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Abstract

In hematopoietic stem cell transplantation, donor selection is based primarily on matching donor and patient HLA genes.
These genes are highly polymorphic and their typing can result in exact allele assignment at each gene (the resolution at
which patients and donors are matched), but it can also result in a set of ambiguous assignments, depending on the typing
methodology used. To facilitate rapid identification of matched donors, registries employ statistical algorithms to infer HLA
alleles from ambiguous genotypes. Linkage disequilibrium information encapsulated in haplotype frequencies is used to
facilitate prediction of the most likely haplotype assignment. An HLA typing with less ambiguity produces fewer high-
probability haplotypes and a more reliable prediction. We estimated ambiguity for several HLA typing methods across four
continental populations using an information theory-based measure, Shannon’s entropy. We used allele and haplotype
frequencies to calculate entropy for different sets of 1,000 subjects with simulated HLA typing. Using allele frequencies we
calculated an average entropy in Caucasians of 1.65 for serology, 1.06 for allele family level, 0.49 for a 2002-era SSO kit, and
0.076 for single-pass SBT. When using haplotype frequencies in entropy calculations, we found average entropies of 0.72 for
serology, 0.73 for allele family level, 0.05 for SSO, and 0.002 for single-pass SBT. Application of haplotype frequencies further
reduces HLA typing ambiguity. We also estimated expected confirmatory typing mismatch rates for simulated subjects. In a
hypothetical registry with all donors typed using the same method, the entropy values based on haplotype frequencies
correspond to confirmatory typing mismatch rates of 1.31% for SSO versus only 0.08% for SBT. Intermediate-resolution
single-pass SBT contains the least ambiguity of the methods we evaluated and therefore the most certainty in allele
prediction. The presented measure objectively evaluates HLA typing methods and can help define acceptable HLA typing
for donor recruitment.
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Introduction

The Human Leukocyte Antigen (HLA) gene system on

Chromosome 6 is one of the most polymorphic regions of the

human genome and one of the most extensively studied regions

due to its importance in transplantation and association with

autoimmune, infectious and inflammatory diseases [1–3]. The

HLA region contains genes that encode protein products crucial

for adaptive immune response, and its high genetic polymorphism

allows the immune system to fight a variety of pathogens. The

HLA gene system plays a crucial role in hematopoietic stem cell

transplantation (HSCT), where patients and donors are matched

with respect to their HLA genes, in order to maximize the chances

of successful transplant [4]. Developments in DNA based typing

methods have seen a large increase in new HLA alleles being

identified each year, at an average rate of more than one new

allele discovered per day [5–7]. Discovered alleles and their

sequences along with the most recent information on HLA region

are catalogued in the IMGT/HLA database [8]. As of the first

quarter of 2012, more than 1700, 2300, and 1000 alleles have

been discovered for the class-I HLA-A, -B, and class II HLA-

DRB1 loci, respectively (http://www.ebi.ac.uk/imgt/hla/) [9].

The high polymorphism in HLA presents a challenge when it

comes to typing HLA genes. The typing has historically been

performed using serological antibody tests, which are able to

identify HLA protein variants on the surface of the cell using

antigen-specific antibodies [10]. Serology has been widely replaced

with DNA-based typing methods due to its inability to identify all

specific products of the HLA alleles. It is shown that in order to

improve the clinical outcome of HSCT from an unrelated donor,

it is essential to identify and match patient and donor’s HLA genes

at the allele level [11–13].

DNA-based methods identify HLA alleles by interrogating the

nuclear DNA sequence and can result in different levels of

ambiguity depending on typing methodology or test kits used.

HLA typing methods, their corresponding formats and abbrevi-

ations used in this paper are given in Table 1. Some of the widely

used molecular methods for typing HLA genes, as defined in

American Society for Histocompatibility and Immunogenetics

Standards (ASHI), are a nucleic acid-based typing method using

sequence-specific oligonucleotide hybridization (SSO) [14,15], a

nucleic acid amplification-based typing method using sequence-

specific priming (SSP) and sequence-based typing (SBT) [16].

Even though DNA-based technology improved identification of

specific alleles, HLA typing results reported by testing laboratories
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are still commonly resolved to a certain level of ambiguity, rather

than to an exact allele assignment [5]. Exact high resolution HLA

typing can be costly and laborious with the large and rapidly

growing number of described HLA alleles, which sometimes

cannot be easily distinguished with existing high-throughput

typing methods. Ambiguous allele assignments are produced

either due to failure to interrogate all polymorphic positions, or

due to a lack of phase between polymorphisms within a locus

because of diploid sequence reads (or both).

In HSCT the selection of donors for a patient in need of a

transplant is based primarily on HLA matching, and the lower the

ambiguity of typing the easier it is to determine the probability of

allele level match during the donor search [17]. In order to

facilitate rapid identification of matched donors for HSCT several

methods have been proposed to infer unknown phase and allele

assignment [4,18]. They typically employ statistical methods and

the unique properties of the HLA region, such as its high linkage

disequilibrium, in order to estimate haplotype frequencies and

predict the most likely haplotype assignment for an individual with

an HLA typing consisting of a set of ambiguous allele pairs. HLA

typing with less ambiguity on average gives fewer high-probability

phased high resolution haplotypes. We aim to measure per-locus

ambiguity resulting from several HLA typing formats across four

continental populations using an information theory-based mea-

sure, Shannon’s entropy [19].

Some previous work has been done in measuring typing

ambiguity – first a measure developed by Helmberg et al. [20] and

more recently, the first application of Shannon’s entropy to this

problem by Cano [21]. Helmberg proposed a characterization of

HLA typing kits using a frequency inferred typing (FIT) index. A

FIT index describes the probability of correct allele pair

assignment for an ambiguous typing result, and is calculated as

the negative log of the probability of a wrong allele pair prediction.

This probability is equal to the sum of products of all allele pairs

that share the same typing pattern as the selected pair. The

limitation of the FIT index is that it does not take into account the

distribution of allele frequencies beyond the most likely assign-

ment. We provide more detail on the FIT index in Supporting

Information (Text S1). The concept of measuring ambiguity in

HLA typing using entropy was first presented by Cano in [21].

They used population-specific allele frequencies and several SSO

typing examples to demonstrate the utility of the measure.

Both previous typing ambiguity studies used allele frequencies in

their computations and, as we will later show, fail to demonstrate

the advantage of linkage disequilibrium information contained in

haplotype frequencies when it comes to reducing ambiguity and

improving predictions of patient-donor matching. We use

haplotype frequencies and show that the ambiguity is reduced

considerably compared to using allele frequencies, proving that

this advance in strategy for identifying matched donors has had a

significant positive impact. In addition, we take this methodology

further and use it to evaluate several different typing methods, and

directly compare them with respect to the inherent ambiguity

measured by entropy. To measure the impact of the typing

method ambiguity in more relatable terms, we also developed a

measure we call Confirmatory Typing (CT) Mismatch Rate,

which gives the average probability across a set of patients that a

mismatch would occur between the patient and donor when a

high resolution confirmatory typing is performed on the ambig-

uously-typed donors in a uniformly-typed registry.

We show that entropy can be used to objectively compare

methods of HLA typing to each other in terms of the information

they provide, in the context of each individual population. Our

results show that intermediate-resolution single-pass sequence-based

typing (SBT) reported in genotype list format contains the least

ambiguity and, therefore, the most certainty in allele prediction

across all populations. We examine the benefit of using haplotype

frequencies in entropy calculations versus allele frequencies.

Neighboring HLA and non-HLA genes are highly correlated and

major efforts have been directed at describing linkage disequilib-

rium (LD) across the region [22–24]. When certain alleles occur

together generally due to linkage disequilibrium between them,

some ambiguity can be inferred away using this linkage information,

which is inherently contained in haplotype frequencies. Our results

show that using population haplotype frequencies immensely

reduces the ambiguity present in HLA typing. This demonstration

allows HLA typing methods to be objectively evaluated in the

practical context of a matching algorithm that uses haplotype

frequencies to predict probabilities of allele level matches between a

patient and list of potentially matched donors. It is hoped that this

analysis can lead to data-driven HLA typing resolution strategies for

registry donor and cord-blood unit (CBU) typing.

Materials and Methods

Typing Formats
The naming of HLA alleles is standardized and regulated by the

World Health Organization (WHO) Nomenclature Committee for

Table 1. HLA typing formats reported by NMDP contract typing laboratories.

Typing Method Description Abbreviation Example Typing

Serology Identifies HLA protein on
the cell surface using
antigen-specific antisera.

Broad antigen typing SERO A9, A28

Split antigen typing A24, A68

DNA Identifies HLA alleles
by interrogating DNA

Allele family level Two digit resolution DNA2 A*24:XX, A*68:XX

Sequence specific
oligonucleotides

Allele codes SSO A*24:AER, A*68:GM AER = 02/03/04/05
GM = 01/02/03/04/05

Sequence based typing Single pass SBT SBT A*24:02,A*68:01 or A*24:03,A*68:01 or
A*24:04,A*68:01 or A*24:05,A*68:01

*High resolution [45] Exact alleles High resolution A*24:02, A*68:01

*Since the expression has not been confirmed for the majority of alleles described in IMGT/HLA, we use high-resolution here to denote the amino acid sequence of the
exons encoding the antigen binding domains.
doi:10.1371/journal.pone.0043585.t001
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Factors of the HLA System [25]. Each allele name starts with the

locus name (e.g. A, B, DRB1, etc.) followed by at least two sets of

digits; the first set corresponds to the allele family, often associated

with serologically-defined antigen groups, and the second set

corresponds to a specific protein within the group (e.g. allele

A*02:01 is found on locus A, belongs to the ‘‘02’’ allele family and

encodes a protein named ‘‘01’’). If necessary, longer allele names

are assigned, up to a total of four sets of digits; the third set of digits

is used to show synonymous substitution within the coding region,

and the fourth set of digits is used to denote differences in non-

coding regions of the gene.

Before DNA-based HLA typing methods were developed,

serological testing identified sets of alleles with similar reactivity.

Two-digit level resolution is the lowest HLA typing resolution

reported by typing laboratories today. For these lower-resolution

formats, alleles in the same family as A*01:01 are reported as A1

using serological methods (abbreviated SERO), or as a truncated

result of intermediate-level DNA-based typing (referred to as

DNA2 in this text) as A*01 or A*01:XX.

A commonly used intermediate-resolution format is the one

using NMDP allele codes [26].

Sequence-specific oligonucleotides (SSO) typing results are

reported in this format for this study, where each allele code

represents two or more alleles. For example, an allele reported as

A*01:AB can be either A*01:01 or A*01:02, and an allele reported

as A*26:JGSJ can be any of the following three: A*25:13, A*26:01,

A*26:52. Therefore, the number of combination for an ambiguous

allele pair reported in this format increases multiplicatively, that is,

the allele pair (A*01:AB, A*26:JGSJ) will have six possible pairwise

combinations (A*01:01, A*25:13 or A*01:01, A*26:01 or A*01:01,

A*26:52 or A*01:02, A*25:13 or A*01:02, A*26:01 or A*01:02,

A*26:52). Ambiguous sequence based typing (SBT) is reported in

the format of genotype lists for this study, that is, in the form of

several possibilities for pairs of alleles an individual carries

(A*24:02,A*68:01 or A*24:03,A*68:01 or A*24:04,A*68:01).

Because in single-pass SBT results, some ambiguous genotype

lists cross several allele families, allele codes could be used to

represent all typing results. However, genotype list representation

has the advantage of showing that some genotype possibilities,

added implicitly when compressing to allele code format, are not

possible.

Data Sets
Haplotype Frequency Data. We used high-resolution hap-

lotype frequencies generated from unrelated donors from the

National Marrow Donor Program (NMDP) database for four

principal population categories defined by the United States census:

African American (AFA), Caucasian (CAU), Hispanic (HIS) and

Asian/Pacific Islander (API) [27]. These categories are referred to

as self-described ethnic groups (SIRE), as they are selected by

individuals from the NMDP race/ethnicity questionnaire at donor

registration. NMDP develops and maintains a repository of several

million HLA-typed donors to facilitate hematopoietic stem cell

transplantations among unrelated individuals. Table 2 shows

populations used and the number of haplotypes, HLA-A, -B, and

–DRB1 alleles within each population.

Simulated Typing Results. To generate simulated typings

for different HLA typing methods, we first sampled 2 haplotypes

from high resolution population haplotype frequency data set [27].

These sampled haplotypes were then ‘‘rolled up’’ from the high

resolution typing to a lower resolution typing to emulate how the

typing would have appeared using various typing methods. For

example, a high resolution haplotype pair with the format:

A � 23 : 01*B � 18 : 01*DRB1 � 07 : 01,

A � 30 : 02*B � 58 : 02*DRB1 � 12 : 01

would be rolled up into lower resolution typing (in this case

serology) as follows:

A23, A30; B18, B58; DR7, DR12:

Note that the simulated haplotypes contain neither phase nor

allele ambiguity, while the lower resolution typing contains both.

Simulated typings of 1,000 individuals were generated for the four

broad population groups (AFA, API, CAU, HIS) and four

different typing methods (SERO, DNA2, SSO, SBT).

While we use HLA nomenclature Version 3 style formatting to

describe HLA alleles in this paper, we simulated the four typing

methods for Version 2.28 of the IMGT-HLA database, to more

closely match the time in which the typing results used to generate

the haplotype frequencies were reported. To generate serologic

typing (SERO), we used the HLA dictionary, which allows each

HLA allele to be mapped to a serologic equivalent (e.g. B*15:02

maps to B75) [28]. To map alleles to DNA 2-digit (DNA2), we

removed all fields from the HLA typing but the first field

describing the allele family (e.g. B*15:02 becomes B*15:XX). To

simulate SSO typing, given detailed information on the probes

present in each SSO kit and the IMGT/HLA database of allele

sequences, probe hit tables were computed for all possible

combinations of described alleles. Each pair of alleles was mapped

to the set of allele pairs that had identical probe hit patterns, then

the typing was compressed to NMDP allele code format. For

HLA-A and HLA-B loci we used kits described at the 12th

International Histocompatibility Workshop [29], and for HLA-

DRB1 locus we used a kit described at the 11th International

Histocompatibility Workshop [15,30]. SBT simulation mapped

allele pairs to a list of ambiguous genotypes with identical

heterozygous sequence in exons 2 and 3 published by IMGT-HLA

(http://www.ebi.ac.uk/imgt/hla/ambig.html) and reported the

typing in the genotype list format.

Shannon’s Entropy
Shannon’s entropy quantifies the amount of uncertainty or

disorder associated with a particular system, and is widely used in

a variety of applications, such as genetics [31–33], data mining

[34], molecular biology [35], and imaging [36]. In information

theory, entropy is used to measure uncertainty associated with a

random variable. Here we used entropy to measure and compare

ambiguity associated with the results of various HLA typing

methods. Given an ambiguous genotype X, Shannon’s entropy (H)

is defined as:

H Xð Þ~{
X

x[X
p xð Þ log p xð Þð Þ ð1Þ

Where p xð Þ is the relative frequency of a single-locus or multi-

locus high resolution genotype x.

Entropy can be thought of as the ambiguity or impurity present

in a system of interest. If, in a set of typing results for one

individual, all of them are equally likely (frequent) then the entropy

is the highest as we have the least information to choose the most

likely real genotype.

To illustrate the usefulness of entropy in measuring typing

ambiguity we show an example of two typing results with the same

number of ambiguities (Table 3). Both of these ambiguous typings

Measuring Ambiguity in HLA Typing Methods
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have six possible pairs of alleles, however, one of them is more

pure with respect to the frequency distribution of these combina-

tions, and therefore has a lower entropy (0.014 versus 1.676, with a

mean entropy of 0.54 for ambiguous typing results in this sample).

Note that entropy depends on the size of the set as well as the

distribution of frequencies in the set. If Hn is the entropy of n

typings, then it is maximal for outcomes of equal frequencies, that

is, Hn p1,::,pnð ÞƒH 1
n

,::, 1
n

� �
, and it increases with the number of

equally frequent typings, that is, Hn
1
n

,::, 1
n

� �
vHnz1

1
nz1

,::, 1
nz1

� �
.

Therefore, depending on the distribution of frequencies and the

number of possible alleles for an ambiguous allele pair, typing

results can have drastically different entropies.

Entropy Calculations using HLA Frequencies
The HLA haplotype frequencies we used in this study were

estimated by the expectation-maximization algorithm (EM)

described in [37]. To obtain the allele frequency of allele Aj from

haplotype frequencies we simply summed the frequencies over all

haplotypes in the given population group that included that allele,

that is:

p Aj
� �

~
XN

i~1
p Ai*Bi*Dið ÞI Aj

� �
, ð2Þ

where A, B, and D are typed loci, N is the total number of

haplotypes and I Ajð Þ is an indicator function that takes value of 1

(0) when a haplotype contains (does not contain) allele Aj . For

each ambiguously typed locus, we generated all possible pairs of

alleles AiAjð Þ, and computed their respective frequencies as

follows:

p AiAj
� �

~p Ai
� �

:p Aj
� �

: ð3Þ

In the first set of experiments, we used these allele pair frequencies

derived from allele frequencies in entropy calculations to compute

allele entropy for each locus.

To compute locus entropy using haplotype frequencies, or

haplotype entropy, we do the following. For each ambiguously

typed three-locus genotype, g = (AaBbDd), we generated all possible

haplotype pairs and their frequencies using imputation as

described in [37]. To compute the entropy of a particular locus,

we obtained frequencies for each unique allele pair on that locus,

say AiAj , by summing over all frequencies of haplotype pairs

generated for the given genotype, that contain the given allele pair,

that is

p AiAj
� �

~
XN

k~1
p Ak*Bk*Dk,Ak*Bk*Dkð ÞI AiAj

� �
ð4Þ

where N is the number of generated haplotypes and I AiAjð Þ is an

indicator function that takes value of 1 (0) when a haplotype pair

contains (does not contain) allele pair AiAjð Þ. We then used these

allele pair frequencies derived from haplotype frequencies to

compute haplotype entropy in the same manner as described for the

case of allele entropy.

As a side note, an ambiguous typing with many possible alleles

at each locus can result in a large combinatorial number of

Table 2. HLA haplotype frequency data used in this study.

Population Description # of 3-locus Haplotypes # of HLA-A Alleles # of HLA-B Alleles # of HLA-DRB1 Alleles

AFA African American 3,049 68 107 59

CAU Caucasian 5,214 97 158 70

API Asian-Pacific Islander 2,157 56 102 62

HIS Hispanic 3,102 75 138 62

This table shows four population groups and their corresponding haplotype frequencies used for the simulation of samples in this study. The data contains frequencies
for three-locus haplotypes (A,B,DRB1). The table also shows the number of unique HLA-A, HLA-B and HLA-DRB1 alleles present in the haplotypes for each population
group.
doi:10.1371/journal.pone.0043585.t002

Table 3. An illustration of two ambiguous typing results with the same number of possible allele sub-types and different level of
ambiguity as measured by entropy.

Typing 1 Typing 2

Ambiguities Relative Frequency {p: log pð Þ Ambiguities Relative Frequency {p: log pð Þ

B*5702/B*5801 0.0923 0.3172 DRB1*0301/DRB1*1301 0.9989 0.0016

B*5702/B*5802 0.0832 0.2985 DRB1*0301/DRB1*1327 0.0005 0.0056

B*5702/B*5804 0.0001 0.0016 DRB1*0304/DRB1*1301 0.0002 0.0024

B*5703/B*5801 0.4331 0.5229 DRB1*0304/DRB1*1327 0.0000 0.0000

B*5703/B*5802 0.3907 0.5297 DRB1*0306/DRB1*1301 0.0004 0.0044

B*5703/B*5804 0.0006 0.0063 DRB1*0306/DRB1*1327 0.0000 0.0000

H = 1.676 H = 0.014

Shown here are typing results for two simulated subjects. They each have six ambiguous sub-types (allele-pairs), but very different entropies. Typing 1 has entropy
H = 1.676 and Typing 2 has entropy H = 0.014. Both of these typings come from the same population sample (African American) in which the mean allele entropy for this
simulated sample is H = 0.54.
doi:10.1371/journal.pone.0043585.t003
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possible haplotype pairs. Given a fully heterozygous case of three-

locus un-phased genotype with ni,i[ 1,2,3f g possible alleles at each

locus, the number of possible haplotypes is equal to PL
i~1 ni and

the number of phased haplotype pairs is equal to 2L{1:PL
i~1 ni,

where L is the number of loci, in this case L~3: In these equations

we assume the heterozygosity of all loci, since the estimated

numbers would be smaller for a homozygous case in which some

HLA loci have the same alleles on both chromosomes. For typings

including five or six HLA loci and high allelic ambiguity, the

number of phased haplotype pairs can grow into billions.

Confirmatory Typing Mismatch Rate
Besides objective evaluation of typing methodologies employed

in typing the HLA region, using the entropy approach to measure

ambiguity has another application from a clinical perspective,

namely its direct relationship to confirmatory typing (CT)

Figure 1. Average allele entropy. This figure shows locus entropies obtained for SBT, SSO, DNA2 and SERO typing formats, within each
population and for three HLA loci using allele frequencies, that is, the allele entropy. The four panels correspond to four populations: AFA (African
American), API (Asian-Pacific Islander), CAU (Caucasian) and HIS (Hispanic), respectively, from left to right, top to bottom. The y-axis shows entropy
averaged across 1000 simulated donor typings, and the x-axis corresponds to the HLA locus that the entropy is measured for (HLA-A, HLA-B and HLA-
DRB1). The color represents the typing methods used for typing: SBT (single pass sequence-based typing), SSO (sequence-specific oligonucleotides),
DNA2 (two-digit allele family level DNA-based typing) and SERO (serological typing).
doi:10.1371/journal.pone.0043585.g001

Table 4. Average allele entropy for all typing methods and all
population groups.

AFA API CAU HIS

SBT 0.0354 0.0668 0.0766 0.0787

SSO 0.2974 0.5247 0.49 0.5004

DNA2 1.8501 2.023 1.056 2.1709

SERO 1.7735 2.2282 1.6548 2.9471

This table shows the locus entropy for SBT, SSO, DNA2 and SERO typing
methods for all four populations using allele frequencies and averaged over the
three loci, HLA-A, -B, -DRB1.
doi:10.1371/journal.pone.0043585.t004

Measuring Ambiguity in HLA Typing Methods
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mismatch rates. For a given patient, high resolution CT is done to

confirm the patient-donor match from a selected set of donors. A

case where the high resolution typings mismatch is called a CT

mismatch. We compute CT mismatch rates on the same simulated

donor sample by comparing the ambiguous typing and the exact

haplotype pair that was used to generate that ambiguous typing.

As described in a previous section, each ambiguous genotype can

generate multiple HLA haplotype pairs, the true one being the

haplotype pair we used to simulate the ambiguous typing. The CT

mismatch rate for each locus is computed as the summation of

frequencies of all allele pairs (computed using Equation (4)) that do

not match the corresponding allele pair of the haplotypes used to

simulate the donor typing. This is the probability that a selected

donor will not be the exact match for the given patient.

Results

Locus entropies obtained for SBT, SSO, allele family level

DNA2 and SERO typing methods are shown in Table 4, averaged

over the three loci (HLA-A, -B, -DRB1) and within each

population using allele frequencies (allele entropy). SBT had the

lowest entropy and therefore the least inherent ambiguity when it

comes to resolving HLA alleles at the locus level, across all

populations. As expected, serology produced the lowest resolution

typing and had the highest entropy. SSO typing was far more

ambiguous than SBT across all evaluated datasets, reflecting both

SBT’s more complete coverage of polymorphic positions in the

exons and the benefits of using genotype list format for SBT

typings rather than the NMDP allele code format we used for

SSO. Figure 1 shows the average allele entropy for each locus for

AFA, CAU, HIS and API population groups. The ranking of the

typing methods with respect to the least amount of ambiguity

across all populations was: SBT, SSO, allele family level DNA2,

SERO.

When we used haplotype instead of allele frequencies, we got

the same ambiguity ranking (Table 5) for average locus entropies

obtained for SBT, SSO, and DNA2 typing methods (haplotype

entropy). However, a dramatic decrease in entropy occurred across

all typing methods when we used haplotype instead of allele

frequencies. For example, the allele entropy of SSO typing in

Caucasian group is 0.49 while the haplotype entropy is an order of

magnitude lower at 0.0477. This decrease is due to some

ambiguity being resolved by LD information provided in

haplotype frequencies, and is successfully captured by Shannon’s

entropy. Figure 2 shows the average haplotype entropy for each

locus and each population separately. The LD information

contained in haplotype frequencies reduces the entropy consider-

ably compared to only using allele frequencies, demonstrating that

this strategy for identifying matched unrelated donors has a

significant positive impact. Figure 3 shows the comparison

between allele and haplotype entropies for each typing method

and within each population group. This result also demonstrates

the utility of imputation algorithms that generate population

haplotype frequencies to more accurately predict the likelihood of

allele match for stem cell registry matching algorithms.

To demonstrate the impact of typing method ambiguity in a

clinical setting we computed CT mismatch rates, which give the

average probability that a mismatch would occur between a

patient and donor when high resolution confirmatory typing is

performed on the ambiguously typed donors in a uniformly typed

registry. CT mismatch rates computed on the same sample of

1000 simulated donors are shown in Table 6. We can see a direct

correlation between CT mismatch rates and entropy computed

across typing methods dimension (Pearson’s correlation coefficient

between CT mismatch rates and haplotype entropy is r= 0.96,

and between CT mismatch rates and allele entropy is r= 0.92).

For SSO typing we found an average haplotype entropy of 0.05

and a 1.31% CT mismatch rate, while for SBT typing, we found

an average haplotype entropy of 0.002 and a 0.08% CT mismatch

rate, in the CAU population group. In a hypothetical donor

registry with uniformly typed donors, choosing a typing method

with smaller entropy across a given population may result in

smaller mismatch rates during the confirmatory typing phase and

more certainty in a selected set of donors. This CT mismatch rate

gives us a more intuitive clinical interpretation of these entropy

scores. An important assumption when computing CT mismatch

rates is that all donors in the registry are typed with the same

method. This is generally not the case, and as donors with better

typing accrue, CT mismatch rates are expected to decrease over

time.

Discussion

We have shown that entropy can be used to objectively compare

methods of HLA typing in terms of the information they provide.

The calculation of per-locus entropy using haplotype frequencies

has a direct application in measuring the impact of using

haplotype frequencies to predict the likelihood of allele match

for stem cell registry matching algorithms. The LD information

contained in haplotype frequencies reduces the entropy consider-

ably compared to using allele frequencies, showing that this

strategy for identifying matched donors has a significant positive

impact.

No objective quantitative comparisons between SBT and SSO

methods have been available to date. Typing laboratories may

choose SSO methods over SBT methods primarily based on cost

savings achieved due to easier set-up, staff training, pre-packaged

kits, and automation. However, these apparent cost savings may

have a price of higher typing ambiguity. We have shown that

single-pass SBT typing performs far better at distinguishing alleles

compared to mid-1990’s-era SSO typing. However, currently

available SSO typing kits used for recruitment typing have more

oligonucleotide probes and thus are able to distinguish more

alleles, which may result in entropy as low as that of single-pass

SBT. Given equal cost, registries should utilize laboratories that

employ HLA typing methods that achieve lower entropy for their

population.

Our objective measure of typing ambiguity can be advanta-

geously applied to the continual improvement of all methods of

HLA typing. Design of SSO kits could be done in silico using

population haplotype frequencies and sequence information from

the IMGT-HLA database [8]. SSO kits are designed to distinguish

between the most common alleles in a population. In United

Table 5. Average haplotype entropy for all typing methods
and all population groups.

AFA API CAU HIS

SBT 5.30E-04 0.0031 0.002 0.005

SSO 0.0923 0.2074 0.0477 0.1195

DNA2 1.2685 1.6219 0.7277 1.7633

SERO 1.2488 1.3889 0.7205 1.7495

This table shows the locus entropy for SBT, SSO, DNA2 and SERO typing
methods for all four populations using haplotype frequencies and averaged
over the three loci, HLA-A, -B, -DRB1.
doi:10.1371/journal.pone.0043585.t005
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States and Europe, populations of European origin predominate,

and therefore some alleles common in minority populations may

not be distinguished in some kits. Given a fixed number of probes,

the SSO kit that provides the lowest entropy in a population could

be considered optimal.

As new alleles are discovered, SSO kits are often altered to add

more probes so that typing results do not cross allele families and

thus meet current guidelines for acceptable recruitment typing.

These new probes will not decrease entropy appreciably as the

frequency of a newly discovered allele tends to remain very low.

Because of sample size limitations, many of the rare alleles

described in IMGT-HLA were not observed in our samples.

However, rare alleles do not have a significant impact on entropy

calculations. Owing to the logarithmic nature of Shannon’s

entropy, an allele with a very small frequency p contributes

plog pð Þ to the resulting entropy. This quantity approaches zero

for very small values of p. More formally, limp?0plog pð Þ~0. This

property of the entropy guarantees that potential underestimation

of frequencies of rare alleles not included in the population groups

in Table 2 will only slightly underestimate the typing ambiguity.

Larger frequency-generating sample sizes available in the future

will serve to eliminate this issue.

Our methods of HLA typing method evaluation can also be

applied to next-generation sequencing technologies. Recently the

Roche 454 sequencing platform has been employed for HLA

typing in research rather than recruitment [38,39]. The 454

platform has relatively longer read lengths that can clonally type

entire exons without intra-exonic phase ambiguity. However,

intronic regions are not amplified by this platform, thus the system

lacks the inability to phase across exons leading to some remaining

genotypic ambiguity, which would be reflected in entropy

calculations. Meanwhile, other next-generation sequencing plat-

Figure 2. Average haplotype entropy. This figure shows locus entropies obtained for SBT, SSO, DNA2 and SERO typing formats, within each
population and for three HLA loci using haplotype frequencies, that is, the haplotype entropy. The four panels correspond to four populations: AFA
(African American), API (Asian-Pacific Islander), CAU (Caucasian) and HIS (Hispanic), respectively, from left to right, top to bottom. The y-axis shows
entropy averaged across 1000 simulated donor typings, and the x-axis corresponds to the HLA locus that the entropy is measured for (HLA-A, HLA-B
and HLA-DRB1). The color represents the typing methods used for typing: SBT (single pass sequence-based typing), SSO (sequence-specific
oligonucleotides), DNA2 (two-digit allele family level DNA-based typing) and SERO (serological typing).
doi:10.1371/journal.pone.0043585.g002
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forms more commonly used for whole genome sequencing use a

shotgun approach for sequence coverage that includes intronic

regions of HLA genes [40]. The Illumina platform uses short reads

and high read depth, and there is a potential for HLA typing

ambiguity to vary between sequencing runs on the same sample

because of differences in read coverage, and thus success with

assembly [41]. With the ambiguity of current SBT methods caused

by the reading of heterozygous sequence from two chromosomes

simultaneously, a future technology that would allow for a single

chromosome to be read clonally could eliminate haplotype

ambiguity [42]. It is important to note that many genome-wide

studies in practice do not make HLA allele calls because the

polymorphism of the HLA system requires specialized bioinfor-

matics analysis unique to these genes [43].

A consideration specifically related to the HLA typing method is

the representation of the ambiguous allele data derived from the

HLA typing, which was also measured using entropy. The 2-digit

DNA typing resolution is in practice a result of incomplete

reporting of SSO, SSP, or SBT typing data. The higher entropy of

this type of data shows the value in reporting the complete

information available from the HLA typing platform rather than

rounding to the allele family level. The genotype list representation

yields a slightly lower entropy than the NMDP allele code

representation. Genotype list representation allows for the

exclusion of some genotypes that have been ruled out by the

HLA typing method, but would still be included in the Cartesian

product of the alleles listed in the NMDP allele codes.

Note that, in some populations, the HLA-B locus presents

higher values of entropy when typed using 2-digit DNA methods

than when typed at the serological level (Figure 1). This is likely

due to the fact that some 2-digit DNA allele families contain alleles

from multiple serologically defined categories. For example,

serological antigens exist to split alleles in the HLA-B15:XX

family into B62, B63, B75, B76 and B77, and HLA-B40:XX

family into B60 and B61, while 2-digit DNA typing does not

distinguish between them.

This analysis provides a path for defining acceptable HLA

typing for recruitment as minimum requirements for entropy

scores as a measure of typing ambiguity and for HLA data

representation guidelines as a way to ensure that genotype lists are

reported. Single-pass or highly automated SBT can result in HLA

typings that cross allele families, which does not meet current

minimum standards for recruitment typing at NMDP, yet we show

that it provides a high-quality low-entropy HLA typing. In fact, we

had to use the genotype list representation for the simulation of

single-pass SBT typings because some allele combinations result in

HLA typings for which no NMDP allele codes have been created

due to required minimum standards that HLA allele codes do not

generally cross allele families [44]. Requiring laboratories to

resolve ambiguous alleles in SBT to meet current NMDP

requirements can significantly increase cost, but does not

significantly lower entropy. Developing a standard for laboratory

reports of typings that cross allele families would thus enable a

reduction in cost of recruitment typing without a reduction in

quality.

We observe variation in entropy for the same HLA typing

method between populations and loci. For example, Figure 3

shows lower average entropy of SSO typing results in the CAU

sample than in the HIS sample. Some variation is attributed to

differences in frequency-generating sample size for a particular

population group (in this example simulated Caucasian typings are

generated from a larger pool of haplotype frequencies than

Hispanic typings, due to a larger availability of Caucasian donors

in the registry). The remaining entropy differences can be

attributed to the nature and magnitude of HLA genetic diversity

in the same group (one can expect HIS population group to be

more broadly defined and hence more genetically diverse). The

resulting entropy can also depend on LD patterns, the location

Figure 3. Comparison of average per-locus entropies obtained from allele and haplotype frequencies. This figure shows the
comparison between allele entropy and haplotype entropy computed for four typing methods: SBT (single pass sequence-based typing), SSO
(sequence-specific oligonucleotides), DNA2 (two-digit allele family level DNA-based typing) and SERO (serological typing), respectively from left to
right. Allele entropy was computed using allele frequencies (AF) and genotype entropy was computed using haplotype frequencies (HF). The y-axis
shows the average entropy values, and the x-axis shows the four continental populations for which the entropy was computed: AFA (African
American), API (Asian-Pacific Islander), CAU (Caucasian) and HIS (Hispanic), respectively. In all figures, the locus entropy is averaged across the three
loci, HLA-A, -B, -DRB1.
doi:10.1371/journal.pone.0043585.g003

Table 6. Confirmatory typing (CT) mismatch rates for all typing
methods and all population groups.

AFA API CAU HIS

SBT 2.0135e-04 9.3340e-04 8.0012e-04 0.0015

SSO 0.0236 0.0530 0.0131 0.0324

DNA2 0.3792 0.4286 0.4069 0.4366

SERO 0.3755 0.3724 0.1957 0.4334

This table shows the expected confirmatory typing (CT) mismatch rates for SBT,
SSO DNA2 and SERO typing formats and four populations averaged across all
three loci (HLA-A, -B, DRB1). CT mismatch rates describe the probability that a
mismatch would occur between a patient and donor during high resolution
confirmatory typing on the ambiguously typed donors in a uniformly typed
registry.
doi:10.1371/journal.pone.0043585.t006
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and number of DNA polymorphisms, and the shape of the allele

frequency distribution in the populations.

In addition to absolute differences in entropy between

populations, we also observed differences between population

groups in the effectiveness of using haplotype frequencies in

decreasing haplotype entropy. Having higher levels of LD can

improve the predictive capability of haplotype frequencies, and so

African population samples with lower LD could have higher

entropy than European populations, with higher LD, for this

reason. In the opposite direction, higher HLA diversity would lead

to higher entropy in African population samples than in European

samples. The API sample may have relatively higher entropy than

other population samples because the API frequency distribution

constitutes an average of the frequency distributions of multiple

distinct populations, and thus may be skewed more towards rare

types than other populations in this study. If API entropy were

evaluated using more detailed race subcategories (e.g. Japanese,

Korean, Filipino, etc.), we would expect lower entropy values

because the HLA diversity of each respective sub-region would be

lower. The size of the population sample used to generate

haplotype frequencies also plays a role in the entropy calculations

in that a relatively larger sample, as we had for CAU compared to

the other races, would give higher entropy. Because of these

multiple confounding factors affecting entropy, we urge caution in

using entropy as a measure to compare the HLA characteristics

between samples of different ancestry. There are some caveats in

that the simulation framework implicitly has no sampling error or

estimation error in the haplotype frequencies. In practice,

uncertainty in the frequency estimates will lead to higher entropy,

so our results should be treated as a practical lower bound.

For interpretation of between-locus entropy differences, we turn

to the history of HLA nomenclature in that the allele families and

serologic types were defined primarily using European samples.

The naming of allele families was based loosely on serologic

categories, and at some point in history newly discovered serologic

patterns were no longer used to split up allele families. The

discovery of new alleles also has an impact on entropy in that some

populations have not been well-characterized for HLA and some

individuals may have as yet un-described alleles that can result in

some hidden entropy. In evaluating entropy at the locus level, we

see that at the allele family level, the HLA-DRB1 locus has a

higher entropy than HLA-A and HLA-B loci. The number of

allele families defined for HLA-A and HLA-B is higher than that

of HLA-DRB1, giving a lower entropy for typing resolution at the

2-digit or serologic levels, all else being equal.

Stem cell registries have been accruing HLA typing results for

over 25 years, with continual advancement in typing methods

during this period. The proportion of donors typed by each

method changes over time in a searchable registry due to new

donor recruitment, roll-off of donors exceeding the maximum age,

reporting of primary HLA data, prospective typing, and high

resolution typing on behalf of patients. With analysis of changes in

HLA typing data for each donor over their time on the registry, it

becomes possible to chart decreasing entropy in HLA typing over

time and determine which typing methods were primarily

responsible for this decrease. Entropy could also be applied as a

selection factor for prospective typing projects in which some

donors are upgraded to lower ambiguity typings.

In summary, the application of Shannon’s entropy as a measure

of HLA typing ambiguity has benefits throughout the lifecycle of

HLA typing: in reagent design, lab reporting standards, donor

recruitment typing guidelines, and registry matching algorithm

performance evaluation.

Supporting Information

Text S1 Frequency Inferred Typing (FIT) Index. FIT
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negative log of the probability of a wrong allele pair prediction.
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