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Abstract

The alternate sigma factor sigH of Mycobacterium tuberculosis is expressed under stress and acts as a major regulator of
several genes, including some other sigma factors and redox systems. While it is auto-regulated by its own promoter at the
transcriptional level, its regulation at the post-translational level is through its cognate protein, an anti-sigma factor, RshA.
Hither before RshA was believed to be a zinc-associated anti-sigma factor (ZAS) and the binding of RshA to SigH is redox
dependent. Here, we show that RshA coordinates a [2Fe-2S] cluster using cysteines as ligands and native RshA has more
affinity to [2Fe-2S] cluster than to zinc. Furthermore, we used amide hydrogen deuterium exchange mass spectrometry
(HDX-MS), followed by site-directed mutagenesis in SigH and RshA, to elucidate the interaction mechanism of RshA and
SigH and the potential role of metal ion clustering in SigH regulation. Three regions in SigH, comprising of residues 1–25,
58–69, 90–111, 115–132 and 157–196 and residues 35–57 of RshA show decreased deuterium exchange and reflect
decreased solvent accessibility upon complexation with SigH. Of the three RshA mutants, created based on the HDX results,
the RsHA E37A mutant shows stronger interaction with SigH, relative to WT RshA, while the H49A mutant abolishes
interactions and the C(53)XXC(56)AXXA mutant has no effect on complexation with SigH. The D22A, D160A and E162 SigH
mutants show significantly decreased binding to RshA and the E168A mutant completely abolished interactions with RshA,
indicating that the SigH-RshA interaction is mediated by salt bridges. In addition, SigH-RshA interaction does not require
clustering of metal ions. Based on our results, we propose a molecular model of the SigH-RshA interaction.
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Introduction

After its initial onset of infection in humans, the pathogen

Mycobacterium tuberculosis (Mtb) becomes latent in a large number of

cases, until a cellular stimulus reactivates it. During latency, gene

expression is mostly regulated at the pre-transcription level, where

sigma factors play a major role. Apart from major sigma factors,

the bacterium also harbors alternate sigma factors or extracyto-

plasmic function sigma factors. They regulate gene expression,

mainly when cells encounter extra or intracellular stress [1].

The alternate sigma factor sigH of Mtb is a master regulator and

is expressed under heat shock, oxidative, nitrosative, acid stress

and phagocytosis [2,3,4,5,6,7]. A large number of genes that are

involved in the survival of Mtb under oxidative stress and

virulence are regulated by sigH [4,8]. The expression of two

alternate sigma factors, sigE and sigB, is also under the control of

sigH [4,9,10,11]. In addition, under oxidative stress, sigH induces

the expression of Mtb redox systems, such as thioredoxins trxA,

trxB1, trxC and thioredoxin reductase trxB2, whereas, it induces the

expression of the hsp70 and clpB genes under heat stress [4,8,12].

In the related organism Streptomyces, the SigH homolog has been

shown to regulate glucose dependent cell differentiation and

antibiotic production [13]. At the transcriptional level, sigH is

auto-regulated by its own promoter but at the post-translational

level, its regulation is through its cognate protein, an anti-sigma

factor, RshA.

Activation of Mtb sigH is redox dependent. However Mtb SigH

does not contain any cysteines and hence cannot respond to redox

changes on its own. It is a known fact that sigma factors are bound

with anti-sigma factors and the dissociation of anti-sigma factors is

essential for its activation. Several anti-sigma factors also respond

to redox changes in the cytoplasm to regulate the function of sigma

factors. The Mtb anti-sigma factor RshA, encoded by the ORF

Rv3221A, is located in the sigH operon and has been demon-
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strated to regulate the function of sigH/Rv3223c. The binding of

RshA to SigH has been shown to be redox dependent [14], similar

to RseA and SigE [15] and RsrA and SigR of Streptomyces coelicolor

[16]. Some of the anti-sigma factors, like, RseA, RsaL and RsrA,

have been shown to coordinate zinc and hence they are called

zinc-associated anti-sigma factors (ZAS). They have a conserved

HX3CX2C motif [17,18,19,20]. However, RsmA of Streptomyces

coelicolor, a HATPase_C family anti-sigma factor has a HX3CX2S

motif and coordinates a [2Fe-2S] cluster. It has also been

demonstrated that the interaction between RsmA and its

associated sigma factor sM depends on the presence of a [2Fe-

2S] cluster [21]. Therefore, the mere presence of a ZAS motif in a

protein does not imply that the protein is capable of co-ordinating

zinc. For example, Hsp33, which also binds Zn, has a CXCX27–

32CX2C motif, where all four cysteine residues bind to a single Zn

atom [22]. It is assumed that since Mtb RshA has a ZAS motif and

its closest homologue RsrA of S. coelicolor is a zinc binding protein,

where Zn ion plays a major role, RshA has also been proposed to

be a zinc binding protein and its interaction with SigH is regulated

by zinc. However, presence or binding of Zn with RshA or its

direct involvement in mediating SigH and RshA interactions has

not been clearly demonstrated so far.

Apart from metal ions, phosphorylation of both SigH and

RshA, by PknB, alters their interaction. It has been shown that in

vivo phosphorylation of RshA results in poor binding to SigH [23],

which also means partial inhibition of SigH action. At the

transcription level, SigH expression is auto-regulatory. Therefore,

it is possible that under conditions where input stress signals are

very strong, RshA is phosphorylated, thereby resulting in pools of

free SigH that are capable of binding RNA polymerase.

Formation of the holoenzyme would enable transcription and

then SigH complexed with RNA polymerase would bind to its

own promoter and regulate transcription [3]. Therefore, this could

be an alternate mechanism of regulation of SigH in Mtb which

might be important at some stages of its survival in its host.

Even though the functions of SigH and RshA are well

understood, there are still many unanswered questions. A previous

study [24] has used the phage display and surface plasmon

resonance (SPR) techniques to map the interactions of RshA and

SigH, and identified a few peptides in RshA and one of them

reduced sigH mediated transcription. Li et al. [25] have shown

how the homologs RsrA and SigR of Streptomyces coelicolor interact.

However, no structural map of the RshA-SigH complex exists.

Furthermore, it is unknown if the mechanism of RshA-SigH

interactions are identical to that of the RsrA and SigR interaction

and probe details on the importance of the metal ion cluster.

Additionally, such studies could be put into a better perspective

had the interaction been probed with intact proteins and not

isolated peptides. To address these questions, we have mapped the

interaction of the RsHA and SigH proteins by amide hydrogen

deuterium exchange mass spectrometry (HDX-MS) to map the

RshA-SigH interface and induced conformational changes result-

ing from disruption or formation of cysteine bonds in RshA during

its transition between oxidized and reduced states.

Materials and Methods

Bacterial Strains and Reagents
Genomic DNA from Mtb H37Rv was prepared as described

earlier [26]. Escherichia coli DH5a was used for general cloning

procedures, whereas expression of recombinant proteins was

carried out in the BL21 (DE3) strain. Standard recombinant DNA

techniques were followed [27].

Cloning of sigH and rshA and Site Directed Mutagenesis
The sigH/Rv3223c gene was amplified using the Forward 59

ATA TGA ATT CAT GGC CGA CAT CGA TGG TGT AAC

CG 39 and Reverse 59 ATA TCT CGA GTG ACG ACA CCC

CCT CGT GCG CCT G 39 primers containing EcoRI and XhoI

restriction sites, respectively (underlined) and inserted into the

pGEX4T-1 or pET29a vectors to generate either GST or 66His-

tagged proteins, respectively. The following SigH mutants were

generated using the corresponding primer sets. D22A: Forward 59

CCG TCT GAG GAG ACA GCT GAG GAG TTG ACC GC

39, Reverse 59 GC GGT CAA CTC CTC AGC TGT CTC CTC

AGA CGG 39; D160A: Forward 59 GGT CTA CTA CGC CGC

TGT CGA AGG TT 39, Reverse 59 AAC CTT CGA CAG CGG

CGT AGT AGA CC 39; E162A: Forward 59 CCG ATG TCG

CAG GTT TCC CCT AC 39, Reverse 59 GTA GGG GAA ACC

TGC GAC ATC GG 39; E168A: Forward 59 TCC CCT ACA

AGG CTA TCG CCG AG 39, Reverse 59 CTC GGC GAT AGC

CTT GTA GGG GA 39.

The 303 bp rshA/Rv3221A gene was PCR amplified using the

Forward 59 ATA TAT GAA TTC GTG AGC GAA AAT TGC

GGT CCG AC 39 and Reverse 59 ATA TAT GTC GAC GGG

CCC TCC ACG GAT GAT GGT GG 39 to generate either a

GST or 66His-tagged primers containing the EcoRI and SalI

restriction sites (underlined) and inserted into the pGEX4T-1 or

pET29a vector. The following RshA mutants were generated

using the corresponding primers sets. E37A: Forward 59 CCG

GAA ACC CGC GCT AGG CTG CGG CGA CAC CTC 39,

Reverse 59 GAG GTG TCG CCG CAG CCT AGC GCG GGT

TTC CGG 39; CXXC to AXXA: Forward 59 CTC GAG GCC

GCT CCG GGG GCT CTG AGG CAT 39, Reverse 59 ATG

CCT CAG AGC CCC CGG AGC GGC CTC GAG 39; H49A:

Forward 59 AGA GGC TGC GGC GAG CAC TCG AGG C 39,

Reverse 59 GCC TCG AGT GCT CGC CGC AGC CTC T 39.

The authenticity of all clones was confirmed by sequencing both

strands of DNA using either T7 promoter or gene specific primers.

Protein Production
The proteins were overexpressed in the pET29a vector with an

N-terminal S-tag and C-terminal 6xHis tag. BL21 (DE3) cells

containing the overexpression constructs were grown on a shaker

incubator (LB broth, 37uC, 30 mg/ml Kanamycin) until OD600

was ,0.6–0.8. The culture was cooled to 16uC and induced with

300 mM IPTG and the cells were grown for 12 to 16 h. The cells

were then harvested by centrifugation at 3000 g and either stored

at 280uC as pellet for later use or re-suspended in buffer A

(50 mM Tris (pH 8.0), 300 mM NaCl, 25 mM imidazole and

5 mM b-mercaptoethanol (BME)) for lysis in a French press at

10,000 psi. The cell lysate was then centrifuged at 39,000 g for

20 min to remove all cell debris and the supernatant was loaded

onto a Ni chelating Sepharose column (10 ml resin in a 50 ml

column). The resin was then washed with 600 ml buffer A to

remove all unbound proteins. The bound protein was then eluted

with 15 ml buffer B (50 mM Tris (pH 8.0), 300 mM NaCl,

250 mM imidazole and 5 mM BME). The elute was then

concentrated and loaded onto an S75 column (GE), equilibrated

with buffer C (50 mM Tris (pH 8.0), 300 mM NaCl and 5 mM

DTT) and mounted on an AKTA FPLC system (GE), for size

exclusion chromatography.

Alkylation of RshA
Iodoacetamide, an irreversible inhibitor of cysteine peptidases,

binds specifically to cysteine residues. Freshly purified RshA was

dialyzed against buffer containing 50 mM Tris HCl (pH 7.5),

100 mM NaCl, 10 mM DTT for 15 h at 4uC with two changes,

Interaction of M. tuberculosis SigH and RshA
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followed by incubation with 20 mM iodoacetamide for 60 min at

37uC in dark. Excess iodoacetamide was removed by dialysis in

50 mM Tris HCl (pH 7.5) and 100 mM NaCl, 10 mM DTT for

15 h at 4uC.

Zn Saturation of RshA
Freshly purified RshA was dialyzed against buffer containing

50 mM Tris HCl (pH 7.5), 100 mM NaCl, 10 mM DTT for

15 hr at 4uC with two changes. The protein was incubated with a

two molar excess of ZnCl2 for 30 min at 37uC. The Zn saturated

protein was again dialyzed in 50 mM Tris HCl (pH 7.5), 100 mM

NaCl, 1 mM DTT for 15 h at 4uC to remove excess Zn.

Measurement of Zinc Content
10 mM RshA was incubated in 500 ml of 50 mM Tris HCl

(pH 7.5), 100 mM NaCl with 40 mg proteinase K at 56uC for

30 min to release all Zn from the protein. The volume of reaction

was increased with buffer to 994 ml, then 6 ml of 25 mM 4-(2-

pyridylazo)-resorcinol (PAR) was added to the sample. The

absorbance was measured at 500 nm on a Hitachi U2800

spectrophotometer. Zn estimation was carried out by comparing

the absorbance with a standard curve that was prepared with

known amounts of ZnCl2.

Measurement of Iron Content
To measure the total iron content of RshA, the o-bath-

ophenanthroline (OBP) method was used. To chelate the iron,

OBP was added at a final concentration of 10 mM to the protein

solution and the reaction was carried out in dark at 25uC for 1 h.

Chelation was monitored by the increase in absorbance at

540 nm, using buffer alone as a control. The quantity of chelated

iron was determined using an extinction coefficient of

22140 M21cm21. The absorbance was recorded on a l35

PerkinElmer spectrophotometer. The measurements were carried

out in duplicate. The data presented is an average of three

independent protein preparations.

Fe-S Reconstitution of RshA
Freshly purified RshA was dialyzed against buffer containing

50 mM Tris HCl (pH 7.5), 100 mM NaCl, 10 mM DTT for

15 hr at 4uC, with two changes of the buffer. The protein was

incubated in a five-fold molar excess of FeCl3 and Na2S, at 22uC
for 4 h. The reconstituted protein was dialyzed in 50 mM Tris

HCl (pH 7.5), 100 mM NaCl, 10 mM DTT for 10 h at 4uC to

remove all unbound Fe3+ and S22. The protein was scanned

(between 200 and 800 nm) on a PerkinElmer l35 spectropho-

tometer at 25uC to show the presence of the Fe-S cluster.

GST Pull-down Assay
Wild-type and mutant proteins were cloned into the pGEX4T-1

vector and were expressed using same protocol as described

earlier. Soluble fractions of two cell lysates (5.0 mg crude protein

each) were mixed together in buffer containing 50 mM Tris HCl

(pH 7.5), 100 mM NaCl, 10 mM DTT and 0.01% Triton X-100

and allowed to interact at 4uC for 3 h on a rocker platform. DTT

was periodically replenished during interaction. 3 mg glutathione

resin (Sigma) was allowed to swell in the above buffer for 2 h and

washed twice in the same buffer. The swollen beads were mixed

with the lysates and incubated for 2 h at 22uC to facilitate binding

of GST-fusion protein to the resin. Then the lysate was removed

by micro-centrifugation at 2000 rpm for 2 min at 22uC and then

was washed twice with the above buffer and once each with

50 mM Tris HCl (pH 7.5), 200 mM NaCl, 10 mM DTT, 0.01%

Triton X-100 and 50 mM Tris HCl (pH 7.5), 300 mM NaCl,.

The washed resin was mixed with SDS gel-loading buffer and the

bound proteins were resolved on 15% SDS-PAGE and stained

with Coomassie blue or processed for immunoblotting [28].

Amide Exchange Mass Spectrometry
Both proteins were concentrated to 80 mM before the exchange

reaction. HDX-MS of the free proteins and complex was then

carried out. The complex was generated by mixing each protein

with a 1.5 time molar excess of its binding partner protein

(80 mM). As the Kd of the two proteins is approximately 15 nM

[24], all binding sites were expected to be occupied during the

exchange reaction. The complexes were mixed at the desired

molar ratio and concentration and were incubated at 4 uC for 12–

16 h prior to HDX-MS. 2 ml of the free proteins and complex

were diluted with 18 ml of D2O containing 5 mM DTT (99.9%) to

give a final deuterium concentration of 90% in buffer C. Exchange

was carried out at 20uC for the time points: 0.5, 1, 2, 5 and 10 min

and was quenched by addition of 40 ml of pre-chilled 0.1%

trifluoroacetic acid (TFA) to yield a final pHread of 2.5. 50 ml of the

sample was then injected onto a chilled nanoUPLC sample

manager (beta test version, Waters, Milford, MA) as previously

described [29]. The sample was washed through a 2.1630 mm

immobilized pepsin column (Porozyme, ABI, Foster City, CA)

using 100 mL/min 0.05% formic acid in water. Digested peptides

were trapped on a 2.165 mm C18 trap (ACQUITY BEH C18

VanGuard pre-column, 1.7 mm resin, Waters, Milford, MA). The

peptides were eluted using an 8–40% gradient of acetonitrile in

0.1% formic acid, which was supplied by a nanoACQUITY

Binary Solvent Manager, at a flow rate of 40 mL/min onto a

reverse phase column (Acquity UPLC BEH C18 column,

1.06100 mm, 1.7 mm, Waters, Milford, MA). Peptides were

detected and mass was measured on a Synapt HDMS mass

spectrometer (Waters, Manchester, UK) acquiring in the MSE

mode, a non-biased, non-selective CID method [30,31,32,33].

Sequence identifications were made from the MSE data from

undeuterated samples using ProteinLynx Global Server 2.4 (beta

test version, Waters, Milford, MA) [33,34] and searched against

the sequences of RshA and SigH with no enzyme specified and

no modifications of amino acids. Identifications were only

considered if they appeared at least twice out of three replicate

runs. The precursor ion mass tolerance was set at ,10 ppm and

fragment ion tolerance was set at ,20 ppm. Only those peptides

that satisfied the above criteria through Database search pass 1

were selected. The default criteria for false positive identification

(Value = 4) was applied. These identifications were mapped to

subsequent deuteration experiments using prototype custom

software (HDX browser, Waters, Milford). Centroid values for

each peptide at all time points were extracted using this software,

and exported to HX-Express [35] for analysis. A total number of

34 and 31 fragments yielded primary sequence coverage of 71

and 88% for SigH and RshA, respectively. The average number

of deuterons exchanged in each peptide was calculated by

subtracting the centroid value for the un-deuterated peptide from

the centroid for deuterium exchanged peptides at each time

point determined.

Continuous instrument calibration was carried out with Glu-

fibrinogen peptide at 100 fmol/mL. A control experiment was

carried out to calculate the deuterium back exchange loss using the

ligand-free cAMP dependent protein kinase regulatory subunit as

a model protein as described previously, yielding a deuterium back

exchange value of 32.7% [36]. All reported deuterium exchange

values were corrected accordingly.

Interaction of M. tuberculosis SigH and RshA
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Results

RshA Coordinates a [Fe-S] Cluster
Freshly purified recombinant RshA protein (101 aa) was brown

in color (Fig. S1). A spectral scan (between 200–800 nm) showed

two distinct peaks at 340 and 420 nm (Fig. 1A), the characteristic

feature of an [Fe-S] cluster, suggesting that RshA coordinates an

[Fe-S] cluster. The iron content of the freshly purified protein was

sub-stoichiometric but the [Fe-S] cluster reconstituted protein had

an iron content of 3.23560.552 atoms per molecule of RshA

(Table 1), an indicator that RshA coordinates a [4Fe-4S] cluster.

The drop in the iron content can be attributed to the fact that the

[4Fe-4S] cluster of RshA is highly unstable. As we could not

analyze the [Fe-S] cluster by electro-paramagnetic resonance

(EPR), it is not possible to comment on the oxidation state of the

[Fe-S] cluster of RshA.

Iodoacetamide (IAA) alkylates cysteine residues and alkylated

cysteines cannot coordinate any metal ion. While un-alkyalted

RshA coordinated an [Fe-S] cluster, alkylated RshA did not

coordinate an [Fe-S] cluster, Fig. 1B. This suggests that cysteines

are the ligands for [Fe-S] cluster coordination. It must be noted

that RsmA from Streptomyces coelicolor, a putative member of the

HATPase_c family of anti-sigma factors, also coordinates an [2Fe-

2S] cluster [21] and the binding of RsmA to sM is dependent on

the presence of an [Fe-S] cluster.

RshA has Weak Affinity for Zinc
Since the current understanding is that RshA is a Zn

coordinating protein (due to the presence of a HX3CX2C

motif), we measured the zinc coordinating properties of RshA

using the 4-(2-pyridylazo)-resorcinol (PAR) method (Table 2).

The total Zn content of RshA was measured immediately after

protein purification and also after dialysis, which removed all

salt. In either of the conditions we did not find any Zn in the

Figure 1. Biophysical characterization of RshA. (A) The absorption scan of freshly purified RshA shows two characteristics peaks at 340 and
420 nm, respectively, confirming the presence of a [2Fe-2S] cluster. (B) [Fe-S] binding property, after reconstitution, of non-alkylated (dashed line)
and alkylated (solid line) RshA. The peak at 410 nm for the non-alkylated RshA protein suggests the presence of a [4Fe-4S] cluster. Alkylation
abolishes the metal binding property of RshA. (C) Conformational changes in RshA due to reduction of disulfide bonds. (i) Purified RshA was treated
with different reducing agents for 2 h at 25uC. (ii) Intrinsic tryptophan fluorescence of oxidized and reduced RshA.
doi:10.1371/journal.pone.0043676.g001

Table 1. Estimation of iron in RshA.

Sample Number of iron atom per RshA

Freshly purified RshA 0.11760.033

Oxidized and dialyzed RshA 0.00960.0003

Fe-S reconstituted RshA 3.23560.552

Alkylated and Fe-S reconstituted RshA 0.23660.0932

doi:10.1371/journal.pone.0043676.t001
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protein. Assuming that zinc ions of the protein were leached

during purification and dialysis, purified RshA was saturated

with zinc and the total zinc content of the protein was

measured. The result showed that each RshA molecule would

coordinate ,0.75060.110 atoms of Zn. To confirm that RshA

indeed has poor affinity for zinc compared to iron, we

attempted to displace the bound iron with zinc. The experiment

was based on the premise that if RshA is a zinc binding protein

then it will have higher affinity to zinc than iron and zinc

would be able to displace the [Fe-S] cluster. Therefore, RshA

was saturated with [Fe-S] cluster and after removing all excess

iron by dialysis, ZnCl2 was added in equimolar and two molar

concentrations. The change in the spectral properties of the

protein was monitored at different time intervals, before and

after dialysis. Fig. S2 clearly shows that zinc could not displace

the bound iron from RshA, suggesting that RshA has higher

affinity for iron than Zn. However, in a reverse experiment, the

[Fe-S] cluster could easily replace zinc, Fig. S2(b). These results

clearly demonstrate that RshA has a higher affinity for [Fe-S]

than to zinc.

RshA has 6 cysteine residues where five are conserved amongst

anti-sigma factors. Our results show that RshA undergoes

significant conformational change after reduction, as evidenced

by SDS-PAGE and intrinsic tryptophan fluorescence of both

oxidized and reduced RshA, Fig. 1C(ii). This suggests that the

cysteines in RshA form disulfide bonds, which would have major

conformational role in RshA.

SigH Undergoes Huge Conformational Changes Upon
Binding with RshA

To probe the interactions between RshA and SigH, we used

HDX-MS for free RshA, SigH proteins and the RshA-SigH

complex. A total of 32 pepsin digest fragments peptides common

to free SigH and SigH in complex with RshA were identified and

analyzed. These 32 pepsin digest fragments constitute a primary

sequence coverage of ,71% (Fig. 2A). Deuterium exchange

(t = 10 min) for these peptides is tabulated in Table 3.

Almost all of SigH with the exception of two regions, showed

decreased exchange upon complexation with RshA. Among these

peptides, the ones that display a change of .1 Deuteron exchange

correspond to residues (1–25), (58–69), (90–111), (115–132), (157–

171) and (172–196) (Table 3). Mass spectral isotope envelopes for

two peptides, 1–25 and 158–171 are shown in Fig. 2B. This figure

shows overlaid the isotopic envelope for the un-deuterated peptide

fragment (bottom panel), deuterium exchange (t = 10 min) for

SigH (middle panel) and SigH-RshA complex (top panel). There is

a smaller shift to the right for the deuterium exchanged samples

from the SigH-RshA complex compared to SigH alone. These

peptides were mapped on to a homology model of SigH, which

was obtained from the I-Tasser server [37,38,39], (Fig. 2C). The

peptide (30–40) that is expected to form a hydrophobic core in

SigH, based on homology with the available Sigma factor

structures (PDB entries 1OR7, 2H27 and 1H3L) [25,40,41]

showed decreased exchange. As a hydrophobic core region, it is

unlikely to participate in interface formation with RshA.

Decreased exchange therefore is indicative of increased order

upon complex formation.

Region 34–57 of RshA Showed Decreased Exchange
Upon Binding to SigH

A total of 20 pepsin digest fragment peptides common between

free RshA and RshA in complex with SigH were identified and

analyzed. These 20 pepsin digest fragment peptides constitute

primary sequence coverage of ,88% (Fig. 3A). Deuterium

exchange (t = 10 min) for each of these peptides is tabulated in

Table 4. HDX-MS revealed that one region with three

overlapping peptides (34–49) (35–57) (Fig. 3B) and (47–57) showed

decreased exchange upon binding with SigH. These peptides are

mapped on to a homology model of RshA and shown in Fig. 3C.

This region contain the consensus CXXC sequence, which is

predicted to bind a metal ion cluster, which, in turn, is expected to

form a direct interface for the interaction of RshA with SigH.

However, contrary to our expectation, the CXXC to AXXA

mutant of RshA did not affect binding to SigH, vide infra. In

addition, overlapping peptides, (25–31), (26–31) (70–83) and (70–

88), from two regions on RshA showed increased exchange in

complex with SigH. This increased exchange might be caused by

domain movement induced by SigH binding to RshA.

Selected Mutations in RshA and SigH Affect Protein-
protein Interaction

Based on our HDX results, three RshA mutants, E37A, H49A

and CXXC to AXXA, were generated and their interactions with

WT SigH were analyzed (Figs. 4A and 4B). The RshA E37A

mutant interacted better with SigH than RshAWT, while the

RshA H49A mutant had some negative effect. However, the

AXXA mutant had no significant impact on the interaction. On

the other hand, the SigH D22A, D160A and E162A mutants had

some adverse effect on the interaction and the most important

mutant is SigH E168A, which abolished the SigH-RshA interac-

tion entirely.

The interaction result of the CXXC to AXXA mutant was

surprising. It has been assumed that the CXXC motif might

play a major role in promoting the RshA-SigH interaction as

the CXXC motif is part of the ZAS (HXXXCXXC), a metal

binding motif. Our results reveal that the AXXA mutant of

RshA did not affect the interaction with SigH. This result raises

a next question of whether [Fe-S] free RshA would interact

with SigH. Metal free RshA (confirmed by spectrophotometry)

was mixed with SigH at equimolar concentrations (3 mM each)

for different times. The complexation reaction was then resolved

on native gel as well as in SDS PAGE, Fig. 4A and C.

Surprisingly, the native gel showed evidence of a complex,

suggesting SigH-RshA interaction occurred even without the

[Fe-S] cluster. It is to be noted that Mtb SigH does not have

any cysteine residue. Therefore, unless there is an interface,

RshA will not interact with SigH. We further confirmed the

interaction of RshA and SigH in solution by monitoring

changes in intrinsic tryptophan fluorescence in the RshA-SigH

complex compared to unbound RshA and SigH. The fluores-

cence spectra in Fig. 4D clearly showed that while the emission

maxima for SigH is 335 nm and that for RshA is 342 nm

whereas the emission maxima of the complex is 345 nm. Peak

broadening in the complex is also indicative of the RshA-SigH

complex being a more dynamic complex. Furthermore, the

Table 2. Estimation of zinc in RshA.

Sample Number of zinc atom per RshA

Freshly purified RshA 0.05260.011

Oxidized and dialyzed RshA 0.00960.0005

Zinc saturated RshA 0.75060.110

Alkylated and zinc saturated RshA 0.66260.063

doi:10.1371/journal.pone.0043676.t002
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result indicates that RshA interactions with SigH do not require

metal ion. This result is in congruence with our GST-pull down

assay where AXXA mutant of RshA showed no differences in

interactions with SigH relative to wt-RshA.

Discussion

The Mycobacterium tuberculosis stress response sigma factor SigH is

a global regulator and also responds to heat shock. It is regulated

by its cognate protein anti-sigma factor RshA. Similar to many

Figure 2. HDX-MS of SigH. (A) Sequence coverage map for SigH. Solid line denotes the pepsin digest fragments analyzed in the study with a total
sequence coverage of 71%. (B) ESI-Q-TOF mass spectra for 2 pepsin digest fragments of SigH, (i) (157–171); m/z = 815.89, z = 2 and (ii)* (1–25); m/
z = 1259.56, z = 2 which showed significant differences in exchange upon RshA binding. (I) Undeuterated peptide (II) The isotopic envelope for the
same peptide from free SigH following 10 min deuteration; (III) The isotopic envelope for the same peptide from SigH and RshA complex following
10 min deuteration. *- The default display of the isotopic envelope for this peptide (1–25); m/z = 1259.56 from the mass spectrometry program, HDX
Browser was in color. For clearer display, spectra were highlighted in black (C) The SigH model was prepared using the program I-Tasser using the
homologous structure of SigR from Streptomyces coelicolor. The protein is shown in green. The regions in red represent regions of the SigH protein
showing decreased deuterium exchange in the presence of its interacting partner, RshA.
doi:10.1371/journal.pone.0043676.g002
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proteins with a HX3CX2C motif, which binds a Zn atom, RshA

was also proposed to be a Zn binding protein [14]. However, in

our Zn saturation experiments, each RshA molecule bound to only

,0.750 Zn atom. Surprisingly, RshA has not been investigated in

detail compared to RsrA of Streptomyces coelicolor [42]. The E. coli

cells that expressed RshA were brown in color and the cell lysate

was also brown. Therefore, we attempted to investigate whether

RshA would coordinate other metal ions, apart from Zn. Contrary

to what is assumed in the scientific literature, our results showed

that RshA is an [Fe-S] cluster coordinating protein, similar to Mtb

RsmA [21]. Our attempt to replace the [Fe-S] cluster with Zn was

unsuccessful, suggesting that RshA has lower affinity for Zn than

iron. Furthermore, the [Fe-S] cluster of RshA could be reconsti-

tuted directly using inorganic iron and sulfur sources as well as by

using cysteine desulfurase (Isc/Rv 2815c, cloned, expressed and

purified (data not shown)). Furthermore, an [Fe-S] cluster will

enable responses at a much faster rate to oxidative/reductive stress

than Zn. SigH being a global regulator of Mtb, its quick response

to stress will have a major implication for Mtb function. It is

worthwhile to mention here that the [Fe-S] cluster of RshA is

extremely sensitive to aerobic conditions and dissociates very

quickly.

Iron-sulphur coordinating proteins are ubiquitous in nature.

The [Fe-S] cluster is found in diverse families of proteins and is

known to regulate the function of several transcription factors.

Iron-sulfur clusters are key to the regulatory function of at least

three transcription factors SoxR, IscR and FNR whereas, the

function of OxyR, Spx, Hsp33, RsrA, Yap1 are directly or

indirectly regulated by thiol-disulfide [43,44,45,46,47,48]. Unlike

SoxR, IscR and FNR, where an [Fe-S] cluster is needed for

regulation, for aconitase, loss of the [Fe-S] cluster is essential

before it binds to RNA [49]. Human mitochondrial glutaredoxin 2

(Grx2) was also reported to have an EPR silent non-oxidizable

[2Fe-2S]2+ cluster that bridges two Grx2 molecules via two

Table 3. Summary of amide H/D exchange in pepsin digest fragments from SigH (Deuterium exchange time = 10 min)a.

No.
Pepsin digest
fragment Peptide, m/z, Charge state

SigH in complex
with RshA SigH

1 1–25 MADIDGVTGSAGLQPGPSEETDEEL (1259.56), +2 9.360.1 12.060.1

2 2–23 ADIDGVTGSAGLQPGPSEETDE (1072.980), +2 6.960.1 8.260.2

3 4–25 IDGVTGSAGLQPGPSEETDEEL (1101.01),+2 9.260.1 11.360.0

4 30–40 ERDAIPLLDQL (641.86), +2 5.260.0 6.060.2

5 38–44 DQLYGGA (723.331), +1 4.160.0 4.260.0

6 46–57 RMTRNPADAEDL (694.84), +2 6.660.1 6.960.1

7 48–57 TRNPADAEDL (1101.52), +1 5.260.0 5.660.1

8 48–58 TRNPADAEDLL (1214.60), +1 5.460.0 6.160.2

9 58–69 LQETMVKAYAGF (679.35), +2 6.560.1 7.760.4

10 90–111 YINSYRKKQRQPAEYPTEQITD (910.12), +3 7.860.3 10.060.0

11 108–114 QITDWQL (903.46), +1 2.460.1 2.760.0

12 109–114 ITDWQL (775.40), +1 1.660.0 1.960.0

13 112–125 WQLASNAEHSSTGL (750.86), +2 3.960.1 4.660.0

14 115–131 ASNAEHSSTGLRSAEVE (872.91), +2 4.860.2 6.060.2

15 115–132 ASNAEHSSTGLRSAEVEA (908.43), +2 5.460.1 7.360.0

16 126–133 RSAEVEAL (874.47), +1 3.360.1 3.760.0

17 133–140 LEALPDTE (887.44), +1 3.160.1 2.860.0

18 134–145 EALPDTEIKEAL (664.852), +2 5.660.1 6.560.0

19 141–151 IKEALQALPEE (620.84), +2 5.760.1 6.560.0

20 141–152 IKEALQALPEEF (694.38), +2 6.160.1 6.860.1

21 144–152 ALQALPEEF (1017.53), +1 4.060.1 4.660.0

22 146–152 QALPEEF (833.40), +1 2.760.0 2.860.0

23 152–157 FRMAVY (786.40), +1 3.560.1 3.560.1

24 157–164 YYADVEGF (963.42), +2 4.560.2 5.260.0

25 157–171 YYADVEGFPYKEIAE (897.418), +2 8.260.2 9.460.1

27 158–168 YADVEGFPYKE (659.31), +2 5.260.1 5.760.0

28 158–170 YADVEGFPYKEIA (751.366), +2 7.260.2 8.160.0

29 158–171 YADVEGFPYKEIAE (815.89), +2 7.260.2 8.160.0

30 172–181 IMDTPIGTVM (1077.53),+1 3.960.1 4.460.0

31 182–195 SRLHRGRRQLRGLL (859.53), +2 4.260.1 4.860.0

32 182–196 SRLHRGRRQLRGLLA (895.046), +2 4.860.4 5.760.1

aAverage number of deuterons exchanged determined following 10-min deuterium exchange. Values reported are the mean and standard deviation from at least two
independent experiments.
doi:10.1371/journal.pone.0043676.t003
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structural Cys residues to form dimeric holo-Grx2 [50]. Similar to

aconitase, human holo Grx2 with an [Fe-S] cluster is enzymat-

ically inactive and loss of the [Fe-S] cluster activates it.

From our HDX-MS studies, we conclude that only one region,

spanning residues 35–57, in RshA exhibits decreased exchange in

the RshA-SigH complex. Comparison of deuterium exchange in

peptides 31–46, 34–49, 47–57 and 51–57 indicates that amino

acids proximal to the N-terminus of motif CXXC showed

decreased exchange in the complex, while the motif itself (residues

51–57) did not show any differences. These results highlight the

importance of the regions flanking the metal ion cluster in RshA in

mediating complexation with SigH, in which the metal ion itself

(co-ordinated at CXXC) might be expendable, vide infra.

Three regions in SigH (residues 1–25, 90–132 and 157–196)

showed decreased exchange upon complexation with RshA.

Peptides spanning residues 1–25 and 157–196 show high

homology with two available sigma factor structures (PDB entries

1H2L and 2H27). The central region in the amino acid sequence

has low homology with available structures resulting in an

increased dependence on ab-initio modelling to predict the relative

orientation of the N and C terminal regions. Large regions of SigH

display decreased exchange suggesting extensive domain rear-

rangements occurring while binding with RshA. Among these, the

regions which display largest magnitude decreases in deuterium

exchange are mapped onto the structural of SigH (Fig. 2C) and the

docking model (Fig. 5). Our experimental results, summarized

Figure 3. HDX-MS of RshA. (A) Sequence coverage map for RshA. Solid line denotes the peptic fragments analyzed in the study with total
sequence coverage of 88%. (B) ESI-Q-TOF mass spectra for one pepsin digest fragment of RshA (35–57) m/z = 881.084, z = 3, which showed significant
difference upon RshA binding. (i) Undeuterated RshA peptide (ii) The isotopic envelop for the same peptide from free RshA following 10min
deuteration; (iii) The isotopic envelope for the same peptide from RshA and SigH complex following 10 min deuteration., The isotopic envelope for
the same peptide. (C) The protein is shown in magenta. The region in red represents regions showing decreased exchange upon interactions with its
partner, SigH.
doi:10.1371/journal.pone.0043676.g003
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using the derived docking model, suggest that RshA might interact

in the central region of SigH causing the N and C terminal regions

to come together in an auto-inhibitory conformation which might

shield access to other protein molecules. Higher magnitude

decreases in exchange in the N and C terminal regions are

therefore a likely result of domain movement due to the binding of

RshA. These in turn might affect SigH’s ability to interact with

other proteins and prevent transcription initiation. In addition, our

results indicate that SigH might be a partially unstructured protein

in the apo form, but, gets ordered upon complexation with RshA.

We have observed similar ordering due to conformational

selection in other studies on the cAMP-binding regulatory subunit

(RIa) of Protein Kinase A [36].

Mutations in both RshA and SigH were designed based on the

HDX –MS results and sequence homology to localize the amino

acids important for formation of the RshA-SigH complex.. None

of the three mutants in RshA, E37A, H49A and AXXA, abolished

the interaction with SigH but H49A mutation had some adverse

effect, indicating that a histidine at this position has some role in

RshA/SigH interaction. Song et al. [14] have shown that single

cysteine mutations reduce the binding of RshA with SigH. They

postulated that mutation of cysteines to alanines should lock RshA

in a reduced conformation, and therefore, aid in interaction with

SigH if the interaction is only due to the conformational changes

that could occur during the formation/disruption of disulfide

linkages in redox conditions. However, we do not see any loss of

interaction for the RshA CXXC AXXA mutant and this might

indicate that cysteines of the CXXC motif of RshA do not form a

disulfide bond, as shown in RsrA [51]. Thus we propose a more

complex role for the metal ion cluster. We hypothesize that if an

interaction with the metal ion cluster, as opposed to disulfide bond

disruption, should drive the RshA interaction with SigH, then a

large magnitude decrease in deuterium exchange upon complex-

ation in this region should be expected. Our HDX results support

such a model.

Based on the HDX results, the E37A mutant of RshA was

generated but GST pull-down assay showed that the RshA E37A

mutant does not affect the SigH-RshA interaction. The

C(53)XXC(56) motif of RshA is at the end of a peptide that

interacts with SigH. However, the CXXC to AXXA mutation did

not disrupt the interaction. Also, even though the H49A mutant

did not completely interrupt the interaction but it did inhibit the

interaction to some extent. Zdanowski et al. [51] have shown that

RsrA His37 (homologous position for His49 of RshA) has an

important role in vivo. Further mutational analysis of RsrA has

shown that His37, Cys41, Cys44 and Phe38 affected the

interaction with SigR by apparently affecting the structural

integrity of RsrA [42]. In SigH, while the D22A, D160A and

E162A mutations adversely affected the interaction, the SigH

E168A mutant did not interact with RshA. The RshA and SigH

interaction takes place even in the absence of the metal cluster and

also at multiple sites. These results prompt us to conclude that the

SigH-RshA interaction is simply mediated by salt bridges and

neither the cysteine residues nor the metal cluster has any

significant role.

Based on these results, we propose a molecular model of the

SigH-RshA interaction, Fig. 5. Using structures of homologous

proteins and guided by our HDX and mutational analysis, we

have modeled the interaction interface of SigH and RshA as

indicated. This is a first step towards unraveling molecular details

Table 4. Summary of amide H/D exchange in pepsin digest fragments from RshA (Deuterium exchange time = 10 min)a.

No. Pepsin digest fragment Peptide, m/z, Charge state
RshA in complex
with SigH RshA_

1 2–26 SENCGPTDAHADHDDSHGGMGCAEV (837.98), +3 7.860.1 8.260.1

2 25–30 EVIAEV (659.353), +1 3.160.1 2.860.0

3 25–31 EVIAEVW (845.437), +1 4.460.0 3.960.0

4 26–31 VIAEVW (716.396), +1 3.760.0 2.860.1

5 29–34 EVWTLL (760.422), +1 3.660.2 3.760.0

6 27–31 IAEVW (617.33), +1 2.560.0 2.160.1

7 30–34 VWTLL (631.378), +1 2.960.0 2.860.0

8 31–46 WTLLDGECTPETRERL (640.315), +3 10.260.1 10.160.1

9 32–46 TLLDGECTPETRERL (866.927), +2 10.060.0 9.760.1

10 34–49 LDGECTPETRERLRRH (656.664), +3 8.660.4 10.260.7

11 35–57 DGECTPETRERLRRHLEACPGCL (881.084), +3 13.160.0 15.060.1

12 47–57 RRHLEACPGCL (627.815), +2 4.160.2 4.860.0

13 51–57 EACPGCL (692.268),+1 2.760.0 2.860.2

14 58–64 RHYGLEE (903.422), +1 2.760.0 3.260.0

15 64–76 ERIKALIGTKCRG (722.919), +2 8.560.0 9.260.0

16 64–85 ERIKALIGTKCRGDRAPEGLRE (823.452), +3 13.460.1 13.560.0

17 65–83 RIKALIGTKCRGDRAPEGL (685.389), +3 10.260.1 10.260.0

18 65–85 RIKALIGTKCRGDRAPEGLRE (780.439), +3 12.160.1 11.760.1

19 70–83 IGTKCRGDRAPEGL (736.884), +2 6.560.1 5.760.1

20 70–88 IGTKCRGDRAPEGLRERLR (728.407), +3 11.260.0 11.860.0

aAverage number of deuterons exchanged determined following 10-min deuterium exchange. Values reported are the mean and standard deviation from at least two
independent experiments.
doi:10.1371/journal.pone.0043676.t004
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of this important protein interface. The interaction between SigH

and RshA is redox dependent and hence any in vitro study would

have to be carried out under reducing conditions. Furthermore,

the interaction is stoichiometric. A 3-dimensional structure of this

complex will provide a higher resolution view of the complex and

provide insights into mycobacterial research as SigH regulates a

large number of genes and several other Sigma factors. The

structural and molecular determinants of the Mtb SigH and RshA

interaction will be pivotal to understand the pathogen’s adaptation

in host and virulence. The ability to specifically disrupt this

interaction promises a potential therapeutic strategy against the

pathogen’s defense within the host during the latent/asymptom-

atic phase.

Supporting Information

Figure S1 RshA protein production. (A) SDS-PAGE gel,

stained with Coomassie blue, of induced and uninduced cell

samples, along with the purified RshA protein and a molecular

weight marker. (B) The RshA protein is naturally brown in color,

right tube, confirming its inherent property of iron binding. The

left tube is buffer, as a color control.

(TIF)

Figure S2 Displacement of Zn and Fe-S. (A) Zn atom could

not displace the Fe-S cluster. Fifty mM RshA was reconstituted

with the [Fe-S] cluster and then treated with equimolar and two

molar excess of ZnCl2 for different time periods to estimate the

affinity of protein with both the metals. % residual [Fe-S] cluster is

based on the A400. (B) Displacement of zinc by [Fe-S] cluster in

zinc saturated RshA protein. 50 mM RshA was saturated with Zn

and then subjected for reconstitution with equimolar concentra-

tions of Fe3+ and sulfide. The absorption scan profile confirms the

presence of a [4Fe-4S] cluster and [Fe-S] could easily replace zinc.

Note that RshA has more affinity to [Fe-S] than to zinc. All the

absorption scans were observed between 300 and 800 nm.

(TIF)
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Figure 4. Targeted mutagenesis based on HDX-MS. Soluble fractions of two cell lysates (5.0 mg crude protein each RshA and mutants/SigH
and mutants) were mixed together in a buffer containing 50 mM Tris HCl (pH 7.5), 100 mM NaCl, 10 mM DTT and 0.01% X-100 and allowed to
interact at 4uC for 3 h on a rocker platform. DTT was periodically replenished during interaction. After interaction the protein mix was mixed with pre-
swollen glutathione beads for 2 h at 22uC and then the beads were washed once each with 50 mM Tris HCl (pH 7.5), 10 mM DTT, 0.01% Triton X-100,
100 mM NaCl; 10 mM DTT, 0.01% Triton X-100, 50 mM Tris HCl (pH 7.5), 200 mM NaCl; 50 mM Tris HCl (pH 7.5), 300 mM NaCl; 10 mM DTT, 0.01%
Triton X-100. The washed resin was mixed with SDS gel-loading buffer and the bound proteins were resolved on 15% SDS-PAGE and stained with
Coomassie blue or processed for immunoblotting. (A) SDS-PAGE gel of a GST-pull down assay showing the interaction of WT RshA and WT SigH and
their mutants. The gel was stained with Coomassie blue and another identical gel was used for Western Blot using anti 6xHis antibody. (B) Western
blot using a 6xHis antibody in a GST-pull down assay to study the interaction of SigH and RshA. Both panel b and C have identical loading, however
panel B represents SigH and and its mutants while panel C represents RshA and its mutants. (i) WT or mutant GST:RshA and 6xHis:SigH proteins were
used. (ii) In the lower panel, WT or mutant GST:SigH and 6xHis:RshA proteins were used. (C) RshA-SigH interaction does not require metal ion.
Purified 5 mM RshA/SigH each was mixed in the presence of 50 mM Tris HCl (pH 8.0), 100 mM NaCl, 0.01% Triton X-100 at 25uC. Same samples were
loaded in both the native gel (ph 8.8) and SDS-PAGE and stained with Coomassie blue. The left panel is native gel and the right panel is SDS-PAGE.
(D) Intrinsic tryptophan fluorescence of RshA (oxidized), SigH and their complex. 3 mM of each protein was mixed in a buffer containing 50 mM Tris
HCl (pH 8.0), 100 mM NaCl, 0.01% Triton X-100 at 25uC for 2 hr to make the SigH-RshA complex. RshA has a single tryptophan while SigH has two
tryptophan residues. The differences in the spectra clearly show that the complex formation is a dynamic process.
doi:10.1371/journal.pone.0043676.g004

Figure 5. Model of interaction. A model for the interaction between
SigH and RshA is proposed through a docking model, which was
prepared with the help of the program Z-Dock [52]. The proteins follow
the respective coloring schemes, as in Figs. 2d and 3d.
doi:10.1371/journal.pone.0043676.g005
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