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Abstract

Certain oncolytic viruses exploit activated Ras signaling in order to replicate in cancer cells. Constitutive activation of the
Ras/MEK pathway is known to suppress the effectiveness of the interferon (IFN) antiviral response, which may contribute to
Ras-dependent viral oncolysis. Here, we identified 10 human cancer cell lines (out of 16) with increased sensitivity to the
anti-viral effects of IFN-a after treatment with the MEK inhibitor U0126, suggesting that the Ras/MEK pathway underlies their
reduced sensitivity to IFN. To determine how Ras/MEK suppresses the IFN response in these cells, we used DNA microarrays
to compare IFN-induced transcription in IFN-sensitive SKOV3 cells, moderately resistant HT1080 cells, and HT1080 cells
treated with U0126. We found that 267 genes were induced by IFN in SKOV3 cells, while only 98 genes were induced in
HT1080 cells at the same time point. Furthermore, the expression of a distinct subset of IFN inducible genes, that included
RIGI, GBP2, IFIT2, BTN3A3, MAP2, MMP7 and STAT2, was restored or increased in HT1080 cells when the cells were co-
treated with U0126 and IFN. Bioinformatic analysis of the biological processes represented by these genes revealed
increased representation of genes involved in the anti-viral response, regulation of apoptosis, cell differentiation and
metabolism. Furthermore, introduction of constitutively active Ras into IFN sensitive SKOV3 cells reduced their IFN
sensitivity and ability to activate IFN-induced transcription. This work demonstrates for the first time that activated Ras/MEK
in human cancer cells induces downregulation of a specific subset of IFN-inducible genes.
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Introduction

Oncolytic virus specifically replicate in cancer cells, but not in

normal cells, by exploiting differences in the intracellular

environment of tumor cell that promotes abnormal cell growth

[1,2,3,4]. Constitutive activation of Ras signaling was originally

reported to be used by oncolytic reovirus to increase its replicative

ability [5]. Following the discovery of reovirus oncolysis, other

viruses, such as wild type herpes simplex virus (HSV) [6], vesicular

stomatitis virus (VSV) [4], influenza virus (delNS1 strain) [7],

adenovirus (VAI mutant) [8], poliovirus [9], and Newcastle disease

virus [10] were found to similarly exploit activated Ras signaling

pathway for oncolysis. Ras is a membrane bound GTP-binding

protein that acts as a molecular switch to activate downstream

pathways to regulate proliferation, differentiation and trans-

formation [11]. In the canonical Ras pathway, GTP-bound Ras

activates its downstream mediator, the Raf kinase. Activated Raf

then phosphorylates and activates the MEK1/2 kinases, which

phosphorylate and activate the extracellular signal-regulated

kinase (ERK) 1 and 2. ERK1/2 can then activate or inhibit

transcription factors to promote cell survival and proliferation

[12]. Activating mutations of Ras have been found in approxi-

mately 30% of all human tumours [13]. Moreover, in the absence

of the active mutation of Ras, Ras pathway is often activated by

inappropriately activation of its upstream signaling components,

such as epidermal growth factor receptor, HER2/NEU and Src

[14].

Multiple cellular mechanisms that underlie the Ras dependent

viral oncolysis have been identified. Inhibition of the antiviral

double-strand RNA-activated protein kinase (PKR) by Ras was

originally described as a major mechanism for oncolytic virus

replication in tumor cells [5,6]. It has also been shown that

activated Ras promotes the uncoating and release of oncolytic

reovirus which increases the production of progeny viruses [15].

Ras activation also enhances the efficiency of cap-independent

translation of oncolytic poliovirus [9]. Furthermore, we and

another group have reported that activation of the Ras pathway

can prevent effective activation of type I interferon (IFN) anti-viral

response in human cancer cells and mouse fibroblast cells

[16,17,18], suggesting that the defect of IFN response induced

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e44267



by activated Ras is one of the common mechanisms of viral

oncolysis.

IFNs are secreted cytokines that have multiple effects in the

body including anti-viral, anti-proliferative and immunomodula-

tory roles. As such, IFNs are used in the treatment of viral diseases

such as hepatitis C virus infection, treatment of cancer and

multiple sclerosis. IFN binds to the IFN-a receptor (IFNAR) [19]

leading to the activation of two tyrosine kinases, Janus kinase 1

(Jak1) and tyrosine kinase 2 (Tyk2) that are associated with the

IFNAR [20,21]. Jak1 and Tyk2 then phosphorylate signal

transducer and activator of transcription (STAT) 1 and STAT2,

which then associate with the DNA binding protein IFN

regulatory factor 9 (IRF9), to form a heterotrimeric transcription

factor termed IFN-stimulated gene factor 3 (ISGF3) [22,23].

Binding of ISGF3 to the IFN-stimulated response element (ISRE)

in the promoters of IFN-inducible genes induces the expression of

hundreds of genes collectively known as IFN-stimulated genes

(ISG), many with anti-viral, anti-proliferative and immunomodu-

latory functions [24]. However, the effectiveness of IFN can be

limited by anti-IFN proteins encoded by viral genomes or by

endogenous cellular suppressors regulating IFN signaling [21].

Previously, we demonstrated that an IFN sensitive virus, VSV,

was capable of replicating in NIH3T3 cells with activated Ras/

MEK while IFN prevented infection of control NIH3T3 cells [16].

Noser et. al. [25] also reported that inhibition of Ras/MEK in

human cancer cell lines restored antiviral responses induced by

IFN. These studies clearly demonstrate that Ras/MEK activation

underlies IFN impairment in cancer cells. In a follow-up study, we

found that activated Ras/MEK suppressed transcription of

STAT2, which is one of the essential IFN signaling components

[17]. IFN-mediated protection against virus infection was only

partially restored in RasV12 transformed NIH3T3 cells with

overexpression of STAT2. However, when the Ras/MEK

pathway was inhibited by the MEK inhibitor U0126 in RasV12

cells, IFN was as effective in inducing an antiviral response as in

vector control cells. Therefore, it is unlikely that the down-

regulation of STAT2 expression is the sole mechanism involved in

the Ras/MEK mediated IFN suppression. Here, to further identify

the mechanism of Ras-mediated inhibition of the IFN response,

we analyzed the involvement of the Ras/MEK pathway in

regulating IFN-induced transcription in human cancer cell lines.

Results

Sensitivity of Human Cancer Cell Lines to the IFN-
induced Antiviral Response
First, we selected 16 cancer cell lines derived from different

types of tumor (3 breast, 1 cervical, 4 colon, 1 fibrosarcoma, 2

melanoma, 3 ovarian and 2 prostate cell lines) and measured their

responsiveness to the anti-viral effect induced by IFN. The cells

were treated with IFN (0, 10, 50, 100, 500, 1,000 and 5,000 U/ml)

for 16 hours and then challenged with VSV at a multiplicity of

infection (MOI) of 1 for 24 hours. The overall level of oncolysis

was evaluated using crystal violet staining. Based on the effective

dose (cytopathic effect (CPE) 50) of IFN, which is defined as the

effective IFN concentration that elicits a 50% protection against

VSV infection, the cell lines were divided into the following three

groups: IFN sensitive: cell lines with CPE50 less than 10 U/ml,

IFN moderately resistant: cell lines with CPE50 between 10 to

5,000 U/ml, and IFN completely resistant: cell lines with CPE50

above the maximum concentration of IFN we tested (5,000 U/ml)

(Fig. 1). As shown in Table 1, three cell lines (HeLa, SKBR3 and

SKOV3) were sensitive to IFN while 9 cell lines (A375, DLD-1,

HT29, HTB129, HT1080, MCF-7, MDAH, MDA-MB468 and

SW48) showed moderate resistance to IFN treatment. In contrast,

4 cell lines (DU145, HCT116, LNCaP and PA-1) did not respond

to IFN within the concentration range of IFN examined.

Restoration of IFN Sensitivity by MEK Inhibition in IFN
Moderately or Completely Resistant Cancer Cell Lines
We next determined whether the activation of the Ras/MEK

pathway reduces IFN-induced antiviral response in the IFN

moderately or completely resistant cancer cell lines. IFN

sensitivities of the cell lines were examined in the presence of

a MEK inhibitor U0126. The cells were treated with IFN (0, 12.5,

25, 50, 200, 500 and 2000 U/ml) and U0126 (0, 2.5, 5, 10 and

20 mM) for 16 hours and then challenged with VSV at a MOI of 1

Figure 1. Representative profiles of IFN sensitive, moderately
resistant and completely resistant cell lines. IFN sensitive (A),
moderately resistant (B) and completely resistant cell lines (C) were
identified by pretreating cells with IFN (0, 10, 50, 100, 500, 1000 and
5000 U/ml) for 16 hours and then challenged with VSV at a MOI of 1 for
24 hours. Cell viability was determined using crystal violet staining and
expressed as average percentage compared to the uninfected control
wells (n = 3 wells). One representative experiment is shown.
doi:10.1371/journal.pone.0044267.g001
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for 24 hours. The infection was qualitatively evaluated by western

blot analysis of the viral VSV-G protein. The effectiveness of

U0126 on MEK inhibition was verified by analysis of ERK

phosphorylation, the primary target of MEK [13]. MEK

inhibition increased the sensitivity of 10 cancer cell lines to IFN

(A375, DLD-1, DU145, HCT116, HT1080, HT29, HTB129,

MDA468, MDAH and PA-1) (U0126 responsive cell lines), but

had no effect in 3 cancer cell lines (LnCap, MCF7 and SW48)

(U0126 non-responsive cell lines) (Fig. 2 and Fig. S1). For example,

VSV replicated in HT1080 cells in the presence of IFN (50 and

200 U/ml) while VSV replication was inhibited in cells treated

with the same amount of IFN in combination with U0126

treatment (Fig. 2A). HT1080 cells also had slightly reduced VSV

infection in the presence of 20 mM U0126 alone. Similarly, IFN-

induced antiviral response was restored in HT29, HCT116 and

MDAH cells when the Ras/MEK pathway is inhibited by U0126.

In contrast, we did not observe the restoration of the IFN-induced

antiviral response at any combination of concentrations of U0126

and IFN in LnCap and MCF7 cells suggesting that their IFN

resistance is regulated by cellular factors other than activated Ras/

MEK pathway. The same analysis was conducted to examine the

promotion of IFN-induced antiviral response in the other cell lines

(A375, DLD-1, DU145, HTB129, MDA468, PA-1 and SW48)

(Fig. S1).

The restoration of antiviral response by MEK inhibition in the

four U0126-responsive cell lines was confirmed by progeny virus

assay (Fig. 2B). HT1080 cells, infected with VSV, showed

a significant reduction in progeny virus production with combined

treatment with IFN (50 U/ml) and all concentration of U0126 (5,

10 and 20 mM). Furthermore, U0126 (20 mM) alone showed

a modest but statistically significant reduction in viral progeny. In

the other cell lines (HT29, HCT116 and MDAH), the combined

IFN and U0126 treatment showed a substantial and statistically

significant reduction in viral progeny production compared to IFN

only or U0126 only treatment indicating increased responsiveness

to IFN upon MEK inhibition.

These results indicate that activation of the Ras/MEK pathway

suppresses IFN-induced anti-viral activities in some cancer cell

lines. We found no correlation between either IFN responsiveness

or U0126 responsiveness, and cancer cell types.

Effect of Ras/MEK Inhibition on IFN-induced Transcription
To study how activated Ras/MEK suppresses the IFN response

in human cancer cells, we conducted global gene expression

analysis and identified genes with statistically increased expression

compared to the untreated time-matched control (see supporting

information [File S1, S2, S3, S4, S5, S6, S7] for complete lists of

differentially expressed genes). First, we compared expression of

IFN inducible genes in IFN sensitive SKOV3 cells and moderately

resistant HT1080 cells (Fig. 3A). Upon IFN stimulation for 6

hours, 267 genes were upregulated in SKOV3 cells while only 98

genes were induced in HT1080 cells. Seventy genes were induced

commonly in both SKOV3 and HT1080 cells while 197 IFN

inducible genes were upregulated only in SKOV3 cells and 28

IFN inducible genes only in HT1080 cells. These results

demonstrate that IFN-induced transcription is suppressed in IFN

moderately resistant HT1080 cells compared to IFN sensitive

SKOV3 cells.

We then determined whether inhibition of Ras/MEK could

change the transcriptional response of HT1080 cells to IFN. IFN

only treatment activated transcription of 98 genes at 6 hours and

167 genes at 12 hours while U0126 only treatment induced

expression of 636 genes at 6 hours and 97 genes at 12 hours

(Fig. 3B). Combined treatment of IFN and U0126 induced

transcription of 652 genes at 6 hours and 354 genes at 12 hours.

These results demonstrate that activated MEK suppresses IFN-

induced transcription in IFN moderately resistant HT1080 cells.

Interestingly, we found 111 genes at 6 hours (Table S1) and 135

genes at 12 hours (Table S2) were significantly induced by the

combined treatment with IFN and U0126 while either treatment

alone did not induce expression, demonstrating true synergistic

regulation of gene expression by IFN and Ras/MEK suppres-

sion. These genes include mediators of anti-viral function (eg.

Apobec3 [26], IFIT2 [27,28,29], RSAD2 (viperin) [30], GBP2

[31] and MAP2 [32,33,34]), activators of anti-viral signal

transduction, (eg. RIGI [35]), regulators of antigen processing

and presentation (eg. IFI30 (GILT) [36], BTN3A3 [37] and

PSME1 [38]), and regulators of tumourigenesis (eg. MMP7 [39]).

Since VSV replicated more than 30 times less efficiently in

HT1080 cells treated with IFN and U0126 compared to those

treated with IFN only or U0126 only (Fig. 2B), we believe that

some of the genes upregulated by the combined treatment in

HT1080 cells (111 genes at 6 hours 135 genes at 12 hours) have

a significant anti-viral function. We then compared the genes

induced in HT1080 by the combined treatment of IFN and

U0126 to those induced in SKOV3 cells by IFN only treatment

to further narrow down which genes may be the essential genes

necessary for a protective anti-viral IFN response (Fig. 3C). We

Table 1. Sensitivity of human cancer cell lines to IFN as measured by antiviral assay.

Sensitive Moderately Resistant Completely Resistant

(IFNCPE50
a ,10 U/ml) (IFNCPE50 10–5000 U/ml) (IFNCPE50.5000 U/ml)

HeLa A375 (ED50: 1695 U/ml) DU145

SKBR3 DLD-1 (ED50: 40 U/ml) HCT116

SKOV3 HT29 (ED50: 51 U/ml) LNCaP

HTB129 (ED50: 28 U/ml) PA-1

HT1080 (ED50: 219U/ml)

MCF7 (ED50: 46 U/ml)

MDAH (Ed50: 114 U/ml)

MDA-MB468 (ED50: 27 U/ml)

SW48 (Ed50: 3587 U/ml)

aIFN concentration that elicits a 50% protection against VSV infection based on analysis of cytopathic effects (CPE).
doi:10.1371/journal.pone.0044267.t001
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Figure 2. Effect of U0126 treatment on the anti-viral IFN response in moderately resistant and completely resistant cell lines. (A) Cell
lines were infected with VSV (MOI = 1) for 24 hours after treatment with IFN (0–5000 U/ml) with or without U0126 (0–20 mM) for 16 hours. Western
blot analysis was used to detect viral protein (VSV-G) levels, the level of phosphorylated ERK (p-ERK) with GAPDH used as a loading control. The
samples were analyzed on two membranes simultaneously using identical conditions for incubation and detection. One representative experiment
out of 3 is shown. (B) Viral progeny production was determined after infection with VSV (MOI = 1) for 24 hours following treatment with IFN (50 or
2000 U/ml) and with U0126 (0, 5, 10 or 20 mM) for 16 hours.
doi:10.1371/journal.pone.0044267.g002
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found that 36 genes were commonly induced at 6 hours, and 26

genes at 12 hours, in the two experimental groups (Table S3).

Gene ontology (GO) analysis was performed to determine the

biological process associated with the genes identified as

significantly changed in HT1080 cells treated with IFN only,

U0126 only, and both IFN and U0126 (Table 2 and Fig. 4).

Treatment with U0126 only or both IFN and U0126 for 6

hours clustered together indicating that these treatments

changed the expression of genes with similar functions (GO

over-representation). Similarly, the 12 hour treatments with

U0126 alone or the combined treatment resulted in the most

similar GO over-representation groups. IFN-only treatment

groups (6 and 12 hours) clustered together likely because

a relatively small number of GO categories changed when

compared to the other treatment groups. Overall, genes fell into

312 GO categories that were associated with 3 GO over-

representation clusters where cluster 3 could be further divided

into 11 sub-clusters. Clusters 1, 3A, 3B, 3D and 3I showed

increased GO over-representation in response to combined

U0126 and IFN treatment compared to either treatment alone.

These clusters included GO categories associated with NF-kB
signaling, anti-viral response, immune response, regulation of

apoptosis, chemokine signaling, cellular development, and

metabolism. In contrast, clusters 3C, 3E, 3F, 3H and 3K had

reduced GO-over-representation categories upon combined

treatment, indicating that the addition of IFN stimulation

resulted in the loss of gene regulation of genes belonging to GO

categories associated with cell motility, DNA repair and cell

division. Therefore, MEK inhibition changes the types of genes

that can be induced by IFN treatment in addition to increasing

the overall number of genes induced.

Together, these analyses indicate that the Ras/MEK pathway

suppresses expression of ISGs involved in antiviral response at

multiple levels including detection of pathogen associated patterns,

activation of the anti-viral signaling cascade and direct anti-viral

effector genes.

Validation of Restoration of IFN-induced Gene Expression
by MEK Inhibition
Quantitative RT-PCR (RT-qPCR) was conducted to confirm

the changes in gene expression observed in the microarray

analysis using HT1080 cells treated with IFN and/or U0126

(Fig. 5). Eight genes (IFIT2, GBP2, MAP2, RIGI, STAT2,

BTN3A3, MMP7 and ID2) were selected based on their

biological functions and gene expression changes in response to

IFN and/or U0126 treatment. IFIT2, GBP2, MAP2 and

MMP7 were upregulated only in HT1080 cells treated with

both U0126 and IFN at 6 hours while gene induction was

observed in IFN only and U0126 only groups at the later time

point (12 hours). BTN3A3 was induced by the combined

treatment at both time points, but not by U0126 only or IFN

only treatment. Furthermore, Ras/MEK inhibition by U0126

was capable of promoting gene expression of RIGI and STAT2

at 12 hours in the absence of IFN, as described previously

[17,40]. We found that ID2, which is not an IFN-inducible

gene, was upregulated only by U0126 treatment and the

combined treatment, but not by IFN treatment. Most of the

changes in gene expression were confirmed by RT-qPCR, but

due to the difference in sensitivity and statistical power of the

two different techniques, not all gene changes were identified as

statistically significant in both analyses. For example, RIGI was

found to be induced in HT1080 cells by IFN only treatment

using RT-qPCR, but not in the microarray analysis.

Figure 3. Microarray analysis of IFN inducible genes in IFN
sensitive SKOV3 cells, moderately resistant HT1080 cells
treated with IFN, U0126 or both. (A) Venn diagrams from DNA
microarray analysis showing global suppression of IFN-regulated genes
in HT1080 cells compared to SKOV3 cells. Shown are the number of
genes significantly upregulated (FDR ,0.01) at 6 hours after IFN
treatment in the SKOV3 vs. HT1080 cell lines. (B) Venn diagrams
showing the number of genes significantly upregulated (FDR ,0.01) in
HT1080 cells following treatment with IFN, U0126 or both IFN and
U0126 for 6 hours or 12 hours as indicated. (C) Venn diagrams
comparing genes upregulated by ‘‘protective’’ treatments in each cell
type (IFN for SKOV3 cells and IFN/U0126 for HT1080 cells).
doi:10.1371/journal.pone.0044267.g003
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Effects of Ras activation on IFN-induced Transcription in
IFN Sensitive SKOV3 Cells
To further examine the suppression of IFN transcription by

activated Ras, we generated SKOV3 cells (IFN-sensitive) that

express the constitutively active Ras mutant (SKOV3-RasV12;

clones 10 and 15). Ras/MEK activation in the mutant cells was

confirmed by western blot analysis using anti-phosphorylated

ERK, and Ras antibodies (Fig. 6A). Vector control SKOV3 and

SKOV3-RasV12 cells were treated with IFN (0, 12.5, 25, 50

and 100 U/ml) for 16 hours and then challenged with VSV at

an MOI of 1. Western blot analysis of VSV-G protein at 24

hours after infection demonstrated that VSV clearly replicated

more efficiently in Ras-transformed SKOV3 mutants (clone 10

and 15) than in control SKOV3 cells in the presence of IFN

(Fig. 6B). We also measured progeny viral levels 48 hours after

infection to quantify the degree of viral infection (Fig. 6C). In

agreement with the western blot analysis, we found that

progeny virus production was significantly higher in the Ras-

transformed SKOV3 mutant than in control SKOV3 cells

treated with IFN (50 and 100 U/ml). To further determine

whether the decrease in IFN sensitivity by the introduction of

active Ras is induced by the downregulation of IFN-induced

transcription, we examined the changes IFN-induced transcrip-

tion of 5 genes (GBP2, IFIT2, MAP2, STAT2 and RIGI),

which we previously identified to be downregulated by Ras/

MEK in HT1080 cells (Fig 5). The induction of GBP2, IFIT2,

MAP2 and RIGI was inhibited in the Ras-transformed SKOV3

cells compared to control SKOV3 cells at 12 hours after IFN

stimulation while STAT2 induction was not significantly

affected (Fig. 7). These results demonstrate that activated Ras

signaling suppresses the transcription of certain IFN-inducible

genes leading to the decrease in cellular sensitivity to IFN.

Discussion

As demonstrated previously, the impairment of IFN response

in cancer cells is considered one of the common mechanisms for

viral oncolysis [3,10]. Activation of the Ras/MEK pathway has

been reported to suppress antiviral responses induced by IFN

[4,16,17,25,40]. In this study, we first surveyed a panel of

human cancer cell lines and determined 1) their responsiveness

to IFN in producing an anti-viral state and 2) the ability of the

MEK inhibitor, U0126, to restore the IFN sensitivity. We found

that 13 out of the 16 cell lines tested were moderately or

completely resistant to the IFN’s anti-viral response. In 10 out

of these 13 cell lines, the sensitivity to IFN was restored upon

treatment with the MEK inhibitor. These results suggest that

activated Ras/MEK pathway underlies cancer cell resistance to

anti-viral effects induced by IFN. To further investigate the

underlying mechanism for the suppressive effect of the Ras/

MEK pathway on IFN response, we conducted global gene

expression analysis to determine IFN-induced transcriptional

activities in IFN sensitive SKOV3 and IFN moderately resistant

HT1080 cells. We found that there was a substantial reduction

in the number of genes induced by IFN in HT1080 cells

compared to that in SKOV3 cells (276 genes in SKOV3, 98

genes in HT1080 cells; Fig. 3A). Furthermore, MEK inhibition

restored IFN’s ability to activate its transcription in HT1080

cells, as we found that additional 111 genes at 6 hours and 135

genes at 12 hours were expressed in HT1080 cells treated with

both IFN and U0126 (Fig. 3B), indicating that activated Ras/

MEK suppresses transcription of a group of IFN-induced genes.

Finally, we were able to demonstrate that expression of

constitutively active Ras in IFN sensitive SKOV3 cells reduced

their ability to activate IFN-induced transcription and to

establish IFN-induced antiviral response. These results clearly

demonstrate that activated Ras/MEK pathway suppresses

transcription of certain IFN inducible genes to establish IFN

impairment in human cancer cells.

Table 2. Gene ontology analysis of genes that are differentially expressed with combined IFN and U0126 treatment compared to
the single treatments.

GO Cluster #
IFN+U0126 response compared to
single treatments GO Cluster Description

6h 12h

1 q a – Response to virus, NF-kB signaling

2 – – Regulation of MAP kinase activity, Transcription factor activity, TGF-b signaling,
angiogenesis, anti-apoptosis

3A q q Anti-viral response, inflammatory response

3B q q Cytokine stimulus, regulation of phosphorylation

3C Q – Cell cycle, metabolism, proliferation

3D q – Regulation of SMAD TF, Apoptosis, Cell development, response to hypoxia

3E – Q Cell growth, chemotaxis

3F – Q Cell proliferation, chemotaxis,

3G – – DNA replication & repair

3H Q – DNA replication & repair

3I q – Chemokine signaling & migration, Cell development & differentiation

3J – – Skeletal system development, DNA replication, NK cell activation

3K – Q Cell motility

aq: increased representation, Q: decreased representation, – no change.
doi:10.1371/journal.pone.0044267.t002
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We can hypothesize several possible underlying mechanisms

for the widespread suppression of the IFN-induced transcription

by the Ras/MEK pathway. 1) Ras/MEK regulates the activity

of a transcriptional co-regulator for ISGF3, such as the positive

co-regulators IRF1 [41,42], and Sp3 [43] or the negative co-

regulators NF-kB [44], and IFN-consensus sequence binding

protein [45]. In this case, IFN-inducible genes that require the

up- or down-regulation of a co-regulator for their expression

would be suppressed in cells with activated Ras/MEK. 2) Ras/

MEK suppresses the basal expression levels of key components

of the IFN signaling pathway. Insufficient expression levels of

these components leads to the global impairment of IFN

induced antiviral response similar to the downregulation of

STAT2 expression that we observe in NIH3T3 cells over-

expressing constitutively active Ras [17]. 3) The expression of

IFN-inducible genes can be suppressed by epigenetic mechan-

isms. For example, the interaction of STAT2 with BRG1 [46],

a key component of the ATP-dependent chromatin remodeling

SWI1-SNF2 complex [46], may alter the expression of a subset

of IFN-regulated genes. While regulation of BRG1 by Ras has

not been demonstrated, downregulation of the related protein,

Brm1, has been reported [47]. Similarly, Ras-mediated regula-

tion of DNA methylation [48] or histone modification [49], if

targeted to IFN-regulated genes, could globally suppress their

expression. 4) Lastly, the Ras/MEK pathway may activate or

upregulate negative regulators of the IFN pathway such as

SOCS [50] or PIAS [51]. These negative regulators may

suppress transcription of the IFN inducible genes identified to

be downregulated by Ras/MEK in this study.

Analysis of the biological processes represented in the gene

sets revealed that the numbers of biological processes affected

by IFN and U0126 was higher than either U0126 or IFN

alone. In addition, the number of different GO categories

represented was higher at 6 hours compared to 12 hours in

either U0126 alone or the combined treatment suggesting that

long-term stimulation limits the number of biological processes

that can be carried out by the genes that are expressed. As

expected, IFN was able to regulate genes known for the

response to virus and NF-kB signaling, however, the combined

treatment increased the representation of more anti-viral GO

categories as well as genes important for cytokine regulation.

Furthermore, compared to U0126 alone treatment, combined

U0126 and IFN treatment decreased the representation of genes

responsible for DNA replication and repair, cell cycle regulation

and cell motility. Overall, the combined treatment augmented

the anti-viral/inflammatory gene expression response in concert

with decreased representation of genes promoting successful cell

division.

Interestingly, a subset of genes was induced commonly by the

two protective treatments, IFN treatment in SKOV3 cells and

combined IFN and U0126 treatment in HT1080 cells (Table

S3). These genes included the C14orf159 gene that has been

recently shown to have broad anti-viral function, and the

MOV10 and IFI44 genes shown to have more restricted anti-

viral activity [52]. Similarly, members of the anti-retroviral

Figure 4. Gene ontology (GO) analysis of genes differentially
expressed by IFN (I), U0126 (U) or combined treatment (I+U).
Genes with significantly upregulated or downregulated expression
levels compared to control were analyzed for over-representation of GO
category compared to that observed in the genome. Significantly over-
represented GO categories (FDR ,0.05) are shown with the highest
FDR=0 shown in red and categories with FDR $0.05 or absent shown
in blue.
doi:10.1371/journal.pone.0044267.g004
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APOBEC3 [53] and TRIM [53] gene families were induced by

both protective treatments. IFIT2 has recently been demon-

strated to have anti-viral function [27,28,29] and anti-pro-

liferative function [54]. Furthermore, IFIT2 interacts with

microtubules [27] suggesting that IFIT2 may associate with

IFN-upregulated MAP2 to interfere with virion assembly and/or

transport by regulating microtubule dynamics [32,33,34]. In

addition we also identified critical antiviral genes, such as

guanylate binding protein (GBP)-2 [31] and RIGI [35], which

are synergistically induced in HT1080 cells treated with U0126

and IFN. Therefore, these data provide further evidence of the

importance of these genes for establishing a successful anti-viral

response. Future studies will seek to identify the precise roles of

these genes, either singly or in combination, for mediating the

protective IFN’s anti-viral response and regulating viral

oncolysis.

There was no correlation between the tissue origin of human

cancer cells used in this study and sensitivity to IFN or the

ability of U0126 to restore IFN responsiveness. This suggests

that the resistance to IFN by increased activation of the Ras/

MEK pathway is acquired independently of the original tissue

type. Therefore, tumour type does not appear to be a reliable

predictor of the response to combined IFN and MEK inhibition

treatment. This is consistent with the fact that oncolytic viruses

usually infect a wide range of cancer types. However, since

some of the cancer cell lines examined showed such a profound

reversal in IFN responsiveness upon MEK inhibition, future

studies on signaling components involved in Ras/MEK-mediat-

ed impairment of IFN-inducible genes will identify a reliable

biomarker of cancer cells to predict their sensitivity against

oncolytic virus therapy.

The findings from this study potentially may also have impact in

IFN anti-cancer therapy. While IFN therapy has shown significant

therapeutic effects on patients with certain types of cancer [55,56],

the therapeutic goals have not been achieved due to the

development of cancer cells resistant to IFN treatment

[57,58,59,60,61]. In fact, we confirmed that activation of Ras/

MEK also interferes with IFN’s anti-proliferative effects in human

cancer cells (data not shown). The growth inhibition by IFN was

promoted synergistically in the presence of the MEK inhibitor in

U0126-responsive cell lines. Small molecule inhibitors of Ras/

MEK have recently progressed to clinical trials of cancer

treatment and are proven to have low toxicity in vivo [62,63]

Therefore, it is a practical idea to use the combined therapy of IFN

with Ras/MEK inhibitors in clinical settings to treat cancer

patients.

In summary, we found that activation of the Ras/MEK

pathway induces a widespread impairment of IFN-inducible gene

expression, resulting in the decreased sensitivity to IFN of human

cancer cells. We believe that the downregulation of IFN-inducible

transcription by Ras is one of common mechanisms of viral

oncolysis among IFN sensitive oncolytic viruses. Furthermore, it

may underlie the development of a subpopulation of cancer cells

resistant to IFN anti-cancer therapy. Further identification of

signaling molecules involved in the Ras/MEK mediated suppres-

sion of IFN-induced transcription will improve efficacy and safety

of oncolytic viral therapies as well as IFN anti-cancer therapies.

Materials and Methods

Cells, Viruses and Reagents
Human cancer cells (A375, DLD-1, DU145, HCT116, HeLa,

HT1080, HT29, HTB129, LNCaP, MCF-7, MDAH, MDA-

MB468, PA-1, SKBR3, SKOV3 and SW48) and L929 cells,

were obtained from the American Type Culture Collection. All

cell lines used in this study were maintained in high-glucose

DMEM (Invitrogen, Burlington, Ontario, Canada) with 10%

FBS (Cansera, Etobicoke, Ontario, Canada). Vesicular stomatitis

virus (VSV) (Indiana strain, provided by J.C. Bell, University of

Ottawa, Ottawa, Canada) [3] was amplified and titered using

L929 cells. Recombinant human IFN-a and U0126 were

obtained from AbD Serotec (Raleigh, NC) and Calbiochem

(La Jolla, CA), respectively. An antibody to phosphorylated

ERK1/2 was obtained from Upstate (Lake Placid, NY), VSV-G

protein from Alpha Diagnostic (San Antonio, TX), anti Ras

antibody from Cell Signaling Technology (Danvers, MA) and

GAPDH from Santa Cruz Biotechnology (Santa Cruz, CA).

The activated Ras mutant (H-Ras) construct in the pBABE

retroviral vector was generously provided by P.W. Lee

(Dalhousie University, Halifax, Canada). The RasV12 vector

was transfected into SKOV3 cells using Superfect (Qiagen) and

selection of stable transfectants performed in 2 mg/ml puromy-

cin (Invitrogen). Individual clones were selected and expression

of constitutively active RasV12 was determined by western blot

analysis using anti Ras and phosphorylated ERK1/2 antibody.

Cell Culture, Virus Infection and Progeny Virus Assay
Cells were plated in 96 well plates (anti-viral assays) or 24

well plates (western blot analysis and progeny viral assay). For

the anti-viral assay, the cells were treated with IFN-a (0–

5,000 U/ml) for 16 hours and then challenged with VSV at

a MOI of 1 PFU/cell. The cells were stained with crystal violet

solution (0.5% crystal violet in 10% formalin) for 15 minutes.

After washing the plates, the crystal violet staining was extracted

with acetic acid and the cell viability was quantified with

a spectrophotometer at 590 nm. For western blot analysis and

viral progeny assay, the cells were treated with IFN-a (0–500U/

ml) and/or U0126 (0–20 mM) for 16 hours and then challenged

with VSV at a MOI of 1. The supernatant was harvested for

a progeny virus assay. The viral concentrations of supernatants

from the triplicate wells were determined by plaque assay as

previously described [64]. The cells were washed in PBS and

lysed in PBS containing 1% NP-40, 0.5% sodium deoxycholate,

0.1% SDS, 10 mg/ml aprotinin, 100 mg/ml PMSF and 1%

phosphatase inhibitor cocktail (Sigma). Protein samples were

cleared of debris by centrifugation.

Western Blot Analysis
The protein concentration was determined by the Bradford

method (Bio-Rad, Mississauga, Ontario, Canada). The samples

were subjected to 10% SDS-PAGE and transferred to nitrocellu-

lose membranes (Bio-Rad). The membrane was blocked with 5%

skim milk in TBS (20 mM Tris and 137 mM NaCl [pH7.3])

containing 0.1% Tween 20 and then incubated with the primary

antibodies as listed above. After washing, the membrane was

incubated with peroxidase-conjugated goat anti-mouse IgG or

Figure 5. Validation of changes in gene expression by quantitative RT-PCR. The level of gene expression in HT1080 cells left untreated,
treated with IFN (50 U/ml), with U0126 (20mM) or with IFN and U0126 for 6 hours or 12 hours was determined by quantitative RT-PCR. The relative
expression level was calculated compared to the 6 hour untreated control after normalization against GAPDH expression levels. (n = 3, * P,0.01
compared to time-matched control, ** P,0.05 compared to all other groups).
doi:10.1371/journal.pone.0044267.g005
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anti-rabbit IgG (Santa Cruz), and specific bands were detected by

ECL (Amersham, Baie d’Urfe, Quebec, Canada) as described

previously [65].

DNA Microarray Analysis
RNA was isolated from HT1080 cells that had been treated

with DMSO control, 20 mM U0126, 50 U/ml IFN-a, or both

U0126 and IFN-a for 6 hours or 12 hours and from SKOV3 cells

that were treated with 50 U/ml IFN-a for 6 hours using TriZOL

(Invitrogen) following the manufacturer’s instructions. To remove

genomic DNA contamination, RNA was treated with Turbo

DNA-free (Ambion, Austin, TX) according to the manufacturer’s

instructions. RNA was shipped to The Centre for Applied

Genomics (TCAG, Toronto, Canada) where all further manipula-

tions were carried out. RNA integrity number was determined to

be greater than 8.9 for all samples (Agilent 2100 Bioanalyzer,

Agilent, Santa Clara, CA). cRNA synthesis, labeling, hybridization

and scanning were performed by TCAG. The Affymetrix Human

Gene 1.0 ST GeneChip (Affymetrix, Santa Clara, CA) was used to

interrogate expression of 28,869 genes with whole-transcript

coverage (Gene Expression Omnibus Accession number

GSE31019).

Data analysis was performed using Bioconductor 2.6 [66] in R

2.11.0. The data from 3 independent biological replicates were

preprocessed using the Oligo package 1.12.2 [67] with the RMA

algorithm [68]. Statistically significant changes in gene expression

between treatment and control groups were determined using the

empirical Bayes moderated t-test from the Linear Models for

Microarray Data (LIMMA) package 3.4.3 [69] at a false discovery

rate (FDR) of 0.01. Gene ontology (GO) analysis was performed

using the High-Throughput GoMiner [70] via the web interface

using 1000 permutations, FDR,0.05, UniprotKB, Ensembl, LMP

and PDB Homo sapiens databases and ALL evidence codes.

Clustering based on GO category overrepresentation was

performed using Hierarchical clustering with Euclidean distance

and average linkage using the Genesis v1.7.1 clustering program

[71].

Quantitative RT-PCR
Quantitative RT-PCR (RT-qPCR) was performed in tripli-

cate using the primers shown in Table S1. Primers were

validated using a 5-point, 5-fold dilution series starting with

200 ng cDNA generated from DNase-treated RNA isolated

from HT1080 cells treated with both U0126 and IFN for 6

hours using Platinum SYBR Green RT-qPCR kit (Invitrogen,

Ontario, Canada) and analyzed on the StepOnePlus qPCR

system (Applied Biosystems, Foster City, CA). The cycling

conditions were: 50uC for 3 min, 95uC for 5 min followed by

40 cycles of 95uC for 15 sec, 60uC for 30 sec then 40uC for

1 min followed by melt-curve analysis. The absence of non-

specific amplification was confirmed by observing a single peak

in the melt-curve analysis, confirmation of the expected

amplicon size by agarose gel analysis and the absence of

primer dimers by the absence of amplification in the no

template control wells. The efficiency of each primer set is

shown in Table S4 and was taken into consideration when

calculating expression levels using a modified relative quantity

Figure 6. Effect of Ras transformation on the efficiency of viral
infection in IFN sensitive SKOV3 cells. (A) Western blot analysis
using anti-Ras, phosphorylated ERK or GAPDH antibody to determine

Ras/MEK activation in control SKOV3 and Ras transformed SKOV3 (clone
10 and 15). Control SKOV3 and Ras transformed SKOV3 cells were
treated with IFN (0, 12.5, 25, 50 and 100 U/ml), and then challenged
with challenged with VSV (MOI of 1). Infection was evaluated by (B)
western blot analysis for VSV-G protein and GAPDH at 24 hours
infection and by (C) progeny virus assay at 48 hours after infection.
doi:10.1371/journal.pone.0044267.g006
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(DDCt) calculation [72]. Statistical analysis (1-way ANOVA with

TUKEY post-doc test) was performed using SigmaPlot.

Supporting Information

Figure S1 Effect of U0126 treatment on the anti-viral
IFN response in moderately resistant and completely
resistant cell lines. Cell lines were infected with VSV

(MOI= 1) for 24 hours after treatment with IFN (0–5000 U/ml)

with or without U0126 (0–20 mM) for 16 hours. Western blot

analysis was used to detect viral protein (VSV-G) levels, the level of

phosphorylated ERK (p-ERK) with GAPDH used as a loading

control. The samples were analyzed on two membranes

simultaneously using identical conditions for incubation and

detection. One representative experiment out of 3 is shown. IFN

sensitivity of A375, DLD-1, DU145, HTB 129, MDA468 and PA-

Figure 7. Activation of IFN-induced transcription in control SKOV3 and Ras-transformed SKOV3 cells. The expression of GBP2, IFIT2,
MAP2, RIGI and STAT2 in control SKOV3 and Ras-transformed SKOV3 cells (clone 15) at 12 hours after IFN stimulation (0, 12.5, 50 and 100 U/ml) was
determined by quantitative RT-PCR. The relative expression level was calculated compared to the untreated control SKOV3 cells after normalization
against GAPDH expression levels. (n = 3, * P,0.05 and ** P,0.01 compared to IFN concentration-matched control).
doi:10.1371/journal.pone.0044267.g007
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1 cells was restored by MEK inhibition (U0126 responsive) while

IFN-induced antiviral response was not promoted by U0126 in

SW48 cells (U0126 non-responsive).

(PDF)

Table S1 List of 111 genes significantly upregulated
(FDR,0.01) in HT1080 cells treated with both IFN and
U016, but not with IFN alone or U0126 alone, for 6
hours.
(DOCX)

Table S2 List of 135 genes significantly upregulated
(FDR,0.01) in HT1080 cells treated with both IFN and
U016, but not with IFN alone or U0126 alone, for 12
hours.
(DOCX)

Table S3 Genes significantly upregulated by IFN treat-
ment in SKOV3 cells at 6 h and by combined IFN/U0126
treatment in HT0180 cells but not IFN treatment alone.
(DOCX)

Table S4 Sequence, amplicon size and effieciencies of
qPCR primers.
(DOCX)

File S1 Differentially expressed genes in HT1080 cells
treated with IFN for 6 h compared to vehicle treated
controls (FDR ,0.01).
(XLS)

File S2 Differentially expressed genes in HT1080 cells
treated with IFN for 12 h compared to vehicle treated
controls (FDR ,0.01).

(XLS)

File S3 Differentially expressed genes in HT1080 cells
treated with U0126 for 6 h compared to vehicle treated
controls (FDR ,0.01).

(XLS)

File S4 Differentially expressed genes in HT1080 cells
treated with U0126 for 12 h compared to vehicle treated
controls (FDR ,0.01).

(XLS)

File S5 Differentially expressed genes in HT1080 cells
treated with IFN and U0126 for 6 h compared to vehicle
treated controls (FDR ,0.01).

(XLS)

File S6 Differentially expressed genes in HT1080 cells
treated with IFN and U0126 for 12 h compared to vehicle
treated controls (FDR ,0.01).

(XLS)

File S7 Differentially expressed genes in SKOV3 cells
treated with IFN 6 h compared to vehicle treated
controls (FDR ,0.01).

(XLS)
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