoles. The main

advantage of the ‘distributed’ L2 solution is that after fixing the

dipole positions the forward problem becomes linear (defined in

terms of the forward matrix G), and can be easily solved by

inversion. The drawback of this approach is that the inverse

problem is hugely underdetermined. In physical terms, infinitely

many different source combinations can produce the observed

distribution of potential on the scalp. In mathematical terms, the

number of independent signals spanning the signal space, which is

less than the number of EEG/MEG sensors due to the sensor

cross-talk [9] is much smaller than the number of the fitted dipole

amplitudes spanning the source space (*10,000). Hence only a

small number of vectors in the source space equal to the number of

uncorrelated signals are effectively chosen by the linear inverse to

span the solution, which is strongly affected by this choice. The

most direct choice of the solution subspace is to use the rows of G,

the approach termed ‘‘minimum norm’’ [10,11]. This popular

approach which in its most basic form reduces to the Moore-

Penrose pseudoinverse produces the lowest total power of the

source currents in the solution because it excludes any source

combinations falling within the null-space of the forward matrix G.

Many source localization algorithms (e.g., MNE [11], WMNE

[11,12], LORETA [13], sLORETA [14], dSPM [15], LAURA

[16], FOCUSS [17]) are derivatives of this approach [8,9,18].

Here a new approach to EEG/MEG source localization,

termed Harmony, that improves on some of the existing

techniques is described. In addition to showing superior perfor-

mance the proposed approach has a number of practical
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advantages: it easily interpolates the solution onto any cortical

mesh and describes brain activity in the form of a spatial spectrum,

analogous to the widely used temporal (Fourier) spectrum. The

goal of this study was to show that source reconstruction in a small

basis set comprising global smooth functions, such as spherical

harmonics or spherical splines, significantly improves the source

reconstruction quality as compared to the commonly used basis set

of tens of thousands discrete cortical dipoles. To make it a fair

comparison, algorithms with this commonly used basis set and a

bare minimum of extra features (depth-weighting and spatial

smoothing) were compared to Harmony: MNE (minimum-norm),

WMNE (weighted minimum norm), IBF (Informed Basis Func-

tions) [19], and LORETA. Effects of the solution normalization

(dSPM, sLORETA) were also considered. Various additional

manipulations, such as iteratively re-weighting the solution or

choosing the solution’s prior within the framework of empirical

Bayes approaches [17,20–24] were not considered here because

from the practical point of view these manipulations are separate

from choosing the basis set for source reconstruction and can be

later used to augment Harmony as well as other algorithms.

The idea of using a small (sparse) basis set to fit EEG/MEG

data was previously investigated in the contexts of both the

‘distributed’ and ‘parametric’ algorithms, where, eventually, a

small set of source dipoles was sought. For the ‘distributed’

approach, iterative schemes where source dipole weights at a given

iteration are chosen based on the results of the previous iteration

were used to truncate the resulting number of active sources to a

small number, e.g., the FOCUSS algorithm [17,25]. For the

‘parametric’ approaches MUSIC and RAP-MUSIC algorithms

[26,27] were proposed to resolve the critical issue of choosing the

‘correct’ number of dipoles. Preprocessing of raw data by the

Independent Component Analysis (ICA) was used to reduce the

number of simultaneously fitted dipoles [28]. When applied to the

localization of simulated [29] and real local sources [30] the

method showed good results. To better the fit while staying within

the framework of parametric algorithms source dipoles were

sought to be replaced by source multipoles [31,32] or local source

patches [33–36]. These approaches essentially aim to fit not only

the location but also local bulk properties of current sources such

as their spatial extent and curvature. In a certain sense the

approach proposed here applies the same ideas globally by

treating each cortical hemisphere as a single extended source with

known (cortical) curvature and extent and unknown distribution of

activity across its surface.

Results

Results of source reconstructions for simulated and real EEG

data are presented in Figures 1–10. Error bars in all plots represent

95% confidence intervals for the plotted value. As described in

detail in the Materials and Methods section the simulations used

two types of sources: single-dipoles and extended 37-dipole

patches, and two types of reconstructions: with and without

dipoles being constrained to be orthogonal to the cortical surface.

In either case the actual simulated sources were orthogonal to the

cortex. Typically, three types of reconstructions are compared in

each figure: single-dipole orientation-constrained, extended patch

orientation-constrained, and extended patch unconstrained. Sin-

gle-dipole unconstrained reconstructions did not show anything

beyond what can be seen from the analysis of the remaining three

cases and are not discussed. In addition, the two simulated source

patches were located either in different cortical hemispheres or in

the same hemisphere. Only surface bias (SB) and area under the

ROC curve (AUC) metrics could be applied in the latter case (see

Materials and Methods for explanation), the corresponding results

are shown with hashed bars in Figures 5 and 8.

Qualitative comparison
Figure 1 illustrates representative source reconstructions pro-

duced by the tested algorithms for two source configuration. A

configuration with sources positioned in opposite cortical hemi-

spheres is shown in the top row, a configuration with sources in the

same hemisphere – in the bottom row. In the top row the left-

hemisphere source was twice the amplitude of the right-

hemisphere source, in the bottom row the top source was twice

the amplitude of the bottom source. The source patches are shown

by the green shapes overlaid on the inflated cortices. In this and

following figures HRM, SPL, IBF, LRT, MNE, WMNE stand,

respectively, for Harmony in the basis of spherical harmonics,

Harmony in the basis of spherical splines, Informed Basis

Functions, LORETA, MNE, and weighted MNE algorithms.

Normalized MNE reconstructions (dSPM and sLORETA) were

Figure 1. Representative reconstructions of two source configurations (different hemispheres - top row, the same hemisphere -
bottom row) by the tested algorithms. The results are shown on the inflated cortices: the 37-dipole source patches are shown by the green
patches, dipole orientations for the sources and the solutions were constrained to be orthogonal to the cortical surfaces in this case. Color indicates
amplitude and direction of cortical currents: inward – cold, outward – hot. Numbers underneath each panel give AUC measure of the reconstruction
quality as given by (23).
doi:10.1371/journal.pone.0044439.g001

EEG/MEG Source Localization by Spherical Harmonics
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not shown in Figure 1, they were similar to the MNE

reconstructions with less surface bias and more spatial dispersion

[37]. Orientation-constrained reconstructions are shown here

because they allow to illustrate differences between the solutions in

a simple manner by using colormap to represent both magnitude

and direction of the current dipoles: cold colors for inward

currents, hot colors for outward currents. The colormap was

scaled optimally for each algorithm’s result and hence the activity

patterns are shown on various scales; Harmony reconstructions

had the largest dipole amplitudes, MNE reconstructions - the

weakest.

The two Harmony solutions (spherical harmonics, HRM, and

spherical splines, SPL) clearly stand out. Harmony produced

coherent smooth solutions located close to the sources and without

an apparent surface bias. The spherical harmonics and spherical

splines solutions look very similar. The splines solution appears to

be slightly ‘tighter’ but also slightly less coherent: it shows some

artefacts of the spline ‘mesh’, where the centers of several

neighboring splines appear as ‘grains’ inside the left hemisphere

hotspot.

The remaining algorithms produced visibly incoherent solutions

characterized by stripes of activity aligned along gyri with

alternating ‘hot’ and ‘cold’ colors corresponding to alternating

outward and inward cortical currents. Note that these artefacts

would not be apparent if the solutions were displayed on folded

cortical surfaces using a colormap indicating only the absolute

values of the current and not its direction, which is a common

practice. The local alternations in the current’s direction similarly

exist in orientation-free reconstructions but are less apparent in

this case because the dipole magnitudes may vary fairly smoothly

even as their directions vary abruptly across cortical surface.

The stripy appearance is a well known tendency of distributed

solutions [16,38] which result from two factors, both related to the

minimum-norm constraint: (i) the surface bias of the solution

favoring gyri, and (ii) the sign reversal across sulci. The surface bias

artifacts were prominent even though WMNE, LORETA, and

IBF algorithms biased solution to deeper sources via the same

depth-weighting prior (15). To explain why without a smoothness

constraint (MNE, WMNE) or with insufficient smoothness

constraint (LORETA, IBF) the solution shows the characteristic

sign reversal across sulci one needs to consider that a minimum-

norm (minimum power) solution precludes currents located

nearby in space having opposite directions because in this case

they mutually cancel. For sources inside a sulcus this means that

their sign must switch abruptly (from inward to outward or vice

versa) between the opposite banks of a sulcus in order for the

currents not to oppose each other.

Next to each reconstruction the corresponding AUC metric is

shown, the metric is discussed in detail in the next section. It is

worth noting that for the case of small source patches presented

here the metric can vary significantly with only little visually

apparent difference between the solutions (compare HRM and

Figure 2. Localization errors for the tested algorithms. The
localization error is plotted along the x-axis. The percentage of sources
reconstructed with localization error smaller than a given x-value is
plotted along the y-axis. Results for different source configurations
(illustrated by the insets) are shown in the corresponding panels.
doi:10.1371/journal.pone.0044439.g002

Figure 3. A map of Harmony localization errors based on the results of a single source simulation. Colored spots mark tested locations,
spot colors indicate the localization error as given by the colorbar. Cyan colored spots (cyan is not represented on the color bar) mark sources which
could not be localized significantly above chance level.
doi:10.1371/journal.pone.0044439.g003

Figure 4. Amplitude ratio between the left and right recon-
structed sources. The dashed line indicates the true amplitude
ratio = 2 between the two simulated sources. Results for different
source configurations (illustrated by the insets) are shown in the
corresponding panels.
doi:10.1371/journal.pone.0044439.g004

EEG/MEG Source Localization by Spherical Harmonics
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SPL reconstructions). Also, the metric does not penalize incoher-

ent solutions (compare HRM and LRT reconstructions).

Quantitative comparison
Six measures defined in the Materials and Methods section were

used to compare the quality of source reconstructions among the

tested algorithms. All six measures were used for configurations

with sources in different hemispheres. Only the surface bias, SB,

and area under the ROC curve, AUC, measures were used for

configurations with sources in the same cortical hemisphere. The

remaining measures could not be used without somehow defining

which activated dipoles reconstruct what simulated source. When

the sources were in different hemispheres only the dipoles

belonging to the same hemisphere were used for each source.

When the sources were in the same hemisphere no such obvious

classification could be made.

Localization error, LE. The localization error (LE) results

are shown in Figure 2. The LE value given by (17) is plotted along

the x-axis, and the percentage of sources localized with a smaller

error than the given x-value is plotted along the y-axis. From left to

right the three panels display results for the single-dipole

orientation-constrained, 37-dipole orientation-constrained, and

37-dipole unconstrained reconstructions respectively. These three

configurations are illustrated by the cartoons shown at the top of

each panel.

Both the spherical harmonics and spherical splines Harmony

algorithms demonstrated superior performance compared to the

other tested algorithms. The advantage was particularly large for

the extended patch configurations and for those sources which

could be localized with better than 3 cm accuracy. This is

important given that practical significance of reconstructions with

larger localization errors is questionable.

Removing the orientation constraint somewhat decreased

localization errors of all algorithms except IBF. The improvements

were particularly significant for WMNE. Although the uncon-

strained solution had less localization error it was characterized by

a significantly larger surface bias (Figure 5).

Localization error map. Figure 3 displays a map of

localization errors for the Harmony algorithm (spherical harmon-

ics and splines produced almost identical results). This map can be

used as a rough estimate of the reliability of source localization

over cerebral hemispheres. Unlike the rest of the simulations this

map was calculated for a single cortical source. The source was the

37-dipole patch, its dipole strengths were set in the same way as for

the two-source simulations, i.e., to produce 10–12 mV EEG

potentials for superficial sources. The source was positioned at the

nodes of a uniform grid (4th subdivision of icosahedron, 2,562

nodes) covering each hemisphere. Experimental noise was added

the same way as for the two-source simulations. Orientation

constraint was used for the solution. The localization error (LE) at

the tested locations is indicated by colormap in Figure 3. ‘Hot’

locations mark large localization errors, ‘cooler’ locations mark

smaller errors.

From the practical point of view it is useful to know where the

reconstructions were not significantly better than chance. This

statistical measure was computed by comparing localization results

for the simulated signal (plus the added sensor noise) to localization

results for noise-only data. For the latter case the simulated signal

was subtracted from the dataset and only the added sensor noise

was present prior to source reconstruction. The LE measure was

calculated as given by (17).

Reconstructions for a given source location were considered to

be significantly better than chance if the signal+noise LE was less

than that for the noise-only LE for 95 or more of the 100 added

noise samples used in the simulation. On average, 20% of the

simulated source locations did not pass the significance test. These

‘non-reconstructable’ source locations were predominantly inside

the insular cortex and on the medial walls of both cortical

hemispheres, where sources are deep, cortical surfaces touch, and

therefore the solution is particularly ambiguous. Cyan-colored

spots mark such locations in Figure 3.

Amplitude ratio AR. The amplitude ratio measure AR given

by (18) quantifies how well the relative source strength between the

left and right sources was reconstructed. The true ratio was 2,

which is indicated by the dashed line in Figure 4. Mean AR values

averaged over all 2-source configurations are shown in Figure 4.

Overall, Harmony reconstructed the true amplitude ratio the best

among the tested algorithms. MNE had a comparable perfor-

mance.

Surface bias SB. The surface bias measure SB given by (20)

Figure 5. Surface bias (SB) comparison among different
algorithms. Results for different source configurations (illustrated by
the insets) are shown in the corresponding panels. Solid bars show
results for sources in different cortical hemispheres, hashed bars -
results for both sources in the same hemisphere.
doi:10.1371/journal.pone.0044439.g005

Figure 6. Coherence COH measure for the tested algorithms.
Results for different source configurations (illustrated by the insets) are
shown in the corresponding panels.
doi:10.1371/journal.pone.0044439.g006

Figure 7. Congruency (width – error correlation) CON measure
for the tested algorithms. Results for different source configurations
(illustrated by the insets) are shown in the corresponding panels.
doi:10.1371/journal.pone.0044439.g007

EEG/MEG Source Localization by Spherical Harmonics
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is shown in Figure 5. MNE algorithm produced the strongest

surface bias (25–30%), while the remaining algorithms produced

biases in the range of 10–25%. Differences between the

configurations with sources in different hemispheres (shown with

solid bars) and those with sources in the same hemisphere (shown

with hashed bars) were not very significant. Overall, the same-

hemisphere configurations were reconstructed with a slightly

stronger surface bias for orientation-constrained sources. Smaller

biases were expected for IBF, WMNE, and LORETA, where

depth-weighting prior (15) biasing solution toward deeper sources

was used. When used without such depth-weighting prior SB

measures for these algorithms were as high as those for MNE (not

shown).

More surprisingly, both Harmony algorithms showed relatively

small surface bias even though no depth-weighting prior was used

in this case. Apparently, Harmony reduces the surface bias by

constraining the solution to be smooth - much more so than IBF

and LORETA. This forces the solution to extend deep into the

sulci. Depth-weighting can increase localization error instead of

decreasing it (compare MNE and WMNE results in Figures 2 and

8). This is not surprising given that such a prior indiscriminately

biases solution inward even for those locations where it is not

justified. Thus, the ability of Harmony to decrease the surface bias

without resorting to depth-weighting is noteworthy.

Comparing the middle and right panels in Figure 5 one can see

that removing the orientation constraint produced significantly

stronger surface bias for all algorithms except MNE. The

localization error was somewhat smaller for orientation-uncon-

strained solutions (Figure 2), hence, although the unconstrained

solution was more accurate than the constrained solution it was

also more surface biased.
Coherence COH. The coherency measure COH given by

(21) was averaged over all 2-source configurations and plotted in

Figure 6 for the tested algorithms. Because COH measure is not

defined for single-dipole source configuration no corresponding

panel is present in Figure 6. The results demonstrate that

Harmony in the basis of spherical harmonics (HRM) produced

by far the most coherent solutions. Harmony in the basis of

spherical splines (SPL) and LORETA follow the lead. The lower

coherence of SPL compared to HRM can be explained by the

discrete nature of the spherical splines: SPL solutions sometimes

produced grainy ‘hotspots’ pulled apart among the neighboring

spline centers, as illustrated by Figure 1.

Removing the orientation constraint produced more coherent

solutions overall (compare right and left panels in Figure 6). The

improvement was most noticeable for the LORETA, MNE, and

WMNE algorithms. The unconstrained source reconstructions

indeed look smoother and more coherent for these algorithms if

the dipole magnitude only is considered. This change is easy to

understand: while the orientation constraint forced the magnitude

to go through zero every time the dipole directions reversed across

the cortex, removing the constraint allows the reversal to happen

by mere rotation of the dipoles. The dipole directions still show the

same incoherent variation across cortex as for the constrained

Figure 8. Area under the ROC curve AUC measure for the
tested algorithms. Results for different source configurations
(illustrated by the insets) are shown in the corresponding panels. Solid
bars show results for sources in different cortical hemispheres, hashed
bars - results for both sources in the same hemisphere.
doi:10.1371/journal.pone.0044439.g008

Figure 9. The six measures of the reconstruction quality presented in Figures 2–8 applied to normalized solutions. Solid bars indicate
results for sources on opposite hemispheres, hashed bars for sources on the same hemisphere. nHRM and nSPL denote Harmony solutions in the
basis of spherical harmonics and spherical splines normalized by the standard deviation of the solution for each current dipole, i.e., dSPM-like.
doi:10.1371/journal.pone.0044439.g009

EEG/MEG Source Localization by Spherical Harmonics
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solution (e.g., across sulci) but this variation is not reflected by the

COH measure which takes into account only the dipole

magnitudes.

Congruency (width – error correlation) CON. The

congruency measure CON given by (22) was averaged over all

2-source configurations and plotted in Figure 7 for the tested

algorithms. The results demonstrate that HRM and MNE

solutions had the highest congruency overall, closely followed by

SPL. The best congruency measures were close to 80%. This

makes Harmony solutions highly indicative of their localization

precision. Removing the orientation constraint improved congru-

ency for depth-weighted algorithms (IBF, LORETA, WMNE), but

decreased congruency for the rest of the algorithms.

Area under the ROC curve AUC. The AUC values plotted

in Figure 8 give the probabilities of finding higher-amplitude

dipoles inside the source patch, quantifying the degree of overlap

between the true sources and their reconstructions. As discussed in

the Materials and Methods section the measure becomes small and

oversensitive (noisy) when applied to small source patches used

here (for this reason results for the single-dipole sources were not

shown at all). Thus, one can note from Figure 1 where AUC
values were plotted next to the reconstructions that the measure

changes about two-fold between the HRM and SPL reconstruc-

tions even though they appear very similar. Also, comparing

Harmony solutions to those by other algorithms one can notice

that the AUC measure does not penalize scattered (incoherent)

reconstructions. In fact, it is easy to see from its definition (23) that

AUC only accounts for the ‘amount’ of the solution that missed

the true source not for its separation from the true source. This

shows that AUC cannot serve as a substitute for the localization

error, LE, nor for the coherence, COH.

Comparing AUC values in Figure 8 one can see that for the

orientation-constrained reconstructions HRM and SPL were,

overall, on par with LORETA and IBF reconstructions and

significantly better than MNE and WMNE reconstructions. For

the orientation-unconstrained reconstructions Harmony clearly

outperformed other algorithms. AUC measures were significantly

lower for configurations where sources were in the same

hemisphere (shown with hashed bars) compared to configurations

with sources in different hemispheres (shown with solid bars). This

result is not surprising given that sources were overall closer to

each other for the same-hemisphere configurations, which resulted

in more confounded scalp potentials. Other than the overall

magnitude, the pattern of AUC measures was the same in this

case: HRM and SPL were on par with LORETA and IBF for

orientation-constrained reconstructions and best performers for

unconstrained reconstructions.

Solution normalization. The MNE solutions have a strong

surface bias which can be reduced by depth-weighting (Figure 5).

Alternatively, one can reduce the bias by dividing (normalizing)

the solution with a measure of the bias for each current dipole.

[15] proposed to use the estimated standard deviation of the

current (due to the measurement noise) as the measure of the bias.

The normalized MNE solution has the meaning of Z-score and

was hence termed ‘‘dynamic statistical parametric map’’ (dSPM).

Alternatively, [14] proposed to use the square root of the diagonal

of the model resolution matrix H~GL (see Methods for the

definitions of G and L) for the MNE normalization measure

(sLORETA). This normalization approach was designed to

produce zero localization error for a single point source and

noiseless measurement.

Because dSPM and sLORETA are popular approaches to

source localization a comparison between these methods and

Harmony is presented here. To this end, Harmony solutions

(spherical harmonics basis and spherical splines basis) were

normalized dSPM-style, i.e., by the standard deviation of the

solution’s noise estimated for each current dipole. Variance of the

solution was calculated as given by (13). The results for the 37-

patch orientation-constrained condition are shown in Figure 9.

The same six measures used to evaluate the quality of the source

reconstruction were plotted in the individual panels of the figure in

the same order as they were presented in the above sections. The

results for the single-dipole and orientation-free conditions showed

altogether similar trends and were not displayed.

The localization accuracy (top left panel) was significantly

improved by normalization (compare with Figure 2 middle panel).

The cumulative LE distributions shown in the panel were very

similar among the compared methods, however, normalized

Harmony solutions denoted as nHRM (spherical harmonics) and

nSPL (spherical splines) produced somewhat smaller errors overall

Figure 10. Localizations of the observed evoked potentials: visually evoked (top) and somatosensory evoked (bottom). From left to
right: (1) A snapshot of the observed ERP potentials interpolated and shown on a flattened scalp. EEG sensor positions are marked with dark dots, the
overlay shows ERP time course at the scalp location marked with a white dot. The red arrow indicates the time point at which the displayed scalp
potentials were recorded (N1: 97 msec for visual stimulation, 86 msec for tactile stimulation). (2) The expected cortical activations: labels refer to the
expected sites of cortical activation: V1 – primary visual cortex, and S1 – primary somatosensory cortex. (3) Harmony reconstruction results. (4) MNE
reconstruction results.
doi:10.1371/journal.pone.0044439.g010

EEG/MEG Source Localization by Spherical Harmonics
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than dSPM and sLORETA, especially for the best-localized

sources. The small Harmony advantage was more pronounced for

the orientation-free condition (not shown), in which case 55% of

two-source configurations were localized with better than 3 cm

precision for Harmony versus 45% for dSPM/sLORETA. The

surface bias (top right panel) was much reduced by the

normalization for MNE solutions (dSPM and sLORETA), the

reduction was also significant for Harmony solutions. This

confirms the efficacy of the normalization technique in this

respect for all tested algorithms. On the other hand, the

normalization adversely affected congruency which was reduced

for Harmony and MNE solutions but significantly more so for the

latter. The rest of the measures were only slightly affected by the

normalization. Harmony solutions had advantage over MNE

solutions in terms of source amplitude ratios (close to 2) and much

higher coherence, the AUC measures were about the same for all

tested algorithms.

Real data
The Harmony algorithm was also tested with real EEG data.

The EEG recordings were done using HydroCell GSN 128-

channel system (EGI Inc.). Visual and tactile sensory stimulation

were used in two separate experiments. The stimuli were: a full-

screen grating contrast reversing at 1 Hz for the visual experiment

and a 2 Hz vibrotactile stimulation of the left index finger for the

tactile experiment. ERP epoch duration was 1000 msec and

500 msec respectively. The tactile pressure was applied for the first

100 msec of the epoch and then the pressure was released. 200

stimulation epochs were recorded for each experiment, the epochs

were blocked into 10 epoch trials separated by no-stimulus

intervals 3 seconds long. Epoch start markers were recorded along

with the EEG data using a DIN signal generated by an in-house

stimulation software. About 5% of epochs were rejected as too

noisy based on potential thresholding at the preprocessing stage.

The remaining epochs were averaged. Two different subjects

participated in these experiments. Their BEM head models were

constructed from high-resolution anatomical MRI scans as

described in Materials and Methods. The noise covariance matrix

Sm was estimated by projecting out the averaged stimulus epoch

from the raw data. The remaining signal was used as a noise

estimate to calculate Sm. Ordinary cross-validation (OCV) was

used to set the regularization parameter for both experiments as

described in the Materials and Methods section. The orientation

constraint was used for reconstructions.

Experimental data and source reconstructions are shown in

Figure 10. The top row shows results for the visual experiment, the

bottom row - for the tactile experiment. A snapshot of ERP data is

displayed on a flattened scalp surface (the leftmost panels), the

colors indicate potential values (hot - positive, cool - negative) with

respect to the average reference. ERP time course at the location

marked with a white dot is transparently overlaid on the scalp

surface. The red arrow indicates the time point at which the scalp

snapshot was taken (97 msec for visual stimulation, 86 msec for

tactile stimulation, N1 ERP component in both cases). Likely

sources of these early ERPs are shown in the next panel to the

right. Left and right V1 (primary visual cortex) determined for this

subject based on fMRI retinotopy are shown by the green patches

overlaid on the inflated cortex (top row). The postcentral gyrus is

displayed in cyan, its midsection, where the index finger response

is expected to occur in the primary somatosensory cortex [39] is

shown in green (bottom row). HRM source reconstruction results

are shown next. The SPL solution looked almost identical to the

HRM solution. For comparison, MNE results are shown next to

the Harmony’s. Solutions by the remaining algorithms produced

activation patterns qualitatively similar to those by MNE

(compared to Harmony solutions) and are not shown here. The

Harmony reconstruction of visual activations (top row) closely

overlaid the V1 areas as well as the adjacent V2 and V3 areas,

which were all likely cortical sources at this response latency. The

Harmony reconstruction of the tactile activations were also in fair

agreement with the expected location. The same as for the

simulated data the MNE solutions appear more incoherent

compared to the Harmony solutions, and show the typical sign

reversal across sulci.

Discussion

A new approach to EEG/MEG source reconstruction based on

choosing a parsimonious subset of basis functions for the source

space was presented. Two basis sets were tested: spherical

harmonics and spherical splines. The main advantage of this

approach is the explicit way in which the basis set for the solution

is chosen. It allows making the solution spatially smooth reducing

surface bias and effects of sensor noise. The method’s performance

was evaluated based on simulated and real EEG data and was

compared with performance of several popular source-localization

algorithms.

The proposed method, called Harmony, produced realistic

source reconstructions when applied to EEG data collected in two

different experiments. The reconstructions were based on individ-

ual BEM head models derived from anatomical MRI data. The

obtained solutions were smooth and coherent, showed little surface

bias, and were located over the expected cortical sources

(Figure 10).

The algorithm was also tested with carefully simulated data.

Two simultaneous cortical sources were used in the simulations.

The sources had unequal amplitudes and were positioned at 66

uniformly spaced locations each, both on the opposite and on the

same cerebral hemispheres. Scalp potentials produced by the two

sources were calculated using a BEM head model derived from

group-averaged anatomical MRI data provided by FreeSurfer.

Noise recorded in a real EEG experiment was added to the

simulation and was also used to estimate the statistical significance

of solutions. Harmony solutions were compared with solutions for

other algorithms: IBF, MNE, WMNE, dSPM, sLORETA, and

LORETA. A special emphasis was made on choosing the

regularization parameter individually for each of the tested

algorithms using OCV. It was a significant factor for the

comparison given that the OCV-estimated parameter varied by

the factor of 20 among the algorithms. OCV was shown to provide

near-optimal regularization in terms of the localization error and

the solution width (Figure 11).

The algorithms were compared on the following six measures:

localization error (LE), amplitude ratio (AR), surface bias (SB),

coherence (COH ), congruency (CON , width – error correlation),

and area under the ROC curve (AUC). The two Harmony

methods (spherical harmonics and spherical splines) provided the

best solutions overall. The solutions had the smallest localization

error along with the best amplitude ratio, largest coherence and

congruency. Harmony algorithms were on par with other

algorithms on the AUC measure for orientation-constrained

reconstructions and outperformed the other methods once the

constraint was removed (Figure 8). About half of the tested source

configurations were localized with better than 4 cm precision

(Figure 2).

Harmony solutions had surface bias significantly weaker than

that for MNE, about the same as IBF, LORETA, and WMNE

solutions (Figure 5). While these algorithms used a depth-
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weighting prior to decrease surface bias no such weighting was

necessary for Harmony. MNE showed second best result on

localization error, amplitude ratio, and congruency, but the rest of

the scores were modest or poor (e.g., coherence, AUC). Depth-

weighted algorithms (IBF, LORETA, and WMNE) showed

relatively poor results overall. In particular, WMNE and IBF

were lacking in localization precision and coherence but

performed well on the surface bias score. This shows that depth-

weighting only guarantees deeper solutions, but not necessarily

better reconstructions. IBF and LORETA produced similar results

overall, which is not surprising given their similar choice of a

smoothness constraint for source reconstruction. The larger

localization error for WMNE compared to MNE appears to

contradict the results of a study where depth-weighting was shown

to decrease the localization error [12]. This difference is likely due

to the different definitions of the localization error used. [12] used

3D Euclidean distance between the true source and its

reconstruction while the current study used a 2D distance

estimated along the surface of the cortex (see Methods). For the

fairly common case of the sulcus source mislocalized into a

neighboring sulcus depth weighting can make the reconstruction

closer to the true source in the Euclidean sense by pushing it

deeper into the neighboring sulcus while at the same time

separating it farther away along the cortical surface (see Figure 1 in

[12] for an illustration).

The algorithms were tested with and without orientation

constraint. When the orientation constraint was used, only dipoles

orthogonal to the cortical surface were allowed in the solution.

Arbitrary dipole orientations were allowed for unconstrained

solutions. Although unconstrained solutions somewhat decreased

the localization error, increased coherency, and AUC measures,

these solutions were also characterized by larger surface biases.

The algorithms were separately tested for source configurations

comprising two sources located in opposite cortical hemispheres

and in the same hemisphere. Only the SB and AUC measures

were applicable to the latter case. While the surface bias increased

only slightly between the opposite-hemisphere and same-hemi-

sphere sources, the overlap of the solution with the true sources

described by the AUC metric dropped very significantly.

MNE solution normalization (dSPM and sLORETA) signifi-

cantly reduced localization error and surface bias. Adversely, the

solutions’ congruency was also strongly reduced indicating that the

spatial extent of dSPM and sLORETA reconstructions was less

indicative of the localization accuracy compared to MNE. This

result is in agreement with the increased source dispersion metric

between MNE and dSPM/sLORETA [37]. Coherence and

source amplitude ratios were largely unaffected by the normali-

zation. dSPM-style normalization had largely the same effect on

Harmony solutions except that the reduction in congruency was

less pronounced. Overall, the characteristic features of the

Harmony reconstructions (coherence, congruency, localization

accuracy) characterized the normalized solutions as well.

The high coherence (low scatter) of the Harmony solutions is a

unique feature of this approach. Figure 1 demonstrates that for the

two simulated sources Harmony algorithms produced two distinct

hotspots of activity where the other algorithms produced multiple

hotspots. This makes it possible to use the results of Harmony

reconstruction as a starting point for ‘parametric’ approaches:

several dipoles (or multipoles/patches) can be fitted into the data

by first positioning them over the Harmony hotspots and then

using an iterative optimization routine to find the best-fitting

locations and amplitudes. Harmony and parametric algorithms

can be even combined in a recursive manner: Harmony results

can be used to seed dipoles for the ‘parametric’ fit and then the

results of the fit can be used as sparse priors for the final Harmony

reconstruction. Such hybrid approach could get the best of both

worlds, e.g., significantly decrease the surface bias while staying

within the framework of the ‘distributed’ solutions. This approach

is currently being investigated.

Harmony in the basis of spherical harmonics (HRM) produced

reconstructions almost identical to those for the basis of spherical

splines (SPL), which are in many aspects very different basis sets.

This suggests that there is nothing special about a particular choice

of the basis set functions as long as the functions share certain

generic characteristics, such as smoothness and global extent.

HRM significantly surpassed SPL only on the coherency score.

HRM was also more parsimonious, it used 121 basis functions per

hemisphere compared to 162 basis functions for SPL. Among

other things, such a compact description provides an efficient way

to store and share source reconstruction results. In addition to the

left and right cortical meshes on which any cortex-based source

reconstruction is defined, an orientation-constrained HRM

solution requires to store only 242 numbers for each time sample.

For example, assuming 2-bytes per data record, the whole 4D

‘movie’ of source reconstruction comprising 1 second long ERP

epoch sampled at 500 Hz can be saved as a single 522 KB file:

242 KB of HRM solution + 280 KB required to describe 20,000-

strong mesh of cortical nodes for a given subject).

Another interesting aspect of the HRM solution is its power

spectrum, i.e., the distribution of the source power across different

spatial frequencies. Although this aspect was not discussed in this

study it provides a new viewpoint on brain activity. For example, it

allows to correlate temporal and spatial dynamics of brain rhythms

to search for traveling waves of activation [40,41].

Figure 11. OCV choice of the regularization parameter sets
Harmony’s (spherical harmonics basis set) mean localization
error and solution width close to their minima. The curve was
obtained by averaging the measures over all 2-source simulations.
doi:10.1371/journal.pone.0044439.g011
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Materials and Methods

Ethics Statement
The part of the study which involved human subjects was

conducted in accordance with the institutional IRB guidelines.

The study was approved by the Northeastern University

Institutional Review Board. A written informed consent (approved

by the IRB) was obtained from all human subjects.

Source basis set
The forward EEG/MEG problem for the ‘distributed’ solution

is defined by the gain matrix G:

~mm~G~xx ð1Þ

where ~xx is the vector of the unknown dipole amplitudes (sources),

and ~mm is the vector of sensor measurements for a given time point.

The dipole positions on the cortex (and, optionally, their

orientations) are fixed. Typically, the dimension Nx of the source

space is two orders of magnitude larger than the dimension Nm of

the sensor space. G is obtained by solving the Poisson’s equation

for a given head model, e.g, 4-sphere, BEM, or FEM (finite-

element model).

Assuming normal distribution for ~xx and following the usual

Bayesian procedure, the most likely~xx fitting the data ~mm is given by

the following inverse solution [42]:

~xx~SxGT SmzGSxGT
� �{1

~mm:L~mm, ð2Þ

where Sm is the measurement noise covariance matrix (assumed to

be known from the data), Sx is the (unknown) source covariance

matrix, and L is the inverse solution matrix. The source

covariance matrix defines the prior for the source distribution

and hence its choice can strongly affect the solution. Indeed, the

choice of the source priors is the true ‘‘hard’’ problem of source

localization. To begin with, the degree of the solution regulari-

zation is determined by the overall scaling factor of the source

covariance matrix. Otherwise, the elements of Sx define the

constraints which are applied to the underdetermined inverse

problem. The various ‘distributed’ source localization algorithms

mentioned in the Introduction differ mainly in their choice of the

source covariance matrix. If Sx is taken to be an identity matrix,

one obtains the minimum-norm solution. By choosing a different

source covariance matrix one deviates from the minimum-norm

constraint. For example, one may introduce higher variances for

deeper sources, which results in biasing the solution to those

deeper sources. However, this does not guarantee that the solution

will be closer to the true sources, it only guarantees that the

solution will have less of the surface bias typical for the minimum-

norm solution. One recent approach is to learn the elements of Sx

from the data [23,43]. While this approach significantly improves

on the results of the earlier algorithms (WMNE, LORETA), it is

not guaranteed that the data per se provides all the necessary

constraints to make the solution plausible.

The approach presented here seeks the solution in the form of

an expansion into a small set of global continuous and smooth

basis functions instead of starting from the ten-thousand-strong set

of discrete cortical dipoles. Because of the well-known lowpass

spatial effect of the skull on electric currents high spatial frequency

components of cortical sources simply cannot be reliably inferred

based on scalp potentials due to the potentials being swamped by

high spatial frequency sensor noise. Arguably, the proposed choice

of basis functions forces the solution to better represent the

available information about brain activity and reduces effects of

sensor noise.

Consider a linear transformation A defining a new basis set in

the source space and mapping it to the basis set of the dipole

amplitudes:

~xx~A~yy ð3Þ

The gain matrix in the new basis set is given by

~GG~GA ð4Þ

If the basis vectors of the new basis set are global, i.e., they are

given by a linear combination of thousands of dipole amplitudes

located all over cortex, and if the cortical sources are globally

independent, ~yy is normally distributed irrespective of the actual

statistics of the local cortical currents (the Central Limit Theorem).

Note that although the normality assumption underlies the dipole-

basis solution (2) its validity for ~xx is rather questionable, because

individual neurons are non-Gaussian and nearby neurons are

usually strongly correlated, which makes their local ensembles ~xx
non-Gaussian as well.

Writing the solution (2) for the new basis set one obtains

~yy~Sy
~GGT Smz~GGSy

~GGT
� �{1

~mm ð5Þ

Substituting (3) and (4) in the above formula maps the solution ~yy
back to the dipole basis:

~xx~ASyAT GT SmzGASyAT GT
� �{1

~mm: ð6Þ

The solution is defined in terms of the source covariance matrix Sy

in the new basis set now. Comparing (2) and (5), one can see that

the corresponding source covariance matrix in the dipole basis set

is given by

Sx~ASyAT : ð7Þ

By choosing different A and Sy one obtains different solutions to

the source localization problem. This demonstrates that different

constraints embodied in the choice of the source prior Sx can be

viewed as different choices of the source space basis set A. For

example, the minimum norm solution is obtained for any basis set

A of dimension Nx, which is complete and orthonormal, if Sy is

equal to Nx|Nx identity matrix I . In this case

Sx~ASyAT~AAT~I , ð8Þ

an (6) reduces to the minimum norm solution

~xx~GT SmzGGT
� �{1

~mm: ð9Þ

This result applies to the basis set of individual cortical dipoles as

well as to a basis set of global orthonormal functions, such as

spherical harmonics.

Choice of the source basis set
Because EEG/MEG sources are spread on topologically

spherical cortices (ignoring the corpus callosum) it is natural to

use spherical harmonics or spherical splines as the basis set

functions, the method termed Harmony here. Between the two
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basis sets spherical harmonics produced somewhat better results,

but the differences were small.

Spherical harmonics are 2D analogs of the sine and cosine

functions, and the spherical harmonics expansion is a 2D analog of

the conventional Fourier series expansion. The spherical harmon-

ics define a complete orthonormal set, each vector is global

(spatially extended) and is characterized by a spatial scale

determined by the Harmonic’s l index. The index defines the

number of node lines between South and North poles. The m
index runs from {l to l and determines the number of node lines

along the Equator. The total number of spherical harmonics

(fl,mg pairs) for a given lmax is (lmaxz1)2. Higher indices

correspond to higher spatial frequencies. The corresponding

transformation matrix A is given by

A(lm)j~Y m
l (̂rrj)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lz1

4p

(l{DmD)!
(lzDmD)!

s
P

DmD
l (coshj)

1 m~0ffiffiffi
2
p

cos(mwj) mw0ffiffiffi
2
p

sin(DmDwj) mv0

8><
>: ð10Þ

Here the row index (lm) enumerates spherical harmonics (all

combinations of l and m indices), while the column index j indexes

the dipole locations on the cortical surface, wj and hj are the

azimuth and elevation of the j-th source dipole on a cortex inflated

into a sphere. Pm
l are the associated Legendre polynomials.

Any square-integrable scalar function defined on a spherical

mesh can be expanded into a set of spherical harmonics, as is

illustrated in the top of Figure 12. Given that each cortex is

topologically a sphere (folded into the pial shape), one can use the

spherical harmonics basis to span the source space for each cortex.

Hence the full A matrix is block-diagonal, its two blocks

corresponding to the spherical harmonics applied to the left and

right cortices respectively. The gain matrix ~GG is calculated based

on the dipole locations on the actual folded cortices, of course.

This is illustrated in the bottom of Figure 12.

Some degree of non-orthonormality will be introduced into the

basis set by the folding distortions of the spherical mesh, but this is

not a concern because strict orthonormality is not a requirement

for a source basis set, although non-orthonormality can potentially

affect the stability of the numeric solution of (6). Moreover, the fact

that the basis set of spherical harmonics produced solutions almost

identical to those obtained in the basis set of spherical splines (11),

which was not at all orthonormal and otherwise very different

from the basis set of spherical harmonics, indicates that variations

in the basis functions due to the folding mesh distortions were

probably inconsequential.

Because EEG/MEG sensors sample signals at discrete spatial

locations (typically, about 150 apart), the basis set of spherical

harmonics required to describe scalp potentials (measurement

space) has a natural cutoff frequency defined by the corresponding

Nyquist limit. For the typical high-density EEG cap of 128

electrodes this frequency corresponds to lmax~12 or 169

harmonics altogether. If cortex was modeled as a sphere one

could simply use the same cutoff index for the basis set of spherical

harmonics on cortex (source space). However, in the described

approach the spherical harmonics were applied to two folded

spheres (the left and right cortices) and the cutoff index had to be

found empirically. Because increasing lmax above 10 did not

significantly reduce the source localization error (17) in the

simulations, lmax~10 was used as the cutoff index for each cortex.

This gave the total of 2|121~242 harmonics. Note that

increasing the density of sensors does not necessarily increase the

cutoff index. The low-pass spatial filtering effect of the skull

suppresses high spatial frequency signals and makes the neighbor-

ing sensors strongly correlated. Besides, because of the low-pass

filtering of the skull the high-frequency harmonics quickly become

dominated by the sensor noise and therefore the input of these

harmonics into the solution should be suppressed.

The proposed choice of the source space basis is by no means

unique. The basis of spherical harmonics allows to fit any

measured data without introducing high-frequency information

not present in the data as defined by the Nyquist limit. Arguably,

any other choice of a basis set with similar properties would result

in the same or very similar inverse solution. Indeed, the simulation

results presented here indicate that the basis set of spherical splines

produced a solution very similar to the basis set of spherical

harmonics, even though the basis functions of the two sets were

Figure 12. Top: Expansion of a given source distribution into a set of spherical harmonics. Bottom: left cortex displayed as a spherical
mesh with a spherical harmonic computed at its nodes, then the mesh is folded into the actual cortical shape (as produced by the FreeSurfer
toolbox). The colormap indicates the source sign and amplitude.
doi:10.1371/journal.pone.0044439.g012
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very different: spherical harmonics are periodic, while spherical

splines are centered.

The spherical splines K (̂rr,̂rr0) were constructed using the Abel-

Poisson kernel, which has the following closed form expression

[44]:

K (̂rr,̂rr0)~
1{h2

4p 1zh2{2h r̂r:̂rr0ð Þ3=2
ð11Þ

where 0vhv1 is the spline scale parameter (analogous to l for

spherical harmonics), and r̂r0 and r̂r stand, respectively, for the

spline center position and the point in space where the spline needs

to be calculated.

The choice of Sy

The Nm vectors spanning the solution subspace of the Nx-

dimensional source space are given by the columns of the

numerator matrix in (6). If the covariance matrix Sy is

proportional to the identity matrix (i.e., the priors for all spherical

harmonics are equal), the numerator is just a projection defined by

AAT from the minimum-norm subspace spanned by the rows of

the gain matrix G to the subspace defined by the spherical

harmonics basis. Although this simple choice of the Sy prior works

well for localizing noiseless data, significant amounts of sensor

noise can result in spurious sources. Harmony provides a simple

solution to the noise problem. Because the sensor noise is usually

very local it appears mainly at high spatial frequencies. The noisy

high frequency signal can be progressively ignored by the solution

via scaling down the diagonal elements of Sy for high-frequency

harmonics, for example as 1=(1zlp). The exponent p can be left

as a free parameter and normally falls within the 0.5–1 range,

depending on how noisy the data is.

Although the described choice of Sy is ad hoc its effects are well-

controlled. The p parameter simply biases the solution to lower

spatial frequencies. Ideally, one would like to set the diagonal

values of Sy more objectively, for example by learning them from

data as the model hyperpriors [43]. To this end the covariance

matrix Sx can be written as

Sx~ASyAT~
X

lm

dlmalmaT
lm ð12Þ

Where alm are the columns of the A matrix and dlm are the

diagonal elements of the (diagonal) Sy matrix. In this form dlm

appear as the model hyperpriors and can be learned by

maximizing the probability of the observed data with respect to

the hyperpriors. For example, in the current scheme the single

hyperprior p can be learned this way. The results of this approach

are not discussed here.

Head model
BEM head models were constructed based on high-resolution

MRI data collected for two subjects and also using the FreeSurfer

group averaged head (MRI data averaged over 40 subjects). The

BEM head model comprised three volumes: scalp, skull, and CSF/

brain; the volumes were reconstructed with the help of the FSL

toolbox [45]. The corresponding BEM gain matrix G was

calculated using the MNE suite toolbox [6]. To improve the

BEM precision the inner skull was meshed as the 5-th subdivision

of icosahedron (20,480 triangles), the outer skull and scalp surfaces

were meshed as the 4-th subdivision of icosahedron (5,120

triangles). Relative conductivities of the three volumes were set

to (1, 1/30, 1) for scalp, skull and CSF/brain respectively.

Cortical surfaces and ROIs were determined by automatic

segmentation with the help of the FreeSurfer toolbox [46] and

fMRI-based retinotopy [47] with the help of the FSL toolbox [45])

respectively. In particular, the FreeSurfer toolbox was used to

obtain pial, mid-gray, inflated, and spherical (fully inflated) cortical

representations. The FreeSurfer spherical meshes were used to

define the A and K matrices given by (10) and (11) respectively.

10,242 current dipoles were positioned at the nodes of a triangular

mesh (5-th subdivision of icosahedron, mid-gray FreeSurfer mesh)

for each cortex. The localization results are shown on slightly

inflated cortices in all figures. The amplitude and direction of the

cortical currents are represented by color intensity and hue:

inward (cold) and outward (hot). A colormap similar to the one

used by the FreeSurfer and MNE toolboxes was used.

Source basis set
Two basis sets: spherical harmonics and spherical splines were

used with the Harmony method. The spherical harmonics basis set

was defined by (10). lmax was set to 10, which created a basis set of

121 harmonics on each cortical surface. Larger lmax values did not

significantly decrease localization errors. 162 spherical splines

defined by (11) were uniformly positioned on each cortical surface

with r̂r0 located at the nodes of the second subdivision of

icosahedron meshing the spherical cortical surface.

Sensors
A special care was taken to make the simulations as realistic as

possible. Electrode locations were taken from a real EEG

experiment, in which a 128-channel HydroCell GSN electrode

net was used (EGI Inc.). The electrode positions were measured

using a Polhemus FASTRACK digitizer.

Sources
Because, typically, several cortical sources are simultaneously

activated, two simultaneously activated sources were used in the

main bulk of simulations. The sources located in opposite cerebral

hemispheres and in the same hemisphere were analysed separate-

ly. Two source configurations were tested: point-like and

extended. For the point-like configuration, each of the two sources

consisted of a single current dipole. Although this configuration is

widely used for simulations, it is not very realistic. The

neurologist’s ‘‘rule of thumb’’ is that at least 6 cm2 of cortex has

to be active to record scalp potentials without averaging [1, ch. 1.8

and references therein]. Correspondingly, for the extended

configuration each of the two sources included a single dipole

and all its nearest neighbors up to the third-degree coordination

number, which gave 37 dipoles altogether: 1+6+12+18 = 37. The

patches were roughly hexagonal in shape approximately 2.5 cm in

diameter when measured along the cortical surface. This

corresponds to 5 cm2 of cortical area, close to the ‘‘rule of

thumb’’ size.

The dipole orientations were fixed to be orthogonal to the

cortical surface, which reflects the common assumption that EEG

and MEG are due to synaptic currents produced by activity of

cortical pyramidal cells. These currents flow along the cells axons

primarily perpendicular to the cortex.

The single-dipole and hexagonal 37-dipole patches are

illustrated by insets in Figures 2–8. A pair of the extended patches

is visible in Figure 1, where each patch shown as a green shape is

overlaid on inflated cortical hemispheres. 66 uniformly spaced

patch locations were chosen for each cortex, separation between

the nearest-neighbor patch locations were close to the patch

diameter. This defined 66|66~4,356 dual-source configurations
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altogether. One source always was half the amplitude of the other

source, which simulated source amplitude variation in the actual

brain. The direction of the source currents was outward with

respect to the cortical surface for both sources. When the two

patches were in the same hemisphere the configurations where

they fell into the same locations were omitted from the simulations.

In this case 66|65~4,290 dual-source configurations were

simulated for each hemisphere. The electric potentials on the

128 scalp electrodes were obtained using gain matrix G calculated

based on the FreeSurfer group-average BEM head model. The

strength of the source dipoles was chosen such as to produce the

scalp potentials of the order of 10 mV , which is the typical order of

magnitude for evoked potentials.

The reconstructed sources were thresholded based on the

signal-to-noise power ratio (F -statistics). Only the sources passing

the null-hypothesis test (pƒ0:05, Bonferroni corrected using the

number of sensors, 128 here [16]) were colored in Figures 1 and

10. The F -measure was calculated as the ratio of the squared

cortical current x2
i to the estimated variance of the solution’s noise

vn2
i w for a given dipole location i. The solution noise variance

was calculated by linearly propagating the measurement noise

covariance matrix Sm onto the cortex:

vn2
i w~

X
jk

LijLikS
jk
m , ð13Þ

where L is the inverse solution matrix given by (2), i numerates the

rows of the solution matrix and Sjk
m stands for the jk element of the

measurement noise covariance matrix. Because the number of

degrees of freedom for the F ’s denominator (determined by the

number of observations) is much larger than that for the

numerator (1 for an orientation constrained solution, or 3 for an

orientation-free solution), the F statistics can be safely approxi-

mated by a gamma-distribution statistics, which only depends on

the degrees of freedom of the numerator.

Noise
Real experimental noise was added to the simulated sensor

potentials. The noise was recorded in the course of a VEP (visually

evoked potentials) experiment, where a contrast reversing check-

erboard was occasionally replaced by empty gray background with

a fixation mark. Subjects were instructed to fixate at the mark and

avoid any head-muscle or eye-muscle activity during the trials.

Each trial lasted for 10 seconds and comprised ten 1000 msec

VEP epochs (typical epoch duration for an evoked response

experiment). The whole experiment lasted for 40 minutes. The

‘‘empty screen’’ epochs (190 altogether) were averaged to obtain

the estimate of the residual noise in the averaged VEP epoch. The

noise amplitude was in the :2{:5 mV range and did not exceed

1 mV . 100 randomly chosen samples of noise were added to the

simulated sensor data for each source configuration and the

resulting solutions averaged to estimate the solution for noisy data.

Regularization
Because the source covariance matrix Sy has the meaning of a

prior for the source variance [42] it can only be defined up to an

unknown scaling factor. Given the position of Sy in (5),

mathematically, the scaling factor has the meaning of the

Tikhonov regularization parameter [18]. Hence the scaling factor

determines the balance between fitting the observed data and

fitting the Gaussian prior, which has its most likely value at zero,

i.e., no sources.

In practical terms, weak regularization results in unrealistically

patchy high-amplitude solutions which, nevertheless, fit the data

very well. Strong regularization results in diffuse and low-

amplitude solutions which produce scalp potentials lower than

the ones actually observed. As mentioned in Section ‘‘The choice

of Sy’’, Harmony allows to reduce effects of noise by scaling down

the diagonal elements of Sy as a function of the spherical

harmonic index l via the scaling parameter p. The scale parameter

h in (11) has the same effect on the solution in the basis of spherical

splines. p~:9 and h~:8 were found to minimize the localization

error of Harmony solutions and these values of the smoothing

parameters were used for our simulations. The overall scaling

(regularization) factor for Sy needs to be determined for Harmony

as well as for other algorithms, but thanks to the smoothing

parameters p and h effects of regularization on the solution

become more controllable.

It is important for the purpose of comparison of different source

localization algorithms to choose the regularization parameter

intelligently. Simply setting the regularization parameter to the

same value for all algorithms would not do because it would affect

different algorithms differently. Hence the parameter has to be set

by some optimization scheme applied to each algorithm individ-

ually. There are many such schemes available [18,48]. Ordinary

Cross Validation, OCV, [49] was chosen for this purpose in the

present study. In the author’s experience, OCV works better than

its more popular approximation, General Cross Validation (GCV)

because OCV rarely produces local minima in the cost function,

which are common for GCV. The regularization parameter

determined by OCV produced reasonable-looking solutions when

applied to real EEG data. As Figure 11 demonstrates, regulari-

zation chosen by OCV also nearly minimizes measures of the

solution’s localization error LE and width Wmid for the simulated

data. These measures are defined in the following sections; the

effect of OCV on the other measures was not investigated.

The OCV method uses ‘‘leaving-out-one’’ validation strategy,

where one datapoint at a time is left out, the remaining data is fit

by the model, and the misfit of the left-out datapoints is

minimized. The procedure can be reduced to a single formula:

the optimal regularization parameter is given by minimizing the

OCV cost function

OCV~
X

k

hk{mk

1{Hkk

� �2

, ð14Þ

where the summation runs over all datapoints, and H~GL is the

Nm|Nm resolution matrix. The numerator of the above formula

is a quadratic measure of misfit of the observed data ~mm by the

fitted model hk~(H~mm)k. The numerator penalizes data misfit

while the denominator penalizes data overfitting (perfect fit

corresponds to H equal to an identity matrix).

Quantitative comparison with other algorithms
Harmony performance for simulated data was compared with

the performance of the following algorithms: MNE, WMNE,

dSPM, sLORETA, LORETA, and IBF. The latter method

(Informed Basis Functions) claims the most informative source

space basis set, i.e., the set preserving most information about the

known source constraints (coherence or smoothness in our case). A

Gaussian coherence matrix with s~10 mm was used; the solution

on each cortical hemisphere was spanned by the set of 512 IBF

basis functions. These parameters were close to the ones used in

[19]. Because the solution was constrained to the cortical surfaces
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for all the tested algorithms a surface (2D) version of the discrete

Laplacian was used in LORETA.

WMNE, LORETA, and IBF algorithms employ ‘‘depth

weighting’’. The weighting factor for the i-th cortical dipole is

given by the following formula:

wi~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiP

j G2
ji

q : ð15Þ

The summation runs over the Nm rows of the gain matrix G.

Hence deeper (less effective) dipoles receive a higher prior

variance.

Because the main focus of this study was on the choice of the

source space for linear algorithms based on the ‘distributed’

solution (2) no comparison was made to algorithms involving

various other approaches, e.g., beamformer methods or iterative

prior learning methods, such as FOCUSS or MSP. Although these

approaches appear promising, they address different aspects of

source localization and therefore will not be discussed here.

Nevertheless, it is worth mentioning that these new aspects of

source localization can be easily combined with the Harmony

method.

Six measures were used to quantify the quality of source

reconstructions: localization error, amplitude ratio, surface bias,

coherence, congruency (width – error correlation), and area under

the ROC curve. These measures are explained next.

Localization error. The localization error was calculated as

follows. First, the location of the true source was calculated by

averaging the locations of its n constituent dipoles. n~1 for a

point-like source and n~37 for an extended source. Then, n
highest-amplitude dipoles were found in the solution for the same

cortical hemisphere. For each of the dipoles the distance between

the dipole and the source location was calculated along the (pial)

cortical surface. To this end the size of the great arc connecting the

two locations on the spherical cortex was first found and then

converted to the pial cortex distance in mm, di . The raw

localization error was then taken as the weighted average of di:

e~

Pn
i~1 Dxi D:diPn

i~1 Dxi D
, ð16Þ

where xi stands for the solution magnitude for the i-th dipole.

Finally, the raw localization error was corrected for the extent of

the true source e0, given by the above formula applied to the

source patch itself, and averaged between the left and right

sources:

LE~(eL{eL
0 zeR{eR

0 )=2: ð17Þ

Amplitude ratio. The amplitude ratio measure quantifies

how well the relative source strengths are preserved in the solution.

The measure was calculated as follows:

AR~

Pn
i~1 DxL

i DPn
i~1 DxR

i D
, ð18Þ

where xL
i and xR

i stand for the n highest-amplitude values in the

left- and right- hemisphere solutions respectively.

Surface bias. This measure quantifies the degree of surface

bias in the solution. First, the solution’s distance d from the ‘‘head

center’’ ~xx0 was determined using the following formula

d~
1

n

X2n

i~1

D~xxi{~xx0D, ð19Þ

where i runs over 2n most active dipoles across hemispheres.

Then, the relative increase of d with respect to this distance for the

true source, d0, was calculated:

SB~
d

d0
{1: ð20Þ

SB is zero when the reconstructed source location is at the same

distance from the ‘‘head center’’ as the true source location.

Positive values indicate surface bias. The ‘‘head center’’ was

defined by fitting an ellipsoid into the EEG sensor locations used;

the center of the ellipsoid was taken as the head center ~xx0.

Coherence and congruency (width – error

correlation). The last two measures quantify two important

properties characterizing the spatial extent of a solution: its

coherence (how ‘scattered’ is the solution) and its congruency. The

latter is defined as the correlation between the solution’s width

(defined below) and its localization error LE. Ideally, the spatial

distribution of a solution should be indicative of its precision.

Sparse, sharp looking solutions are misleading, if the true source is

far away. Therefore, one wants the solution width to be positively

correlated with its localization error, and the stronger this

correlation - the better.

The solution width is defined first. Its measure is calculated the

same way as the localization error, except that the distances di in

(17) are measured with respect to the average di for n highest-

amplitude solution values, i.e., with respect to the center of the

solution. Two width measures: Wmin and Wmid are defined. For

the ‘min’ measure the i index runs over the strongest n dipoles

only. For the ‘mid’ measure i runs over all the dipoles with

amplitudes higher than half the maximum amplitude of the

solution. Defined this way, Wmin characterizes the width of the

solution’s ‘hotspot’, while Wmid characterizes the solution’s spread,

which, as discussed above should, ideally, be indicative of the

solution’s uncertainty. The coherence is defined as

COH~
W 0

min

Wmin

ð21Þ

and the congruence as

CON~r(LE,Wmid ), ð22Þ

where W 0
min denotes the ‘min’ width measure calculated for the

actual source, and r() stands for the Pearson’s correlation

coefficient calculated over all the source configurations used in

the simulation. COH~1 corresponds to the solution having the

same ‘hotspot’ size as the size of the simulated source, smaller

values indicate a scattered, incoherent solution. The same as for

the previous measures COH and CON were averaged between

the left and right hemispheres.

Area under the receiver operating characteristic (ROC)

curve. Area under the ROC curve (AUC) is a popular measure

used to evaluate the performance of a binary (hit – miss) classifier.

When applied to source localization results, e.g., [36,50] AUC
characterizes the overlap between the solution and the true source

by measuring the probability of a randomly chosen source vertex

(a vertex belonging to the source patch or patches) having a larger
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activation than a randomly chosen non-source vertex. The AUC
measure can be conveniently calculated as follows [51]:

AUC~

Pn
i~1 ri{n(nz1)=2

n m
, ð23Þ

where n and m, respectively, stand for the number of source patch

vertices and ‘non-source’ vertices used for the comparison, and ri

stands for the rank of the i-th source vertex. The rank is

determined by sorting the source and non-source vertices based on

the absolute values of their activations Dxj D, from low to high. It is

easy to see that when the values are larger everywhere on the

source patch than on the outside m vertices then AUC~1.

Conversely, if the values are smaller everywhere on the source

patch then AUC~0. AUC strongly depends on many factors

including the source patch size, the number n of source patch

vertices, the number m of the non-source vertices chosen for the

comparison, as well as their particular choice. Clearly, this choice

makes a big difference given that usually there are many thousands

of non-source vertices vs. only a handful of source vertices.

Typically, the same number of non-source and source vertices is

used. The choice of non-source vertices is usually biased toward

the most active ones, but the particular scheme varies between

different studies. Here m~n most active non-source vertices were

used. Compared to large source patches small source patches

defined on dense cortical meshes used in this study naturally have

less overlap with a distributed solution and AUC can be quite

small in this case. For example, for the case of a single-dipole

source AUC is zero unless the maximum activity vertex in the

solution coincides with the source vertex. Obviously, this rarely

happens for high-density cortical meshes. For this reason the AUC

measure was not applied to single-dipole simulations in this study.

For the 37-dipole patches both patches were included in the AUC

analysis, i.e., n~m~37|2. The non-source vertices where always

chosen on the same cortical hemisphere as the corresponding

source patch. Note that because n most active non-source vertices

were used here the computed AUC values were lower than in

those studies where the choice of non-source vertices was less

restrictive ([36,50], for example).
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6. Hämäläinen MS, Sarvas J (1989) Realistic conductivity geometry model of the

human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng

36: 165–71.

7. Fuchs M, Wagner M, Kastner J (2001) Boundary element method volume

conductor models for eeg source reconstruction. Clin Neurophysiol 112: 1400–7.

8. Baillet S, Mosher J, Leahy R (2001) Electromagnetic brain mapping. Ieee Signal

Processing Magazine 18: 14–30.

9. Michel MC, Murray MM, Lantz G, Gonzalez S, Spinelli L, et al. (2004) Eeg

source imaging. Clinical Neurophysiology 115: 2195–2222.
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