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Abstract

Although yield trials for switchgrass (Panicum virgatum L.), a potentially high value biofuel feedstock crop, are currently
underway throughout North America, the genetic tools for crop improvement in this species are still in the early stages of
development. Identification of high-density molecular markers, such as single nucleotide polymorphisms (SNPs), that are
amenable to high-throughput genotyping approaches, is the first step in a quantitative genetics study of this model biofuel
crop species. We generated and sequenced expressed sequence tag (EST) libraries from thirteen diverse switchgrass
cultivars representing both upland and lowland ecotypes, as well as tetraploid and octoploid genomes. We followed this
with reduced genomic library preparation and massively parallel sequencing of the same samples using the Illumina
Genome Analyzer technology platform. EST libraries were used to generate unigene clusters and establish a gene-space
reference sequence, thus providing a framework for assembly of the short sequence reads. SNPs were identified utilizing
these scaffolds. We used a custom software program for alignment and SNP detection and identified over 149,000 SNPs
across the 13 short-read sequencing libraries (SRSLs). Approximately 25,000 additional SNPs were identified from the entire
EST collection available for the species. This sequencing effort generated data that are suitable for marker development and
for estimation of population genetic parameters, such as nucleotide diversity and linkage disequilibrium. Based on these
data, we assessed the feasibility of genome wide association mapping and genomic selection applications in switchgrass.
Overall, the SNP markers discovered in this study will help facilitate quantitative genetics experiments and greatly enhance
breeding efforts that target improvement of key biofuel traits and development of new switchgrass cultivars.

Citation: Ersoz ES, Wright MH, Pangilinan JL, Sheehan MJ, Tobias C, et al. (2012) SNP Discovery with EST and NextGen Sequencing in Switchgrass (Panicum
virgatum L.). PLoS ONE 7(9): e44112. doi:10.1371/journal.pone.0044112

Editor: Baohong Zhang, East Carolina University, United States of America

Received May 24, 2011; Accepted July 31, 2012; Published September 25, 2012

This is an open-access article free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This study was funded by United States Department of Energy-USDA Plant Feedstock Genomics for Bioenergy Program grant DE-A102-07ER64454
named "Developing Association Mapping in Polyploid Perennial Biofuel Grasses’’. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dc58@cornell.edu (DC); elhan.ersoz@syngenta.com (ESE)

Introduction

Switchgrass (Panicum virgatumL.) is a perennial C4 warm-season

grass native to North America, where it occurs naturally from 55u
N latitude to deep into Mexico, mostly as a dominant species of

the tall grass prairies. In North America, it has been used for more

than 50 years for soil conservation, as a forage crop, and as an

ornamental grass [1]. In 1992, switchgrass was designated by the

United States Department of Energy (DOE) as a model

herbaceous energy crop for ethanol and electricity production,

selected out of a wide array of candidate species [2]. Switchgrass

possesses many desirable qualities of a biomass crop for energy and

fiber production, including high-net biomass production per

hectare, low production costs, low nutrient requirements, relatively

low ash content, high water use efficiency, extended range of

geographic adaptation, ease of establishment by seed, adaptation

to marginal soils, and potential for carbon storage in soil [3–5].

Two genetically and phenotypically distinct switchgrass eco-

types, lowland and upland, were identified in early genetic

screening studies. They are distinguished by a number of

morphological traits and their natural habitat. The lowland

ecotype has a taller, coarser, upright phenotype, with a more rapid

growth habit compared to the upland ecotype, and is generally

found in wetter habitats, such as floodplains. The upland ecotype

is found in drier sites and is recognizeable by its finer stemmed,

and often semi-decumbent phenotype [1,6]. With respect to

genetic distinguishing features such as ploidy levels, lowland

switchgrass ecotypes are mostly tetraploid (2n = 4x = 36), whereas

upland switchgrass ecotypes are much more complex in their

ploidy levels, and generally display higher orders of ploidy. Upland

ecotypes, despite the high frequency of octoploidy (2n = 8x = 72),

also show a high incidence of aneuploidy and both tetraploid and

hexaploid chromosome numbers, with rare reports of diploidy and

even duodecaploid individual plants were reported [7–11]. Due to

the differences in ploidy levels, these two ecotypes are mostly

reproductively isolated with only occasional gene flow. However,

the level of natural gene flow between the ecotypes is unknown.

Although most of the recent research and breeding has focused on

the lowland ecotype, with its stable, simpler genome and its high
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yield potential, particularly in warmer parts of the US, our project

targeted northern-adapted, upland germplasm.

The molecular genetic characterization of switchgrass began

with the use of both restriction fragment-length polymorphisms

(RFLP) and randomly amplified polymorphic DNA (RAPD)

markers to develop genetic fingerprints for the existing cultivars

[9,12]. These works established that the upland and lowland

ecotypes were genetically distinct from one another, based on

chloroplast and nuclear DNA markers. The natural distribution

and history of switchgrass suggest that the species most likely

possesses high levels of genetic variation. At higher ploidy levels

that prevail in upland-adapted germplasm, polyploidy and

polysomic inheritance patterns may contribute to this diversity.

Observed frequencies of multivalents [13,14] and increased levels

of within-cultivar diversity observed in octoploids relative to

tetraploids tends to favor this view [15]. Although prior studies

highlighted a need for molecular maps to assist and hasten

breeding efforts on primary biofuel traits, preliminary marker

studies in the 2000 s determined that mapping would not be

straightforward [16]. Starting in 2006, with the new wave of

interest in genetic improvement for biofuel production through

marker-assisted breeding and genomic selection, the DOE funded

several new projects under the Biomass Genomics Research

Program [17]. To date, three of these projects targeted several

switchgrass cultivars for EST and short-read genomic sequencing

[18] for the purpose of marker development to promote future

efforts for quantitative genetic practices such as linkage mapping,

association mapping, and genomic selection.

The massive natural distribution and outcrossing life history of

switchgrass suggest that the species most likely possesses high levels

of genetic variation. Domestication efforts targeting improvement

of the feedstock characteristics of switchgrass have only been in

progress for the last two decades. Therefore, in many regards,

switchgrass is an undomesticated forage grass that has held a

dominant ecological role in large parts of the US prairie. This

suggests that even registered cultivars are likely to have retained

considerable allelic variation that could be utilized to improve the

biofuel production potential and efficiency of this species.

Conventional breeding efforts of switchgrass are time consuming

and challenging. Marker-assisted breeding could reduce the cycle

time of this perennial by severalfold. However, assuming it has

characteristics similar to other highly outcrossing grasses, such as

maize, the traits targeted for domestication/breeding are very

likely to be controlled by hundreds of quantitative trait loci (QTL)

with small effects [19]. In a breeding context, these numerous

small-effect QTL are best utilized using a marker-assisted breeding

approach known as ‘‘Genomic Selection’’ (GS) or ‘‘Genome-wide

selection’’(GWS). GS relies on a simple principle of marker-trait

association: When thousands of markers spanning the whole

genome have been tested together for their association with a trait,

at least one marker will be in linkage disequilibrium (LD) with

each and every QTL regardless of the effect size or the location,

whereby all QTL effects can be captured [20]. In low diversity

species like cattle, this can be achieved by as few as 50,000 SNPs

[21]. However, in a high diversity species like maize, more than

two million SNPs may be necessary [22] to properly carry out GS

across the species. Regardless of the species, however, all GS

studies require preliminary studies with a large-scale, marker-

discovery component. Such efforts are already underway for-

several other organisms such as Arabidopsis thaliana [23], rice [24],

and maize [22,25]. For switchgrass, assuming it would be similar

to maize, it is likely that GS efforts will also require a large number

of markers, estimated between 50,000 and two million SNPs. The

actual number will be determined by the effective population size,

effective recombination rate, trait heritability, and number of

QTL, which may be highly variable between individual breeding

programs.

Next generation sequencing platforms are transforming the way

genomes are analyzed. Although SNP discovery using short-read

sequence data is still in its early stages, several studies have already

demonstrated that large numbers of high quality SNPs can be

identified in a cost-effective manner using these data [26]. In these

studies, deep-sequence coverage across many samples was

necessary to identify high-quality SNPs. One way to achieve high

levels of overlapping coverage between the libraries is to reduce

the number of genomic sites surveyed in each library, which would

allow for deep sequencing over selected fractions of the genome.

This can be achieved by digesting each sample with a common

restriction enzyme, often with a DNA-methylation state bias to

enrich for transcribed regions and generate reduced representation

genomic libraries (RRGLs) [27–29].

Here we describe how we coupled EST library and short-read

sequencing approaches to discover over 149,000 SNPs in

switchgrass. In the process, we developed a consensus-reference

sequence of the switchgrass transcriptome of about 87.5 Mbs

spanning the gene space of the switchgrass genome to anchor

RRGL reads. Furthermore, we investigated population structure

within our samples through PCA analysis on ,4400 SNPs that

had complete genotype information across all samples.

Methods

Plant material
Switchgrass cultivar seeds and clones were provided by MDC

(Table 1, see Table S2 for the library names by cultivar). All plants

were grown in a greenhouse at Cornell University, Ithaca, NY, in

a soilless potting mixture, under ambient light conditions, watered

as needed, and fertilized once weekly with 300 ppm 21–5–20

NPK solution. To mimic the natural vernilization conditions and

enhance germination rates, the seeds were incubated in damp soil

in a 40uF cold room for 2–6 weeks prior to planting in the

greenhouse.

Table 1. Switchgrass cultivars, breeding populations and
linkage population parents used as sources of RNA and DNA
for EST and SRSL libraries.

Line Name Population Type

Blackwell Upland cultivar

Carthage Upland cultivar

Cave-In-Rock Upland cultivar

Dacotah Upland cultivar

Forestburg Upland cultivar

Kanlow Lowland cultivar

KY1625 Upland cultivar

Pathfinder Upland cultivar

Shelter Mixed

Sunburst Upland cultivar

WS4U Upland ‘‘4X’’ germplasm pool

WS8U Upland ‘‘8X’’ germplasm pool

WS98-IP NA

WS98-SB NA

doi:10.1371/journal.pone.0044112.t001
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Once the plants reached eight-leaf stage, leaf tissues were

sampled for DNA and RNA library preparation. To allow for

destructive sampling at an early developmental stage, each

individual was propagated with multiple rooted cuttings prior to

sampling. Each library was prepared from leaf-tissue samples from

a single clone of a single seed parent, which was sampled from a

greenhouse-grown population of several seed parents from the

same seed lot.

EST libraries and unigene clusters
Total RNA was isolated from 13 different cultivars of

switchgrass as described in the plant material section, using the

standard TRIzolH protocol (Invitrogen, Carlsbad, CA). A list of

cultivars and libraries made is shown in Table S2.

cDNA library construction and sequencing
Switchgrass poly-A RNA was isolated from the total RNA using

the Absolutely mRNA Purification KitTM from Agilent (Palo Alto, CA)

according to themanufacturer’s instructions. Poly-A RNA purity

and quantity was assessed with an Agilent BioanalyzerTM (Agilent,

Palo Alto, CA). First-strand cDNA was generated using a Creator

SMART cDNA Synthesis KitTM (Clontech, Mountain View, CA),

according to the manufacturer’s protocol. For each cultivar’s first-

strand cDNA synthesis, 1 mg of poly-A RNA, SMART IV Oligo

anda CDS-3M adapter (TRIMMER-DIRECT cDNA Normali-

zation Kit, Evrogen, Moscow, Russia) that incorporates asymmet-

ric SfiI restriction enzyme sites (SfiIA and SfiIB) at the 59 and 39

ends of cDNA were used. First-strand cDNA was amplified by a

long-distancePCR (LD-PCR) protocol with 15 PCR cycles: 94uC
for 7 seconds, 66uC for 30 seconds, 72uC for 6 minutes.

Normalization was accomplished by using a Trimmer-Direct

cDNA Normalization KitTM (Evrogen, Moscow, Russia) accord-

ing to the manufacturer’s protocol. Briefly, 1mg of amplified cDNA

was purified with Qiagen PCR Purification KitTM (Qiagen,

Valencia, CA), precipitated with ethanol, and dissolved in nuclease

free water. cDNA was mixed with 4x hybridization buffer, overlaid

with mineral oil, denatured at 98uC for 3 minutes and allowed to

renature at 68uC for 5 hours.Double stranded nuclease (DSN)

treatment was performed as described in the Evrogen kit manual.

The ssDNA fraction remaining after DSN treatment was amplified

with primers M1 and M2 for 18 cycles (94uC for 7 seconds, 66uC
for 30 seconds, 72uC for 6 minutes), followed by digestion with SfiI

restriction enzyme. After digestion, the library was size fractiona-

tedto .0.5 kb. To create a normalized cDNA library, the digested

cDNA was unidirectionally ligated into SfiI-digested pDNR-LIB

vector for in situ amplification in bacteria. ElectroMax T1 DH10B

cells (Invitrogen, Carlsbad, CA)were transformed with the ligation

mixture by electroporation. Via colony counts, the titer of the

original library was determined to be about 36106 cfu/ml.

Twenty-four colonies per transformation event were randomly

picked and primers pDNR-LIB_forward andpDNR-LIB_reverse

(primers designed specifically for adaptor sequences of the Evrogen

kit) were used to amplify and verify the inserts. Micro-titer plates in

384 well format were used for sequencing the vector inserts in

picked colonies from both ends on ABI 3730 instruments (Applied

Biosystems, Foster City, CA) at JGI labs in Walnut Creek, CA.

EST sequence processing and assembly
ESTs from all libraries were processed through the JGI EST

pipeline. ESTs were generated in pairs, using a 59 and 39 end-read

from each cDNA clone. Common patterns at the ends of ESTs,

such as vector and adaptor sequences, were identified and

removed using a custom software tool developed internally at

JGI. Clones were identified as ‘‘insertless’’ if more than 200 bases

of vector sequence at the 59 end or less than 100 bases of non-

vector sequence remained in the sequence. Next, ESTs were

trimmed for quality using a sliding window trimmer (window size

= 11 bases). Once the average quality score in the window was

below the quality threshold (phred quality score of 15), the EST

was split and the longest remaining sequencewas retained as the

trimmed EST sequence, unless less than 100 bases of high-quality

sequence remained, in which case, the sequences were removed

from further processing. In the next step, ESTs that contained

poly-A or poly-T tails were trimmed andretained unless the

remaining sequence was shorter than 100 base pairs, in which case

they were discarded. In the following step, ESTs consisting of

more than 50% low-complexity sequence (even if it was good

quality) were also removed from the final set of processed ESTs. In

cases where more than one read from the same clone in which the

same direction existed, the longest high-quality read was retained.

Sister ESTs (paired-end reads) were categorized as follows: if

one EST was insertless or a contaminant, then, by default, the

second sister was categorized as the same and was discarded.

However, when retained, each sister EST was treated separately

for complexity and quality scores. Lastly, an annotational quality

check was conducted by comparing the EST sequences with those

in the GenBank nucleotide database to identify contaminants, i.e.,

non-desirable sequences such as those matching non-cellular and

rRNA sequences. Once identified, those sequences were removed

from the final set of processed ESTs. For clustering, ESTs were

evaluated with malign, a k-mer-based alignment tool [30], which

clusters ESTs based on sequence overlap (k-mer = 16, seed length

requirement = 32, alignment identity . = 98%). Clusters of ESTs

were further merged based on sister ESTs using double linkage.

Double linkage requires that two or more matching sister ESTs

exist in both clusters in order to be merged. EST clusters were

then assembled using CAP3 [31] to form consensus sequences.

Clusters may have more than one consensus sequence for

various reasons, including alternative splicing, long-insert sequenc-

es, or errors in assembly. Cluster singlets are clusters of multiple

reads from the same EST, whereas CAP3 singlets are single ESTs

that had joined a cluster but, during cluster assembly, were isolated

into a separate singlet consensus sequence. ESTs from each

separate cDNA library were clustered and assembled separately

and, subsequently, all of the ESTs for all cDNA libraries were

clustered and assembled together. For cluster consensus sequence

annotation, the consensus sequences were compared to Swissprot

protein database using BLASTX and the annotations of the hits

were reported.

Illumina Genome Analyzer Sequencing
Genomes of one sample from each of 13 cultivars were sampled

as described previously. The DNA libraries were digested with the

methylation-sensitive restriction enzyme HpaII and reduced-

representation libraries (RRLs) were prepared as described in

[29]. In this manuscript, these libraries are referred to asshort-read

sequencing libraries or SRSLs. These libraries were sequenced as

single-end 35 bp reads on a first-generation Illumina Genome

Analyzer (Illumina-GA) by JGI labs. All sequences are submitted

to GenBank, for sequence accessions see the supplementary

information file Text S1.

Assembly and SNP calling
Upon receipt of the sequences from JGI, each of the SRSLs was

checked for reads that started with ‘‘CGG’’ sequence, the

overhang left by the restriction enzyme upon digestion. Note that

in cases where the second C of the CCGG recognition sequence is

methylated, the enzyme cannot cut at the recognition sequence.

SNP Discovery in Switchgrass
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Also, in cases where low-quality, broken molecules were included

in the library, the read sequences will not contain the target

overhang sequence. We also applied a prefilter to discard reads

containing homopolymers larger than 16 bps. The resulting

sequences were saved in fastq format and were analyzed with the

panati suite of programs (http://panati.sourceforge.net/) [32].

Briefly, panati works as follows:

(1) To enhance the search speed for mapping reads against the

reference, the first step of the analysis process is building a

sequence index from the reference sequence. This was

implemented in the ‘‘panati-build’’ module, with user-defined

options for ‘‘word-size,’’ i.e., the size of the words within the

index, and ‘‘shift-size’’, i.e., the length to shift the word

window. Shift-size can be variable between 11 and 16 bps,

where smaller shift-step size is slower but more accurate. We

have used a 12 bps shift window.

(2) The second step involves running the ‘‘fastq-qc’’ module on

the SRSLs. This program takes in each read and begins to

trim the sequence, starting at the 39 end of the read, until a

user-specified quality score threshold is reached. The

minimum length required to include the trimmed read in

the assembly can also be specified. Sequences are trimmed

based on length and quality. For our specific case, we trimmed

the 39 end of the sequences until a minimum phred-like

quality score of 10 or greater was established for the

remaining sequence. After trimming, if the sequence size

dropped below 12 bps, we discarded the read.

(3) The next step was performing an assembly/alignment of the

reads against a sequence index using a banded-Smith-

Waterman algorithm [33]. We allowed two mismatches and

up to three bp gaps. Note that these thresholds are based on

average read length within the sequence library, which, in our

case, was about 25 bps after trimming. We allowed multiple

hits to the reference for the first round of assembly; however, if

the multiple hits with these initial criteria could not be

resolved in favor of a single alignment by evaluation of quality

scores at the mismatch positions and the location of the

mismatches within the alignment downstream, the read was

discarded from further consideration for SNP calling.

(4) The fourth step involved filtering the output of the previous

step with user-defined criteria to improve the quality of the

SNPs that would be reported from the final assembly, using a

‘‘combine-samples’’ program. Preliminary results indicated

that the most important factorsaffecting the reliability of a

SNP call were the number of reads that carry the alternate

allele at the SNP position, as well as the total number of reads

at that position. In an inbreeding species, detection of multiple

alleles at the SNP position from a single library indicates to

problems with assembly. However, switchgrass is highly

heterozygous and is polyploid. Therefore, heterozygosity at

aSNP position within libraries or, in other words, observation

of a SNP within individual libraries is possible. To

accommodate this characteristic of the species number of

sequences required at the SNP position can be specified with

two different run time flags: ‘‘-d’’to specify the number of

alternate read-carrying reads at the SNP position within a

library, and ‘‘-l’’ to specify the number of alternate allele-

carrying reads across the libraries. We called SNPs with

various reliability thresholds for these options, but we are only

reporting the results from the SNP callingwith a‘‘–d 3–l 3’’

option, where we required at least three reads to carry the

alternate allele at the SNP position. Further, panati allows

forscreening of the SNP positions for the ratio of reference

reads to alternate reads, and minimum read quality at the

SNP position. For switchgrass, we set the ratio of reference to

alternate allele to 1:7 to allow for the influences of dosage

effects that can be created due to polyploidy, and set a

minimum quality threshold of aphred-like quality score of 20.

We did not actively screen for transposon and retro-transposon

sequences; however, by virtue of the way the alignments and SNP

calling are performed with panati, it filters reads that map to

multiple locations. This feature of panati was used as a passive

screen against influences of repetitive sequences during assembly.

The resulting files were distributed from our website [32]. The

panati parameters used for generating each result file were

described with the files on the website.

Genotype calling
We called genotypes from the raw-read data as follows. A

genotype was called only if the read depth for an individual at the

SNP locus was greater than or equal to four reads. For the purpose

of genotype calling, we treated the SNP data as if they were

dominant-marker data. Individuals were called homozygous if

they carried four or more reads for one allele and no reads for

another allele. Individuals with four or more reads carrying both

alleles were called heterozygous. SNPs with missing genotypes

were excluded.

Population Structure Analysis by PCA
Principal-components analysis (PCA) was performed using R

statistical software package on the genotypes obtained as described

above. A set of SNPs that had complete genotype information

across all lines was used (4400 SNPs) for the analysis. The SNPs

identified were re-coded numerically as 0 for reference allele, 2 for

alternate allele and the ratio of reference allele to alternate allele

for the heterozygote value.

SNP calling from ESTs
SNPs from the ESTs that were initially used to construct the

unigene-cluster consensus sequences (approximately 110,000

sequences) were called by aligning the individual ESTs (about

600,000 sequences) against the reference sequence used for the

SNP calling with SRSLs. We used panati for this procedure, with

two reads at the SNP position requirements (d 22, l22) for calling

a SNP.

Software availability
The manuscript on panati is currently under review. The

program is available upon on request by contacting MHW directly

or the corresponding authors. The other software tools used for

the study are available by contacting the corresponding authors.

Results

The most significant challenge for SNP discovery in a species

without a fully sequenced genome using short-read sequencing is

the lack of a reliable de novo assembly algorithm that can operate

without a reference sequence to anchor the individual reads.

Although several de novo assembly algorithms were released for

public use in the last few years, [34–36] none have yet been shown

to work for highly complex plant genomes with heavily repetitive

sequences.

Although it is possible to anchor some portion of short-read

sequences to a related taxon for which a complete genome

sequence is available, this is undesirable for SNP discovery. This is

due mostly to confounding of the polymorphisms that discriminate

SNP Discovery in Switchgrass
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species from each other (i.e. between species divergence) and are

not segregating within the target species. This also manifests as an

inability to identify the reference alleles (except for the rare

occasion where a shared polymorphism exists between two

species). Computationally, SNP discovery algorithms often prevent

SNP calling against the reference sequence when no reads

representing the reference allele are present in the assembly.

Therefore, our initial objective for this project was to generate a

within-species reference genome sequence, a DNA consensus

sequence that would provide a scaffold to map short-read

sequences for SNP discovery.

There are many possible approaches for generating a genomic

sequence scaffold (i.e. shotgun Sanger sequencing, 454 sequencing,

and RRGL sequencing), but the fastest, least expensive, and most

popular method is to establish a transcriptome scaffold using EST

libraries. The previous EST sequencing efforts by Tobias et al.

[37,38] provided about 500,000 publicly available sequences from

multiple upland and lowland switchgrass cultivars. These ESTs

were combined with approximately 100,000 EST sequences

generated in this project from 13 upland cultivars or breeding

populations of switchgrass, including both tetraploid and octoploid

individuals (See Table 1- Plant Material). Since the contribu-

tion of any individual cultivar to the EST sequence pool other than

Kanlow was low, these sequences were not optimal for identifying

differences between cultivars. However, they did provide sufficient

coverage across the genome to allow us to createthe required

scaffold sequence and to verify the SNP discovery procedure.

Our next challenge was optimization of the sequence-clustering

algorithm and clustering parameters to address issues created by

high levels of paralogy in a polyploid genome. The severity of this

challenge was conditional on the nature of the polyploidy, i.e.

auto-versus allo-, which created whole or partial genome

duplications. By adjusting the EST clustering parameters, it was

possible to empirically test stringency levels required for the

assembly. The optimum threshold was where clusters did not

include paralogous sequences, but also did not split allelic variants

coming from the same locus. We tested a series of thresholds of

percent identity to determine how a variation in this parameter

affects clustering. We expected to see a steady increase in the

number of clusters up to the level where alleles would start to split,

at which point a spike in the total cluster numbers and a reduction

in the average number of reads per cluster would occur. In fact,

the rate of increase in the number of consensus sequences

generated showed a considerable jump between the 98% and 99%

identity thresholds (Table 2, Figure 1). Therefore, for the SNP

discovery experiments, we used the cluster consensus-sequence file

created at 98% sequence identity for our reference sequence. The

total length of the reference sequence was approximately

87 Mbps, including both EST assemblies from more than one

read (cluster consensus) and EST sequences encountered only

once (singleton sequences) (See Table S1- coverage statistics).

The output from the EST clustering of all of the libraries is

available at http://www.maizegenetics.net/snp-discovery-in-

switchgrass [39].

SRSL coverage varied significantly across cultivars. Overall,

42% of the libraries were mapped to a single position against the

reference, while about 39% could not be mapped but were found

within the reference sequences. (On average, 18% of the sequences

were low quality, and the remaining 21% had multiple equiva-

lently strong matches on the reference and, therefore, were

excluded from further analysis.) The remaining 19% were not

found within the reference sequences available (Table 3-
Figure 2- mapping efficiency). Since these sequences were

identified as belonging to plant taxa [the possibility of cross-sample

contamination during sequencing with another plant sample in the

sequencing lab was disregarded], the 19% was deemed to be a

portion of the switchgrass genome that wasn’t covered with the

EST libraries. For individual libraries, the largest reference

coverage (at 1x sequence depth) was 17.9 Mbps (Shelter) and

the smallest was 6.7 Mbp (WS4U) of total sequence. The SNP

calling was restricted to the bases where at least three sequences

carrying the alternate allele were observed (positions covered with

at least 3x depth), and the ratio of reference to alternate alleles was

no less than 1:7 and no more than 7:1 (assuming octoploidy, i.e. a

maximum of eight copies of a given allele at any given locus). This

crudely compensated for the possible dosage effects of mainly

Figure 1. Determination of the % sequence identity threshold
for EST assembly. In order to identify this threshold we have done
EST clustering with a series of percent sequence identities, to determine
the %identity that will cluster the sequences from individual loci
together without splitting alleles at a loci. The jump observed in the
cluster number between 98% and 99% sequence identity indicates that
at locus level, sequences will be 98% identical, while the alleles at a
locus are expected to be 99% identical.
doi:10.1371/journal.pone.0044112.g001

Table 2. EST sequence clustering statistics at four levels of
percent-identity thresholds.

99% 98% 97% 96%

Number of consensus sequences 128,311 109,181 104,372 102,379

Number of Clusters 84,573 61,362 52,049 46,243

Number of Clusters (not singlets) 67,029 49,786 42,894 38,490

Number of Clusters (singlets) 17,544 11,576 9,155 7,753

Number of Cons sequences
(not singlets)

84,547 72,804 69,414 67,593

Number of Cons sequences
(singlets)

43,764 36,377 34,958 34,786

Number of Cons sequences/cluster 2 1.78 2.01 2.21

Number of Cons sequences/cluster
(no singlets)

1.26 1.46 1.62 1.76

Longest number of cDNAs/cluster 23,938 14,150 32,729 50,844

doi:10.1371/journal.pone.0044112.t002
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tetra- or octo- ploid genomes, and prevented SNP calling due to

sequencing or assembly errors. Across the libraries, total reference-

sequence coverage was 42.7 Mbps at 1x minimum depth and 25.4

Mbpsat 3x minimum depth (Figure 3- library sizes), the depth

level required for SNP calling. As expected, more SNPs per Kb

were detected from the libraries with higher coverage (average

= 5.73 SNPs/Kb), and thus the contribution of each library to the

total SNP pool varied based on its size. Two exceptions to this

trend were WS8U (8.37 SNPs/Kb) and WS4U (5.96 SNPs/Kb),

which displayed more SNPs per Kb than any of the other cultivars

compared to their library sizes (Figure 4- SNPs/Kb by library
size) (See Supplementary Table S1- coverage statistics). Since the

amount of heterozygosity in a polyploid genome is expected to be

high, we performed SNP calling in two stages, first from each

individual library, which we followed with SNP calling from

combined reads across all the libraries for consensus SNP calling

(see Materials and Methods). Using this methodology, we

identified a total of 149,502 SNPs and short (1–3 bps) indels.

Population structure and validation of the discovered
SNPs

A small set of SNPswere identified in all 13 lines (4400 SNPs).

These were used in a principal components analysis (PCA) to

examine population structure in our sample (See Figure 5- PCA
for lines). No immediate patterns were detected from plotting the

first two principle components, which together explained about

25% of the observed variance. PC1 explained about 14% of the

observed variance, while PC2 explained the additional 11%.

As a preliminary validation for the SNPs called from short-read

libraries, we attempted to compare SNPs discovered from EST

sequences to the set of SNPs called from short-read sequences.

Due to low depth of the EST libraries, and unbalanced library

sizes for different cultivars, SNP discovery from the EST set was

challenging. In addition, due to unequal reference-sequence

coverage between the two library types (ESTs vs. SRSLs), the

overlap between SNPs was expected to be small since transcrip-

tome coverage from a single tissue type is expected to be a small

fraction of the genome. As expected, the EST sequences covered

over 99% of the reference sequence (transcriptome assembly) at 1x

coverage (Table 3), while, at 1x minimum depth, SRSLs covered

about 48% of the available transcriptome reference, and only

about 29% of the coverage that was 3x and over was considered

for SNP discovery (see SNP declaration criteria in the Methods

Figure 2. Distribution statistics for the assembly of reads obtained from SRSLs. 42% of the reads were matched and mapped while 19% of
the reads found no match. Of the remaining 39%, 18% was low quality and 21% had multiple matches across the genome. This fraction was not used
for SNP calling.
doi:10.1371/journal.pone.0044112.g002

Figure 3. The depth of coverage over the reference sequences
(87.5 Mbps) by cultivars, and across all cultivars. The fraction of
the reference covered in each cultivar’s individual sequence library was
largest at 1x, and was decreasing in size as the coverage increased.
However, when all the libraries were compiled together, although the
size of the 1x fraction stayed more-or-less the same compared to
individual libraries, the fraction that is covered at higher depths
increased dramatically.
doi:10.1371/journal.pone.0044112.g003
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section), summing up to only about 29% overlap between the

comparable fraction of SNPs detected by the two methodologies.

With the requirement of a minimum of two reads with the

alternate allele at each position (coverage at 2x depth), 24,436

SNPs were detected from the EST alignments (6.3 SNPs/Kb).

However, since the read depth at each SNP position is lower in the

EST alignments, these SNPs were considered lower quality than

the SNPs discovered from the SRSLs. We presented these SNP

data sets with the other data sets on [39].

Discussion

Until recently, large-scale marker discovery studies have usually

concentrated on a small number of organisms with sequenced

genomes. With decreasing costs for DNA sequencing and

genotyping, coupled with improved NextGen sequencing technol-

ogies, we anticipate growing interest in moving rapidly toward

large-scale marker discovery and, eventually, genomic selection

(GS) studies in organisms for which relatively little genetic data

currently exist. There are many orphaned crop species in need of

genetic resources, and thousands of germplasm accessions in

repositories worldwide that need their genomes indexed to

Figure 4. The correlation between levels of heterozygosity
within individual libraries versus breadth wise coverage of the
reference sequences. The correlation coefficient (R2) of the blue line
is 0.89 while the correlation coefficient for pink line (R2) is .0.95.
doi:10.1371/journal.pone.0044112.g004

Table 3. Total number of reads generated from each library and the mapping efficiency.

Line
Estimated Genome Size
in MBps1 Total % Final-mapped % Unmapped % Discarded

Blackwell 588.000 4,142,351 45.63% 34.40% 19.97%

Carthage 599.025 2,254,301 38.20% 44.62% 17.18%

Cave-in-rock 645.575 2,677,852 39.26% 43.13% 17.61%

Dacotah 581.875 3,527,502 45.48% 35.04% 19.48%

Forestburg 580.650 2,891,721 44.01% 37.17% 18.82%

KY1625 601.475 5,372,097 44.94% 35.53% 19.53%

Pathfinder 584.325 2,419,059 39.35% 43.67% 16.98%

Shelter 614.950 5,230,735 41.84% 40.23% 17.93%

Sunburst 612.500 4,742,716 44.03% 36.85% 19.12%

WS4U 591.675 1,330,787 39.92% 43.29% 16.80%

WS8U 556.150 2,324,402 43.82% 36.58% 19.60%

WS98-IP 602.700 4,021,678 39.67% 43.21% 17.11%

WS98-SB 546.350 3,439,133 44.50% 36.34% 19.16%

1Values are calculated using the pg estimates reported in Costich et al. 2010 Table 2 with the conversion factor of 980 Mbps per pg per 2c nucleus value, divided by the
ploidy level.
doi:10.1371/journal.pone.0044112.t003

Figure 5. Principal Components Analysis (PCA) on 4400 SNPs
where complete genotypes across all 13 samples were
available. First two components explains about 25.5% of the variance.
There is no apparent clustering tendency except for the lines at the
bottom right corner: Cave-in-rock, Carthage and WS4U.
doi:10.1371/journal.pone.0044112.g005
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accelerate breeding programs. In the present study, we provide a

framework for rapidly and cost-effectively moving from few

genetic resources to genome-wide characterization of a species.

This would be particularly useful for species that are of cultural or

niche-market interest, and that are unlikely to receive extensive

funding.

We generated 1.6 Gigabases (Gb) of DNA sequence data

(Table 3), and mapped about 0.6 Gb (42%) back to the reference

sequence of approximately 87 Mb. The effective size of the

switchgrass genome was estimated to be about 550 Mbp (our

calculations according to [7]), and if our libraries were completely

random, we expected an average of 3x coverage over the genome

with the number of reads generated. Since the reference sequence

was estimated to be less than 16% of the overall genome sequence,

despite an expectation for enrichment toward genic sequence

representation within the SRSLs; it was somewhat surprising that

we were able to map 42% of the reads acquired from SRSLs back

to this presumably ,15% (assuming 550 Mb genome) region of

the genome. For an outcrossing grass species, it is common for the

genome to be composed primarily of transposable elements. For

instance, only about 15–20% of the maize genome is genic

sequences, and the remainder consists of transposable elements. If

the genic portion of the switchgrass genome comprises about 30%

(approximately 165 Mbp expected), similar to maize [40], this

may offer an explanation for the high frequency of reads hitting

the available reference sequence of 87.5 Mbp (,15%).

To determine the level of enrichment for genic regions, we

calculated the read fractions in each library that contained the

HpaII cut-site overhang. Although, on average, only about 25% of

all reads contained intact CCG tags, overall, 42% of total reads

library found a unique match against the reference sequence, and

another 21% was mapped to multiple positions against the

reference. This disparity may be due to loss of part or all of the

CCG tags during library construction and sequencing. Another

much simpler explanation may be that the mapping stringency is

low- since we have allowed for 2 mismatches and upto 3 bp indels

for mapping, summing up to a total of 20% mismatch allowance

during mapping. This mapping stringency is lower than the

stringencies used for most species for similar experiments.

Overall, we were unable to use 58% of the reads (19% not

represented in the reference, 39% unmappable) for the assembly.

This indicates 41% of the total reads, or approximately

18 million25 bp reads, totaling about 451 Mbp were matched

back to 29% of the reference at 1x or higher coverage.

To make SNP calls, we used an in-house assembly and SNP

calling algorithm named panati for several reasons: 1) it could

incorporate unigene cluster reference sequences as opposed to

requiring genome sequence data; 2) it could integrate both short-

read sequence data as well as longer-read Sanger sequence data

for SNP calling; 3) due to the high incidence of heterozygosity in

the cultivars sequenced, it was necessary to have an algorithm that

can call SNPs on reads from individual libraries; 4) due to the

polyploid nature of switchgrass, a SNP calling algorithm with

adjustable parameters for the expected frequency of the reference

allele versus the alternate allele at SNP sites was required; 5) a

scalable algorithm that could work for variable percent-identity

levels across libraries was needed; and, 6) some of the published

SNP-calling algorithms are not successful at distinguishing real

SNPs from sequencing errors and, thus, resort to modifying the

SNP-calling criteria based on quality scores and genotypic

contingency tests (Myles et al., 2009, Gore et al. 2009) [24,17].

Such criteria can readily be implemented in the SNP-calling

algorithms to reduce the false-positive rate.

As a measure of diversity, we calculated within and across

library SNP detection rates. We observed a positive correlation

between the total number of mapped reads per library (reference

coverage) and the number of SNPs detected per kilobase pairs

(Kbps) (Figure 4, R2 = 0.89). Notable exceptions were WS8U

and WS4U, two accessions that showed significant enrichment for

diversity despite relatively small library sizes. WS8U diversity was

similar to that of KY1625, despite the KY1625 library having 2.5x

more reads, and WS4U diversity was similar to that of Blackwell,

even though its library has about 4x more reads. This is likely due

to the fact that WS4U and WS8U are diverse germplasm pools,

each originating from a wide array of prairie-remnant populations

with common DNA content (ploidy), i.e., WS4U plants are

‘‘tetraploids’’ with DNA content approximately 3.0 pg/nucleus;

WS8U plants are ‘‘octoploids’’ with DNA content approximately

6.0 pg/nucleus [41]. This indicates that these "germplasm pools"

were successful at increasing heterozygosity within individuals that

came from these pools. All 11 of the other cultivars in this panel

are traceable back to a single source-identified, prairie-remnant

population or a very narrow geographic region, such as a single

county.

Our results did not show a plateau for the correlation between

the library size and the diversity levels. This indicates that our

largest diversity estimate of ,8 SNPs/Kb still underestimates the

amount of diversity contained within these switchgrass accessions.

Deeper sequencing per library is required to more accurately

assessthe levels of diversity/heterozygosity in switchgrass. With the

available data, we could only estimate the amount of heterozy-

gosity for each library using the correlation detected between the

library size and the heterozygosity. Excluding the WS4U and

WS8Ulibraries, with a minimum of 2x coverage at any SNP

position required for SNP calling, if all libraries were sequenced as

deeply as our largest library (KY1625 (2.4 million reads)), Cave-in-

Rock would still have the lowest heterozygosity, with ,5.5 SNPs

per Kb, while Forestburg would be the most heterozygote, with

9.5 SNPs per Kb. That is about twice as high as what was

observed in high diversity maize varieties.

We used a subset of SNPs to examine switchgrass population

structure with principal-components analysis. The first two

principal components together explained 25% of the variance.

We did not detect any clustering pattern that would indicate

population structure within switchgrass. Since there was prior data

suggesting that there are at least three distinct geographic clades –

Central Great Plains, Northern Great Plains, and Eastern Savanna

– within upland switchgrass germplasm, the lack of clustering

observed in our data may be attributed to the relatively small

sample size of these 13 genotypes, combined with the higher

within-population variance in comparison to the between-popu-

lation variance observed previously in switchgrass [42].

Supporting Information

Table S1 Depth and breadth wise coverage statistics by
cultivar and across cultivars between 0x to 5x coverage.
0x designates the fraction of genome that is not covered. SNPs

were called from the fraction that is either 3x in an individual

library or 3x across libraries.

(XLSX)

Table S2 Names of the libraries that were used to tag
reads from each library in the data files distributed
from the project website at http://www.maizegenetics.
net/snp-discovery-in-switchgrass.

(XLSX)
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