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Abstract

Linear programming (LP) problems are commonly used in analysis and resource allocation, frequently surfacing as
approximations to more difficult problems. Existing approaches to LP have been dominated by a small group of methods, and
randomized algorithms have not enjoyed popularity in practice. This paper introduces a novel randomized method of solving
LP problems by moving along the facets and within the interior of the polytope along rays randomly sampled from the
polyhedral cones defined by the bounding constraints. This conic sampling method is then applied to randomly sampled LPs,
and its runtime performance is shown to compare favorably to the simplex and primal affine-scaling algorithms, especially on
polytopes with certain characteristics. The conic sampling method is then adapted and applied to solve a certain quadratic
program, which compute a projection onto a polytope; the proposed method is shown to outperform the proprietary
software Mathematica on large, sparse QP problems constructed from mass spectometry-based proteomics.
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Introduction

Linear programming involves optimizing a linear objective function

subject to a collection of linear constraints. LP problems are frequently

encountered throughout many disciplines, both on their own and as

approximations to more complex problems. Linear programming has

recently been applied to image reconstruction [1,2], modeling Markov

decision processes [3], and graphical models [4,5].

Formally, LP requires optimizing an n dimensional linear function

f T x over a feasible region defined by k affine inequality constraints

Aixƒbi . Each row of the k|n matrix A, along with the corres-

ponding element in the column vector b, defines a single halfspace,

and the feasible region, denoted V, is composed of the intersection of

these halfspaces. Thus, any LP problem can be stated as follows:

Minimize g(x)~f T x

Subject to Axƒb

The solution to the LP problem consists of a point x� with

minimal g(x�).
Finding a feasible point xinit[V can itself be written as a linear

program that maximizes feasibility (this is called a ‘‘two phase’’

approach). Alternately, feasible points can be found during

optimization by creating a trivially feasible problem with augmented

slack variables d, and simultaneously minimizing f T xzM1T d. If

M is a large enough constant, the penalty M1T d will be driven to 0
at an optimum (known as the ‘‘Big M’’ method) [6].

Simplex Methods
The first practical algorithm for solving LP problems, the

simplex algorithm [7], was described in 1947. This algorithm embeds

the feasible region into a simplex, and then takes steps along vertices

on the simplex that decrease the objective function. These steps

correspond to movement along the edges of the feasible region, by

which one bounding constraint is exchanged for another. When

several possible adjacent vertices allow a decrease in the objective

value (as is frequently the case), then a pivot rule is used to resolve

which will be taken. The simplex algorithm has been shown to have

worst-case exponential behavior on certain problems [8] but is

efficient in practice, and is still a popular method for solving linear

programs. Randomized simplex algorithms, which employ stochastic

pivot rules, have been shown to evade exponential behavior [9], but

in practice tend to perform worse than deterministic variants.

Pseudocode for the steepest-edge and randomized simplex methods

implemented for comparison are provided in Algorithm 0, with

subroutines as Algorithms 0–0. The simplex variant described and

used in this manuscript requires the point 0 to be in the feasible

region; however more sophisticated simplex methods, (e.g. the

parametric self-dual simplex method [6]) operate using the same

basic motivation, but can be used to solve LPs that are not trivially

feasible (by implicitly transforming the LP using a method similarly

motivated to the Big M method described above, thus manipulating

the objective value and the feasibility). These simplex variants can

also be used with stochastic pivot rules, and can alternate between

primal and dual steps.
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Generalizations of Simplex Methods
Other geometric methods share similarities to simplex

methods and move along the convex hull of the polytope;

however, these methods are not restricted to moving along

vertices, and so they can be viewed as generalizations of simplex

approaches. One such approach is the geometrically motivated

gravity descent method [10], which simulates the descent of a

very small (radius [) sphere of ‘‘mercury’’ to the minimum of the

polytope. As the sphere descends, the walls of constraints it

encounters create a reciprocal force, essentially projecting the

objective vector to glide along the facets of the polytope. At each

LP and QP by Linking Constraints in the Interior

PLOS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e43706



iteration, finding the new steepest direction requires solving a

small quadratic program (QP) on the set of bounding ‘‘active’’

constraints. Aside from a few subtleties (e.g. progressively

decreasing the radius of the sphere if it becomes stuck in the

vee of two very close facets), the method proceeds in its QP-

based descent until the objective value cannot be decreased (as

shown by the QP solution).

Interior Point Methods
In contrast with simplex methods, which traverse adjacent vertices

of the polytope, interior point methods remain in the strict interior

and asymptotically approach a solution in an iterative manner.

Interior point methods terminate once the current solution reaches a

predefined precision, and then may optionally use other methods to

descend to the nearest vertex and reach an exact solution.

The ellipsoid method was the first algorithm proven to solve the

LP to a predetermined precision in a polynomial number of steps

[11]. The algorithm successively finds the ellipsoid of minimal

volume that contains the intersection of the feasible region and the

halfspace requiring the objective value to not increase. In each

iteration, a step is taken to the center of the containing ellipsoid,

ensuring an exponential decay in the volume of ellipsoids in the

series. Although the algorithm converges close to an optimal

solution in polynomial time, in practice it is not competitive with

the simplex algorithm.

The advent of Karmarkar’s algorithm for LP marked a shift in

focus from simplex-based algorithms to interior point methods

[12,13], as well as their primal-dual adaptations [14]. Karmarkar’s

algorithm is guaranteed to solve LP problems in polynomial time,

asymptotically converging to a desired precision; however, unlike the

ellipsoid algorithm, variants of Karmarkar’s interior point method

can be fast in practice. The method applies a logarithmic barrier

function in lieu of constraints, and takes steps to simultaneously

maximize the feasibility and the optimality. A simplified version, the

primal affine-scaling method [15,16], has worst-case exponential

behavior but is practically efficient, especially for large, highly

constrained LPs. The primal affine-scaling method repeatedly takes

steps in the direction of steepest feasible improvement to the

objective. It does so in each iteration by inscribing an ellipsoid into the

constaints limiting the local feasible region, optimizes the objective

function over the hull of the ellipsoid, and finally then takes a step in

the direction of that optimum. The ellipsoid is constructed in a

manner that scales the space to afford an equal slack to all nearby

constraints; this scaling prevents a single nearby constraint from

strongly influencing the direction chosen [6]. Pseudocode for the

affine-scaling method implemented for comparison is provided in

Algorithm 4. Note that sparse vector implementations have low

overhead for products between matrices and diagonal matrices, with

runtime similar to matrix-vector products.

LP and QP by Linking Constraints in the Interior
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Additional Randomized Methods
Following the advent and success of the randomized simplex pivot

rules, other stochastic algorithms emerged for solving LP. Seidel’s

algorithm algorithm randomly downsamples from the set of all

constraints [17]. The subproblems will either yield feasible, optimal

solutions, or, if not, will indicate that at least one removed constraint

bounds the optimum x�. In this manner, the algorithm winnows down

set of extreme (i.e. important, bounding) constraints. The Matousek/

Sharir/Welzl algorithm uses a similar approach, but utilizes further

information from the subspace spanned by the basis of currently

known extreme constraints [18], thus establishing a new subexpo-

nential bound for LP. These algorithms show great promise for future

use for have uncovered novel theoretical knowledge of polytopes and

the LP problem, but have not yet enjoyed the broad success of simplex

methods and interior point methods in practical application.

A Novel Method that Randomly Links Vertices within the
Interior

The simplex algorithm and interior point methods are among

the most commonly applied algorithms for LP, due to their

simplicity of implementation and their efficiency. Randomized

variants of these algorithms are generally thought to perform

inefficiently relative to deterministic algorithms. Hence, random-

ized algorithms are usually only mentioned in the context of

avoiding exponential average time performance on pathological

problems and are unpopular in practice.

This manuscript describes a simple, geometrically motivated

algorithm for LP that randomly samples from the interior of the

feasible region in a manner that randomly selects from the set of

superior vertices. This stochastic optimization algorithm, named conic

sampling, is both simple and efficient. For LPs with certain character-

istics, the conic sampling algorithm is demonstrated to roughly match

or exceed the efficiency of the simplex and primal affine-scaling

algorithms, particularly for highly constrained, sparse problems.

Methods

The proposed algorithm descends to a vertex by taking steps

through the interior and projecting orthogonal to constraint rows

A that are encountered. Once a vertex is reached, the algorithm

randomly samples from the cone made by these accumulated

constraints, finding a direction that improves the objective

function and satisfies the accumulated constraints. The algorithm

terminates if no direction exists that would satisfy the constraints

and improve the objective function.

The two-dimensional example in Figure 1 illustrates the basic

idea of the conic sampling method applied to an LP problem.

Beginning at point A, the algorithm proceeds in a stepwise fashion

through points B, C and D. Each step brings the algorithm closer to

convergence at point E. In general, the algorithm follows the vector

that minimizes the objective function while obeying all of the

currently active constraints. Such a move will typically involve

traversal across the facet of the polytope that encloses the feasible

region. In this process, the procedure will sometimes encounter a

vertex, such as C, in which direct movement in the direction

decreasing the objective function is not possible.

When a vertex is reached, the set of halfspaces defined by the

active constraints, intersected with the halfspace corresponding to

non-decreasing objective function, yields a cone of possible legal

moves. As the name implies, the conic sampling algorithm

randomly selects a ray from within this cone and advances in

the selected direction until a new constraint is encountered. Note

that, in some degenerate cases, the sampled ray will yield a move of

length zero. In this situation, a new ray is sampled until a non-zero

move can be made. A pseudocode description of the procedure is

given as Algorithm 5, with subroutines as Algorithms 6–8.

The motivation for the conic sampling algorithm is that, given

the set of vertices of the polytope in a total ordering by objective

value (vertices with equal objective value are never visited

sequentially, and so vertices with identical objective can be

ignored)

V1,V2,V3, . . .

f T V1wf T V2wf T V3 . . .

at each iteration starting from vertex Vi, the algorithm will

sample from the vertices Vj such that jwi. If this sampling is

performed uniformly over the remaining candidate vertices then, on

average, at each iteration half of the vertices will be eliminated.

Although the sampling performed by the conic sampling algorithm

is not necessarily uniform, it seems to be close to uniform in practice

for certain polytopes. In general, one large advance that occurs at an

early iteration early will winnow out many candidates for the next

iteration, increasing the chance of choosing the optimum.

The random forward direction subroutine finds the spanning

vectors of the cone made by a basis of bounding (also called

‘‘active’’) constraints and then generates a random conic

combination of these vectors that lies in the positive halfspace of

f . For the cone K~fq : Vi[M,Aiqƒ0g, then it has spanning

vectors v1, v2 . . ., such that K~f
P

i aivi,aƒ0g. These spanning

vectors can be found by projecting every constraint orthogonal to

every other constraint. If no vector in the cone can improve the

objective, then optimality can be shown. This is similar to trying

the n different pivots using the basis M in the simplex algorithm;

however, instead of taking the best ray as chosen by some pivot

rule, the candidate rays are combined so that the resulting

direction is not necessarily restricted to an edge of the polytope.

Figure 1. Illustration of conic sampling in two dimensions. The
algorithm begins at point A, follows the objective function until it
encounters a constraint at B, and then proceeds along the edge of the
feasible region to C. At C, the algorithm randomly samples a ray from the
cone produced by the intersection of halfspaces defined by improvement
on the objective and the polyhedral cone defined by the active constraints.
In the figure, this cone is indicated by overlapping shading. Following the
sampled ray leads to D. The algorithm continues in a similar fashion,
descending to fixation at the minimum point E in the following iteration.
doi:10.1371/journal.pone.0043706.g001
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Proof of Convergence and Optimality
In the following, it is proven that the AdvanceToFixation

subroutine terminates and that the ConicSampling algorithm

terminates only when optimal. Furthermore, the ConicSampling

algorithm is guaranteed to terminate, because the algorithm will

advance to an improved vertex with each iteration.

Lemma 1. The AdvanceToFixation subroutine terminates in no

more than n iterations.

Proof. Each iteration calls the Advance subroutine, which must

either halt the algorithm or add an element to the set M. Because

M begins empty, inductively assume that the set of vectors

Ai : i[M is initially linearly independent. The direction p is

orthogonalized to these vectors. If the Advance subroutine adds an

element j to M, then pT Ajw0. Therefore, Aj is not a linear

combination of the current set of vectors fAi : i[Mg, to which p is

orthogonal. Thus the set of vectors must be linearly independent,

and can therefore contain no more than n vectors.

Lemma 2. If the algorithm halts, then x attains an optimum objective

value.

Proof.

V~fu : Auƒbg

H~fu : Vi[H,Aiuƒbig

V(H

Because H is convex,

Vy[H,g(y)§g(x)z+g(x)T (y{x)

The set H denotes constraints that support x:

Vi[H, Aix~bi

Vy[H, Vi[H, Aiyƒbi

Vy[H, Vi[H, Aiy{Aixƒ0

Vy[H, Vi[H, Ai(y{x)ƒ0

Then for any value of y[H, y{x is in a polar cone.

K~fu : Vi[H, Aiuƒ0g

y[H<y{x[K

The algorithm terminates when.

Vy{x[K , +g(x)T (y{x)§0

Vy[H, +g(x)T (y{x)§0

Vy[H, g(y)§g(x)z+g(x)T (y{x)

LP and QP by Linking Constraints in the Interior
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Vy[H, g(y)§g(x)

And finally, since H is a superset of V,

Vy[V, g(y)§g(x)

On nondegenerate problems (problems where each vertex

has the minimum number of bounding constraints), the

method is guaranteed to advance to a new vertex point with

each iteration; the number of vertices is, at most, exponential

with n.

Degenerate problems are slightly trickier; there it is sufficient

to guarantee that the set of constraints bounding a particular

vertex are added to M in lexicographic order. By visiting them

in this order, the method is guaranteed to add every linearly

independent combination of bounding constraints to M; if the

vertex is not the optimum, one of these combinations is

guaranteed to have a non-empty polyhedral cone and advance.

This is trivially observed via Bland’s anticycling pivot rule [19],

which is guaranteed to find an edge advancing from any

suboptimal vertex (and thus result in at least one non-empty

polyhedral cone for sampling). Thus, in the worst case, the

algorithm will behave as a less efficient version of the simplex

method using Bland’s pivot rule.

Adaptation to Quadratic Programming
Because the conic sampling algorithm can occupy polytope

vertices, facets, and the interior, it can be applied to quadratic

programs (QPs), whereas the simplex methods, only occupying

vertices, would not be not appropriate. In particular, the method

has great potential for efficiently finding the projection of a vector

x0 onto a polytope or polyhedral cone:

Minimize Ex{x0E2
2

Subject to Axƒb

Projections onto polytopes prove a useful exemplar subclass of

quadratic programs, because they do not require conjugate

gradient descent and can be trivially adapted from the existing

algorithm. The modified advance subroutine, which has few

changes, given in Algorithm 0, has two main changes: First, the

initial local gradient (denoted fx for simplicity, in lieu of all

instances of f above) is initialized as x0{x (and re-evaluated each

time x changes). Second, the algorithm does not advance to the

limiting constraint if the projection along the free axis p lies inside

the polytope.

LP and QP by Linking Constraints in the Interior
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Proof of Convergence and Optimality for Projection onto
Polytopes

Using the above proof of optimality for the LP conic sampling

algorithm, it is straightforward to show that the slightly modified

algorithm converges to an optimum.

Lemma 3. The modified ConicSampling algorithm terminates.

Proof. As before, the algorithm always improves the objective

value with each iteration (in the case of degenerate constraints, the

anticycling rule is used once again). There are finitely many

linearly independent sets of constraints to reach with each

iteration, and so the algorithm must terminate.

Lemma 4. The algorithm always finds an optimum in finitely many

steps.

Proof. The algorithm has two cases in which it halts (projections

cannot be unbounded because the minimum distance is at most 0):

The first case is identical to the LP version, where the algorithm

halts when the intersection of halfspaces formed by the local

gradient fx and adjacent constraints is empty. The second case

occurs when the projection of x0 on the set of active constraints (in

the modified advance subroutine) lies in the feasible region V; if

this is the case, then the projection onto a superset more restrictive

feasible region is itself feasible, indicating optimality by definition.

Note that this third case of optimality would not be sufficient to

demonstrate optimality for general QPs, (but slower conjugate

gradient descent can be used).

Implementation
The conic sampling algorithm, in addition to the simplex

method and primal affine-scaling method, are implemented by

using a vector library written in C++ (code freely available upon

request). Although these implementations are not necessarily

expected to be scale competitively on large problems (due to both

the efficiency and numeric stability of the implementations), their

runtimes should have the same order runtime as more sophisti-

cated variants. In these simulations, proportionality constants

should not bias one algorithm over others, because they all

designed and optimized with the same vector code base.

Throughout the code, numerical comparisons, particularly

when comparing values to zero, were performed using a very

small tolerance E~10{10. This increases the stability when values

deviate from zero due to accumulated numerical error.

Sparse Vector Math
Methods are compared using a shared code base, and verified

using two separate vector data structures appropriate for problems

of different size. The first vector data structure, which is most

appropriate for small problems (and, hence is used for the

preliminary runtime analysis), is a dual sparse-dense data

structure. The dual sparse-dense vector data structure indexes

the nonzero indices, but also stores the entire vector (zeros

included) in a contiguous block to prevent copying (e.g. for instance

during an insertion of a value into the middle of a vector), and

permit efficient random access. Although storing the entire vector

as a contiguous block substantially increases the space require-

ment, it results in very fast in-place vector operations, particularly

products between very sparse and very dense vectors. It is worth

noting that, aside from loading the matrix A (necessarily

performed by all algorithms), the simplex tableau is operated on

in a sparse manner, and so entries with values of approximately

zero do not influence the runtime).

The second vector library, which only stores the nonzero indices

and their values, is less efficient on smaller problems (due to slower

in-place operations and slower vector products as described

above), but can be applied to much larger problems, where the

dual sparse-dense vector data structure become far too memory

intensive. This vector library is used to benchmark the algorithms

on highly sparse LPs where k is far larger than n.

All algorithms substantially exploit sparsity in f , A, and b. The

sparse simplex implementation stores the tableau in a data

structure of sparse vectors for each row. More complex variants of

the sparse simplex method implemented for these experiments (e.g.

the Forrest-Tomlin method and Reid’s modified Bartels-Golub

method [20,21]) may have increased numeric stability, but their

complexity introduces an increased risk of overhead that may also

unfairly penalize the simplex method.

The Orthogonalize routine, likewise, operates using a matrix

comprised of an array of sparse vectors. It takes B as input and

returns a matrix Q such that rowspan (Q)~ rowspan(B) and the

rows of Q are orthogonal. In practice, this computation can be

accomplished efficiently using modified Gram-Schmidt; adding an

individual row to B and recomputing Q can be performed in

O(n2) by exploiting the preexisting orthogonality and only

adjusting the newly inserted row. Similar considerations have

been made when orthogonalizing in the RandomForwardDirec-

tion subroutine, where overlapping sets of vectors are repeatedly

orthogonalized. Sherman-Morrison updating and sparse LU

updating could be used alternatively to compute the projections

with the same result, and, possibly, with greater numeric precision.

Regardless, more efficiency would be possible by preferrentially

ordering the rows so that more sparse rows are on the top, thus

preserving their sparsity.

Results

All runtimes were taken on the same computer using UNIX

user time and were programmed using the same code base.

Polytopes were chosen so that the feasible region includes 0 in

order to not unfairly penalize the simplex method. C++ programs

were compiled with gcc-4.7 using -O3 optimizations.

Preliminary Runtime Analysis on Random LPs
The runtime of the conic sampling algorithm was compared to

the simplex and primal affine-scaling algorithms. The simplex

method was implemented to employ different pivot rules: steepest

edge and random edge (Algorithm 3). Algorithm runtimes are

compared by using the same sparse vector code base and shared

common functions (for these preliminary experiments, dual sparse-

dense vectors were used, due to their highly efficient in-place

access and product operations).

The algorithms were run on a set of randomly generated linear

programs, which were made by uniformly (in ½0,1000�) sampling

the values of respective rows and values of of A and b such that

b]0, ensuring the feasible region trivially contained x~0.

Additional constraints require non-negativity of all elements of x
(these constraints are not added to the simplex methods, because

they would not influence the result and would increase the simplex

runtimes). Each element of the objective vector was likewise

chosen uniformly.

The runtimes for different sizes of problems with varying levels

of sparsity (i.e. varying percents of elements in A, b, and f equal to

zero) are shown in Figure 2. The nth dimension was not randomly

set to zero so that no zero-norm constraints would be selected. LPs

with a high ratio of k=n and a high level of sparsity are particularly

efficient with conic sampling. Although by no means comprehen-

sive, these random LPs demonstrate the existence of polytopes for

which the conic sampling method reliably outperforms simplex

variants and affine-scaling.

LP and QP by Linking Constraints in the Interior
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Figure 2. Preliminary runtime analysis on random
LPs. The simplex and affine-scaling algorithms are timed against

the conic sampling algorithm on random LP problems of varying

dimension n and number of constraints k~2n and 16n. For each n

and k, five LP problems were generated. Each panel figure plots

the mean runtime as a function of n. Error bars indicate the

minimum and maximum runtimes. Dual sparse-dense vector data

structures were used.

Runtimes on Highly Sparse, Random LPs with Varying
Numbers of Constraints

Figure 2 illustrates that the greatest performance benefit is

achieved on problems with many constraints and a high degree of

sparsity. For this reason, the runtime of the conic sampling

algorithm was compared to the simplex and primal affine-scaling

algorithms on highly sparse (i.e. with 95% zero values) polytopes

with n~100 (chosen small enough so that it is practical for the

number of constraints k to dwarf n) and variable numbers of

constraints k~128, . . . ,16384. On these LPs, fully sparse vector

data structures were used (the dual sparse-dense vector data

structure used far too much memory).

Figure 3 shows the improvement of the conic sampling method

over the affine-scaling and simplex methods on highly constrained,

sparse problems.

Application to QPs from Computational Proteomics
Lastly we demonstrate the efficiency of the modified conic

sampling method (i.e. the slight modification described above

which adapts the method for computing projections on polytopes).

We apply this method to polytope projections taken from

computational biology. The particular QP is used to efficiently

estimate protein confidences (or quantities) from the directly

measured peptide confidences (or abundances) [22]. The problem

has previously been modeled as an NP-hard set cover problem

[23], which weights proteins from a bipartite graph of proteins and

peptides observed in a mass spectrometry experiment (with edge

set denoted E). The previous method finds the smallest set of

proteins that explain a certain amount of observed peptide

evidence. Enforcing economy in the cardinality of the protein set

prevents shared peptides, which may have come from several

proteins, from incorrectly resulting in multiple protein identifica-

tions.

The QP relaxation minimizes the L2-norm of the protein

identifications (denoted x); like the set cover formulation, this QP

formulation enforces economy in the protein set. Also similar to

the set cover formulation is the constraint requiring a certain

quantity of peptides (weighted by their scores from the mass

spectrometry experiment, each denoted sj ) to be ‘‘explained.’’ The

weighted number of explained peptides is given by the

hyperparameter t. Each peptide (denoted yj ) is further constrained

to equal the sum of the proteins containing it (i.e. the sum of

proteins adjacent to the peptide in the bipartite graph). Lastly,

proteins are constrained to have nonnegative scores. The final QP

is a projection of the zero vector onto a polytope:

Minimize ExE2
2 :

Vi,xi§0

.

Vj,yj~
X

i:(i,j)[E

xi

Figure 2. Preliminary runtime analysis on random LPs. The simplex and affine-scaling algorithms are timed against the conic sampling
algorithm on random LP problems of varying dimension n and number of constraints k = 2n and 16n. For each n and k, five LP problems were
generated. Each panel figure plots the mean runtime as a function of . Error bars indicate the minimum and maximum runtimes. Dual sparse-dense
vector data structures were used.
doi:10.1371/journal.pone.0043706.g002
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X

j

sjyj§t

An initial feasible point was found by setting all xi to a large

value (in this case 1, because the peptide scores sj are approximate

probabilities); this point was provided as a starting point for all

agorithms. The hyperparameter was chosen as 80% of all observed

peptide scores t~0:8
P

j sj .

Graphs were produced from two previously described mass

spectrometry data sets [24,25]: The first analyzes a small mixture

of 48 purified proteins (plus common contaminants) searched

against the human proteome (and a reversed database) as

previously described. The second data set was aquired from yeast

lysate.

Runtimes for optimizing the resulting QP was analyzed using

the conic sampling method and the proprietary software package

Mathematica (Table 0). Conic sampling runtimes were taken using

UNIX user time, and Mathematica runtimes were taking using the

built-in Timing command (so that the time to serialize the data

into a native Mathematica format was not counted), and with no

other processes running. In Mathematica the FindMinimum local

optimization routine (which uses sparse vectors) was used, because

the objective function is convex.

Discussion

In the demonstrated examples, conic sampling algorithm

performs comparably to or outperforms the primal affine-scaling

and simplex algorithms. Particularly noticeable is the efficiency

when applied to problems with many constraints, especially those

with a great deal of sparsity. The efficiency of conic sampling on

highly constrained LPs makes intuitive sense; each iteration of the

conic sampling algorithm is O(n3) (before accounting for sparsity),

and so the cost is roughly equivalent to n pivots with the simplex

method (at a cost of O(n2) per pivot). When the number of

expected pivots exceeds n, conic sampling may be much more

efficient. Likewise, in the worst case (for a completely degenerate

problem), each iteration of conic sampling will advance along an

edge in a manner similar to Bland’s pivot rule. If this were the

case, it would behave as an n-fold slower version of the simplex

Table 1. QP runtimes from computational proteomics.

Sigma 48 Yeast lysate

Variables (n) 392 3733

Constraints (k) 393 3734

Method
Conic
sampling Mathematica

Conic
sampling Mathematica

20.7942 20.7942 351.24 351.24

Runtime 0.012 1.41 0.352 145.68

The runtimes of Mathematica and the conic sampling algorithm (modified to
compute the projection onto a polytope) are shown on QPs taken from
computational proteomics (faster times are written in bold). Fully sparse vector
data structures were used by conic sampling (sparse vectors are also used
internally by Mathematica). The final objective value is presented using the default
precision reported by Mathematica (both algorithms compute the same result).
doi:10.1371/journal.pone.0043706.t001

Figure 3. Runtimes on highly sparse, random LPs with varying numbers of constraints. The simplex and affine-scaling algorithms were
timed against the conic sampling algorithm on random LP problems with n = 100, with 95% sparsity, and with number of constraints
k = 128,…,16384. For each k, three problems were generated and timed with all algorithms. Error bars indicate minimum and maximum runtimes.
Fully sparse vector data structures were used.
doi:10.1371/journal.pone.0043706.g003

LP and QP by Linking Constraints in the Interior

PLOS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e43706



method. It should be noted that this n-fold cost can be recovered

by only removing the departed constraints from the Gram-Schmidt

matrix (rather than rebuilding it from scratch); however, this can

decrease the numeric stability of the algorithm by allowing errors

to accumulate instead of resetting each time fixation is reached.

Sparse Sherman-Morrison updating or sparse LU updating can

achieve the same effect, but with increased numeric precision.

Furthermore, in LPs where the number of vertices is substan-

tially higher than the dimensionality, the length of a greedy path

along adjacent vertices (i.e. a path taken by the simplex methods)

may become very large. On such highly constrained polytopes, a

ray within the polyhedral cone defined by the objective vector and

the bounding constraints has a high probability of arriving at a

substantially improved vertex. If the improved vertices are

sampled in a roughly uniform manner, then the expected number

of iterations required by conic sampling will be logarithmic in the

number of vertices. It may be possible to perform a more

intelligent sampling of rays in the polyhedral cone (i.e. importance

sampling), and yield a guaranteed expected runtime for certain

families of polytopes. In this manner, conic sampling can be

thought of as a generalization of simplex methods: rather than

choosing an edge from a finite collection, the algorithm chooses a

vector in a potentially infinite collection. Rules for choosing a

vector from the polyhedral cone correspond to generalizations of

simplex pivot rules.

Due to its simple geometric nature, the proposed method can be

modified and applied to problems other than LP. On the family of

QPs that compute projections onto polytopes, the conic sampling

method is significantly more efficient than a sophisticated

proprietary software package (Table 1); no doubt, a superior

implementation (e.g. using the linear algebra library from

Mathematica, Matlab, or LINPACK) could possibly be faster

still, and could be applied to large, sparse projections, as well as to

other QPs and convex optimization problems.

The conic sampling algorithm, like several other existing

methods, is motivated by a straightforward geometric notion;

however, it does not suffer the same practical inefficiencies

observed in the randomized simplex method. Randomness in LP

solvers is typically used to avoid pathological behavior and is not

responsible for good performance in practice. For conic sampling,

the possibility of randomly jumping to a much improved vertex,

and thus substantially narrowing the remaining vertices, is tightly

intertwined with the algorithm’s performance. It should be noted

that there may be deterministic variants of conic sampling that

optimize over vectors in the polyhedral cone rather than choosing

a random vector, and that these methods may still be faster in

practice than the random approach.

The conic sampling method bears a resemblence to the gravity

descent method. Both methods descend along facets and edges,

permitting far more direct paths to the optimum; however, the

gravity descent method solves a QP in order to decide which sets

of constraints to abandon. In contrast, the conic sampling method

takes a more restrictive, and less computationally expensive

descent by projecting along the constraints of the polytope. This

descent is not guaranteed to be the steepest, and will necessarily

become immobile in at most n steps. Randomly sampling from a

feasible ray not only allows the conic sampling method to become

‘‘unstuck’’ from the bounding constraints (without solving a QP),

the manner with which it does so permits large jumps that move

back through the strict interior, to a distal region of the convex

hull.

The conic sampling method also benefits from largely ignoring

unimportant constraints in a manner reminiscient of Seidel’s

algorithm and the Matousek/Sharir/Welzl algorithm; however,

rather than directly sifting through the constraints and finding

those that bound the optimum, the conic sampling method

implicitly does so. On polytopes with many facets not bounding

the optimum, the chances of visiting these extraneous facets are

very small, and once the objective function passes the greatest

attainable on a feasible vertex of a facet, the facet is no longer

considered.

The ease with which some geometrically motivated methods

can be adapted to completely different convex optimization

problems underscores its flexibility and generality. QPs and

general convex optimization problems arise frequently, and form a

superset of LPs. The greater mathematical complexity of these

more general problems has resulted in fewer applicable algorithms

and a greater difficulty in their optimization. Extensions of

geometrically motivated methods like conic sampling algorithm

may be of great use in solving these more general problems,

especially in cases where the number of constraints dwarfs the

dimensionality of the problem. Performing more intelligent

random sampling in this cone may permit uniform sampling of

the remaining volume or feasible vertices, and lead to algorithms

with expected runtime bounds that are subexponential in the

number of dimensions or constraints.
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