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Abstract

We model sex-structured population dynamics to analyze pairwise competition between groups differing both genetically
and culturally. A sex-ratio allele is expressed in the heterogametic sex only, so that assumptions of Fisher’s analysis do not
apply. Sex-ratio evolution drives cultural evolution of a group-associated trait governing mortality in the homogametic sex.
The two-sex dynamics under resource limitation induces a strong Allee effect that depends on both sex ratio and cultural
trait values. We describe the resulting threshold, separating extinction from positive growth, as a function of female and
male densities. When initial conditions avoid extinction due to the Allee effect, different sex ratios cannot coexist; in our
model, greater female allocation always invades and excludes a lesser allocation. But the culturally transmitted trait interacts
with the sex ratio to determine the ecological consequences of successful invasion. The invading female allocation may
permit population persistence at self-regulated equilibrium. For this case, the resident culture may be excluded, or may
coexist with the invader culture. That is, a single sex-ratio allele in females and a cultural dimorphism in male mortality can
persist; a low-mortality resident trait is maintained by father-to-son cultural transmission. Otherwise, the successfully
invading female allocation excludes the resident allele and culture and then drives the population to extinction via a
shortage of males. Finally, we show that the results obtained under homogeneous mixing hold, with caveats, in a spatially
explicit model with local mating and diffusive dispersal in both sexes.
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Introduction

Since Fisher’s [1] classic insight, sex-ratio evolution [2–4] and

the impact of a given sex ratio on ecological dynamics [5–8] have

remained central issues in population biology. Fisher [1] noted

that neither sex should be rarer at evolutionary equilibrium, a

consequence of frequency-dependent selection. That is, equal

investment of reproductive effort in the two sexes – commonly

implying a sex ratio close to unity – can be evolutionarily stable

[9].

Hamilton [10] studied sex ratios departing significantly from

unity, emphasizing that Fisher’s argument does not apply when a

sex-linked gene controls sex ratio at birth. In particular, if a gene

governing sex ratio occurs in the heterogametic sex only (females

in the ZW system, and males in the XY system), the gene’s fitness

depends only on the number of heterogametic offspring produced.

The frequency of such a gene may advance rapidly, endangering

population persistence [11,12]. That is, a biased sex ratio can leave

members of the more common sex without mates; the consequent

‘‘marriage squeeze’’ [5] may lead to population decline [10,13].

Equivalently, an Allee effect (dependent on the density of each sex)

can limit the degree of sex-ratio bias, for given total density,

capable of averting direct decline to extinction [6,14–16]. Our

study supposes that an extraordinary sex ratio’s ecological

consequence, population persistence or extinction, depends on

interaction with a culturally inherited trait.

Cultural traits may enforce a between-sex mortality difference

[17]. In certain human cultures, infanticide and neglect increase

female mortality [18,19]; Laland et al. [20] assume that these

cultural traits are transmitted vertically, i.e., parent to offspring. In

other species, vertical cultural transmission clearly causes between-

sex differences in habitat choice, tool use or foraging behavior, but

their relationships to sex-specific mortality rates are unknown [21–

24]. Our models explore how a cultural trait influencing male

mortality might govern the ecological consequences of sex-ratio

evolution. We treat sex ratio as a sex-linked genetic trait, and

restrict cultural transmission to the vertical case [25]. Our two-sex

population dynamics assumes competition for a growth-limiting

resource; competition generates a strong Allee effect. Within a

group, each female carries the same sex-ratio allele, and each male

experiences the same mortality rate; parameters differ between

groups. Resource competition is preemptive; each group has the

same niche [26–28].

Our approach assumes pairwise competition between resident

and invader groups, where group refers to population structure,

not the level of selection. In Sober’s [29] terminology, we associate

properties driving selection with groups, and associate the objects

of selection with individuals – individual females in this case. The

resident group (sex ratio, male mortality culture) rests at ecological

equilibrium, and we ask if a rare, different group can invade the

resident. Our results for invasion, extinction and (cultural)
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coexistence indicate how resource competition, cultural variation

and sex-ratio evolution interact. Ecological invasion often has a

distinctly spatial character [30,31]. Therefore, we extend our

model beyond the assumption of homogeneous mixing, and

introduce spatial detail by analyzing the model’s reaction-diffusion

extension.

Methods

General Assumptions
In birds (and butterflies) sex determination follows the ZW

system. W is the sex-determining chromosome; females are ZW ,

and males are ZZ [32]. Our model assumes that the W
chromosome carries an allele fixing the sex ratio among that

female’s offspring. The sex linkage means that a female inherits

her mother’s sex ratio, and the sex-ratio gene never occurs in

males. Hence, the fitness of the sex-ratio allele (of any gene on the

W chromosome) is advanced only through production of

daughters [10]. To focus our discussion accordingly, we model

the ‘‘female ratio,’’ the proportion of a female’s offspring born

female. Females of a single group carry the same sex-ratio allele.

The assumption of sex-linkage might seem restrictive. However,

in a number of bird species, individual females shed Z-

chromosome and W-chromosome bearing eggs non-randomly

[33,34]. The observed variation in sex ratio among females may

reflect facultative plasticity [35], but could generate some of the

population-dynamic consequences of sex ratio that we model.

All members of a given group share a vertically transmitted

cultural norm that governs male behavior which, in turn, fixes the

male mortality rate for that group. Females of different groups

share the same mortality rate. Hence, for simplicity, we assume a

female adopts her mother’s culture. If both parents belong to the

same group, their son faithfully acquires the parental culture.

When parents of different cultures (groups) mate, a son acquires

one or the other culture, each with probability 1=2.

To address competition between groups, we envision a resident

group (a single female ratio and a single male mortality rate) at

ecological equilibrium in a resource-limited environment. We then

introduce (via demic/genetic migration) a small inoculum of an

invader group. The resident and the rare invader differ in female

ratio and ordinarily differ in male mortality. The competitive

dynamics proceeds to ecological equilibrium. If the rare female-ratio

allele has positive growth, it will drive change in culture. Since

individuals mate randomly, extinction of a group’s female-ratio

allele need not always imply loss of the associated cultural trait.

However, loss of a cultural mortality trait implies that the associated

female-ratio allele has been excluded competitively.

Our population dynamics differs from models for gene-culture

coevolution where different alleles and cultural traits directly affect

each other’s evolution [20]. Our model’s cultural trait directly

influences the resident’s population density and the invader’s

growth rate when rare; female ratios and male mortalities

interactively drive the invader’s dynamics. We do not assume

functional dependence between the genetic and cultural traits.

Rather, we evaluate consequences of the feasible range of male-

mortality rate combinations for the entire range of female ratio

combinations (resident and invader).

Mathematical Model
Consider two-sex population growth with two female ratio/

male mortality groups; the groups allow us to model resident-

invader differences. When a female of group i (i~1,2) reproduces,

the resulting offspring is female with probability hi, and male with

probability (1{hi), independently of the group of the male with

whom she mates. hi is the female ratio for group i, transmitted

faithfully from mother to daughter. Different groups, by definition,

differ in female ratio. All females have the same mortality rate, mf .

A male’s group specifies his mortality rate, mi (i~1,2). If male

mortality exceeds the rate for females, m1,m2wmf . But we do not

exclude the case where the female mortality exceeds one or both

male rates. If both parents belong to the same group, each male

offspring has that group’s mortality rate, acquired by vertical

cultural transmission. If a male’s parents belong to different

groups, the male acquires mortality rate mi with probability
1

2
.

Fi and Mi represent the global density of females and males,

respectively, of group i. All individuals require the same resources,

so that population growth at larger densities will self-regulate. The

preceding assumptions imply the following dynamics under

homogeneous mixing (or ‘‘mean-field’’):

LtF1~h1 1{Nð ÞF1 M1zM2ð Þ{mf F1

LtM1~ 1{Nð Þ

1{h1ð ÞF1 M1z
M2

2

 !
z 1{h2ð ÞF2

M1

2

 !" #
{m1M1

LtF2~h2 1{Nð ÞF2 M1zM2ð Þ{mf F2

LtM2~ 1{Nð Þ

1{h2ð ÞF2

M1

2
zM2

 !
z 1{h1ð ÞF1

M2

2

 !" #

{m2M2 ,

ð1Þ

where N~F1zM1zF2zM2 is total global density; 0ƒNƒ1.

Males encounter females as a mass-action process, modeling

random mating [14,25]; more complicated assumptions about pair

formation suggest different ‘‘marriage functions’’ [8]. The fraction

of matings that reproduce successfully equals the unoccupied

fraction of the environment, (1{N). Below we take group 1 as the

resident, and identify group 2 as the (initially rare) invader.

If only a single group occupies the environment, the equations

reduce to those studied by Tainaka et al. [12]:

LtF~h 1{M{Fð ÞFM{mf F

LtM~ 1{hð Þ 1{M{Fð ÞFM{mmM : ð2Þ

The authors focused on the symmetric case, mf~mm. An

important feature of this model is that the cubic dynamics

produces a strong Allee effect [15,16]. That is, there exists a

threshold for the initial population density, below which growth is

necessarily negative, and extinction must follow [14]. The single-

group model serves as the starting point of our analysis. In

particular, initial conditions of our competition dynamics will

depend on the stable, non-trivial fixed point of the single-group

model (corresponding to positive equilibrium densities for females

and males of group 1).

Sex Ratio, Culture, and Population Dynamics
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Analytic and Numerical Methods
We assume that the population dynamics is fast compared to the

time scale of immigration (invasion of new gene-culture groups).

Then female ratio should evolve through a series of successful

invasions of populations resting at demographic equilibrium.

Therefore, we obtained the fixed points (stationary solutions) of

Eqs. (1) analytically (see File S1), and we used numerical

integration to analyze their local stability.

Since this study employs extensive numerical integration, we

justify our choice of an ordinary differential equation (ODE)

solver. Equations (1) are strongly coupled and may become stiff, a

challenge to the solver. Speed is another important factor because

we mapped the entire parameter space of the model, which

requires a very large amount of computation. We chose the

explicit fourth-order Runge-Kutta method [36], which gives the

precision we require. We utilized adaptive time stepping to avoid

problems with any potential stiffness, and to increase integration

speed when the slopes of the densities were small. Since we are

interested in stationary solutions of the equations, the stopping

condition for the integration specifies that all numerical derivatives

are smaller than a predetermined limit:

DA

Dt
v , A[ F1,M1,F2,M2f g ð3Þ

In our ODE numerical integrations, we set the stopping condition

at ~10{8.

Eqs. (1) assume that each individual encounters any potential

mate at the same average rate. But full mixing will seldom prove

realistic, since mating encounters ordinarily occur more frequently

between nearby, than between distant pairs. Spatially structured

mating can be especially important during ecological invasion,

because introduced invaders often cluster locally [30,31,37–39].

To address spatial detail, we generalized Eqs. (1) as a reaction-

diffusion system [40]. To model spatially structured mating

encounters, we replaced the homogeneous global densities with

the corresponding local densities (Fi(x), Mi(x)) at location x. To

model dispersal we added a diffusion term (Ddiff+2Fi(x) and

Ddiff+2Mi(x) for group i) to the respective equation of motion. To

integrate the spatial model numerically, we discretized the partial

differential equations (PDEs) to ODE equations (based on the

Method of Lines technique [41]) on a rectangular grid of size

400|400 (representing an area of 100|100 units), using

Neumann boundary conditions. We integrated the resulting

ODEs using an explicit Euler time stepping, for which we chose

a sufficiently small time step (Dt~0:01). These parameters allow

us to use diffusion coefficients as large as 2:5 without producing

finite-size effects, or instability. For the spatial model, we defined

global equilibria with the stopping condition ~10{6.

Results

Stability of the Resident
Before we address the dynamics of competitive invasion, we

must review [12] and establish conditions for an ecologically stable

resident population. A stable resident occupies the habitat alone,

at a real, positive fixed point where self-regulation limits growth,

governed by Eqs. (2). In general, the system has three fixed points:

the trivial solution at zero density, and a pair of nonzero fixed

points. Extinction is always stable; one of the nonzero fixed points

is unstable, and the other one is stable. The nonzero fixed points,

hence a stable positive equilibrium, exist if (as shown in File S1)

D(mf ,mm,h)~1{4
mf

h
z

mm

1{h

� �
w0 : ð4Þ

The necessary condition for this inequality is

HmfzHmmv1=2 , ð5Þ

in which case there exists a female-ratio continuum,

hc1(mf ,mm)vhvhc2(mf ,mm), where the population might persist.

‘‘Might persist’’ means that a positive equilibrium exists, and initial

conditions determine whether or not the positive equilibrium

attracts the dynamics. If expression (4) fails to hold, the system

exhibits only the trivial fixed point, stable extinction. A resident

population’s persistence, then, depends on interaction of the

female ratio at birth with the sex-specific mortality rates. In

particular, when expression (4) holds, any increase in the culturally

transmitted mortality trait mm shrinks the range of female ratios

maintaining an extant resident population (see File S1). More

generally, Figure 1 depicts the region of the parameter space

satisfying expression (4).

We performed a linear stability analysis of the system, using

Mathematica [42]. The results show that if condition (4) is met,

then the larger (‘‘z’’) roots in Eqs. (S6) (provided in File S1) are

always locally stable, and the smaller roots are always unstable.

We present analytical formulae for the stable stationary densities

in File S1. We used those formulae to quantify our numerical

integration’s accuracy. We performed 5000 test runs with

randomly chosen parameters that obey Expression (4). For

~10{8, we find that the absolute difference of the numerically

computed fixed point was only 9:5|10{7+14% from the

analytical value, with 95% confidence. This accuracy suffices for

our work.

To reach stable, positive equilibrium, population growth must

overcome a strong Allee effect [16], which defines a separatrix on

the phase map of initial female and male densities. Below the

separatrix extinction always results, independently of other

parameters, since growth is negative. Above the separatrix the

population grows to self-regulated equilibrium. To find this

threshold numerically, we select model parameters and fix the

initial female density. Then we conduct a binary search for the

initial male-density threshold value, numerically integrating Eqs.

(2) until they converge to a stationary value (zero or nonzero).

Using this method we can determine the threshold value with

arbitrary precision.

Figure 2 displays the Allee-threshold for various parameter

combinations. In Figure 2(a), where mf~mm, an unbiased female

ratio (h~0:5) allows the lowest total population density before

extinction due to the Allee effect ensues. When the sexes have the

same mortality, unbiased sex allocation also maximizes total

population density at positive equilibrium [12].

Figure 2(b) verifies that increasing female mortality, mf , for given

h and mm, expands the region where the Allee effect leads to

extinction. Not surprisingly, increasing male mortality produces a

parallel effect. Mortality-rate asymmetry and biased female ratios

distort the shape of the thresholds in Figure 2, but the same

general patterns emerge.

For a resident population, we have specified how existence of a

positive equilibrium depends on the interaction of female ratio at

birth and sex-specific mortalities. We also have shown that initial

conditions (given existence of a positive equilibrium) required to

avert extinction due to the Allee effect depend on the same

Sex Ratio, Culture, and Population Dynamics
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parameters. A practical consequence is that we must choose initial

densities for numerical integration carefully, so that when the

competitive dynamics results in extinction, we can clearly identify

the reason as either the Allee effect or exclusion.

Ecological Competition: Female Ratio and Invasion
To quantify how population consequences of female-ratio

evolution can be affected by male mortality, we must have an

ecological understanding of the two-group competition model,

[Eqs. (1)]. The system has nine fixed points; see File S1. One is the

trivial fixed point where all densities vanish. We can easily identify

four more fixed points related to those of the single-class case;

there are two symmetric pairs. At these fixed points, competitive

exclusion leaves one group extinct, and one extant. Exclusion

implies that one group’s female ratio allele and its male-mortality

cultural trait have both gone extinct. Only one of these four, non-

trivial fixed points is locally stable: the ‘‘z’’ solution [Eq. (S11)] of

the group with the greater female ratio. Assuming that h2wh1, a

necessary condition for this fixed point’s local stability is m2=m1v2
(see File S1 for details). We shall refer to a fixed point where one

allele/culture persists after excluding the other as a type-I fixed

Figure 1. Region of the parameter space where the resident is persistent. Parameter space region defined by Expression (4). Choosing
parameters from the indicated domain always results in a stable nonzero population, given sufficiently high initial densities.
doi:10.1371/journal.pone.0043364.g001

Figure 2. Allee threshold of the resident. Survival/extinction threshold defined by the Allee-effect, at various female ratios (a) and various female
mortalities (b). Other parameters: (a): mf~mm~0:02; (b): h~0:5, mm~0:02.
doi:10.1371/journal.pone.0043364.g002
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point. When male mortality rates imply a type-I fixed point, the

greater female ratio always excludes the lesser ratio.

The four remaining fixed points (again, forming two pairs by

symmetry) are qualitatively distinct from those discussed above. At

these fixed points only one female-ratio allele remains extant, but

male mortality traits ‘‘coexist.’’ That is, the population is

genetically uniform, in that all females carry the same female

ratio allele. But the (male) population is culturally dimorphic;

father to son transmission [see Eqs. (1)] maintains the culture of

the group whose females have been excluded competitively.

Consider a stable fixed point of this sort, when F1~0. The

necessary conditions are m2=m1w2, h2wh1, and positivity of the

discriminant

~DD(mf ,m1,h2)~1{4
mf

h2

z
2m1

1{h2

� �
w0 : ð6Þ

The preceding condition holds if

HmfzH2m1v1=2 ð7Þ

and ~hhc1(mf ,m1)vh2v
~hhc2(mf ,m1). For mathematical details, see File

S1. We refer to stable fixed points combining a single female ratio

and a male cultural dimorphism as type-II fixed points.

Summarily, the model does not permit equilibrium coexistence

of female ratio alleles, but can permit equilibrium diversity in

cultural traits governing male mortality. Also note, as is clear from

the above conditions, that of type-I and type-II fixed points only one

can be stable at a time. In Figure 3 we illustrate the flow in the

mean-field dynamics for a set of parameters when both type-I and

type-II fixed points exits, but in the presence of co-occurring males

of the other allele, only type-II is stable.

Having obtained the nine fixed points for the two-group model

analytically, we approached the stability analysis numerically.

Analytical study of the system’s stability proves difficult, due to the

number of variables and parameters (4 variables and 5 parame-

ters). To be as thorough as possible, we performed numerical

integration systematically to span a significant region of the five-

dimensional parameter space. The range and step of the

parameters in our numerical scheme can be found in Table 1.

Each run begins with a stationary resident population, with allele 1
and cultural trait m1. If model parameters allowed a stable positive

equilibrium, we chose initial densities accordingly. We then

introduce the invaders, with female-ratio allele 2 and cultural trait

m2. For each set of parameters (in each series) we performed two

runs, one with infinitesimal initial density of invaders (10{4) and

one with high invader density (0:45).

To portray the results, we generated a number of ‘‘4D’’ plots.

Each shows a table containing 2D plots with the results of each

run; the axes of each 2D plot are values of the same two cultural

parameters (m1 and m2, all with the same range). Another two

parameters (female ratios h1 and h2) vary across the rows and

columns of the tables (the 4D plots). We produced as many tables

as required by the range of the fifth parameter (female mortality

mf ). In each 2D plot, one pixel represents the final stationary

densities of the female ratio alleles. The pixel’s location

corresponds to the parameters for which it was computed; resident

and invader allele densities are shown on different color channels.

This way, we can visually compare all the results simultaneously,

simplifying the analysis greatly. Figure 4 shows one 4D plot; the

associated parameter ranges produce the full set of the model’s

outcomes.

In what follows, we investigate the necessary and sufficient

conditions for successful (pairwise) genetic invasion of the resident

female ratio, and the necessary conditions for cultural ‘‘coexis-

tence’’.

Invasion and exclusion. Our numerical results reveal

immediately that female ratios determine the outcome of invasion;

a successful invader in pairwise competition has the greater female

ratio. That is, successful invasion always requires h2wh1, and

h2vh1 assures that the resident resists invasion. When the invader

has the greater female ratio, it excludes the resident allele

competitively. Furthermore, successful invasion by a female-ratio

allele assures that the associated cultural trait (with value m2)

advances from rarity. As a numerical check, we note that both

infinitesimal and high invader densities always result in identical

final densities.

Since the female-ratio allele is sex-linked, dependence of

invasion on (h2{h1) simply recalls Hamilton [10]. But in our

model, the ecological effect of invasion depends on the culturally

transmitted trait. Suppose that successful invasion excludes both

the resident female ratio allele (h2wh1) and the resident cultural

trait (F1~0, M1~0). From File S1, the necessary conditions for

invasion and combined genetic/cultural exclusion (type-I fixed

point) are:

HmfzHm2v1=2, m2=m1v2, and h2wh1 : ð8Þ

Sufficient conditions for invasion and exclusion of both resident

traits further require: hc1(mf ,m2)vh2vhc2(mf ,m2), ensuring that

the invader attains positive stable equilibrium.

Figure 5(a) shows an example of successful invasion leading to

exclusion of both the resident allele and resident culture. Following

introduction of the invading group, the resident density drops

quickly, and the successful allele (females) and successful culture

(observed in males) advance to become the new resident group.

Invasion, full exclusion of the resident, and population persistence

first require that the successful invader’s male mortality assures,

given female mortality mf , feasibility of a stable, positive

equilibrium in the absence of between-group competition.

Expression (S7) gives the explicit cultural constraint on female

ratios guaranteeing a stable, positive equilibrium. Assuming this

condition holds, the invader must, secondly, have the greater

female ratio. But the invader’s demographic advantage of a greater

female ratio will not exclude both the resident allele and resident

culture unless constraints on the mortality rate are satisfied.

Specifically, the invader’s cultural trait m2 cannot exceed either

(
1

2
{Hmf )

2 nor 2m1.

Invasion and cultural coexistence. Recall that Eqs. (1) do

not have fixed points where differing female ratios co-occur. The

model, however, does allow for cultural coexistence, where males

of both groups co-occur, but females of only one group remain

extant. For details, see File S1.

In one such scenario, resident females are excluded (F1~0), but

resident males, a cultural designation, persist (M1w0). Necessary

conditions for this type of coexistence (i.e., for a type-II stable fixed

point) are

HmfzH2m1v1=2, m2=m1w2, and h2wh1 : ð9Þ

Sex Ratio, Culture, and Population Dynamics
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For sufficiency, the invaders’ female ratio must fall into a finite

interval, ~hhc1(mf ,m1)vh2v
~hhc2(mf ,m1), given by the positivity

requirement of the corresponding discriminant [Eq. (6)].

Figure 5(c) displays an example where the resident culture, but

not the resident allele, persists after successful invasion. The

invader has the greater female ratio, and excludes the resident

allele competitively. The final equilibrium state is a type-II fixed

point where the resident’s male-mortality trait persists via father-

to-son cultural transmission. The ratio of males at dynamic

equilibrium is M1=M2~m2=m1{2. Note that the competitively

driven increase in female ratio produces a decrease in total

population density (females plus males) at equilibrium [Figure 5(c)].

By the symmetry of the equations, there also exists a type-II

stable fixed point with F2~0. That is, the resident population

resists invading females, but the introduced cultural trait advances

from rarity. Put simply, we can exchange the resident-invader

roles of the two groups, and reach the same dynamic equilibrium.

Necessary conditions for this case are

HmfzH2m2v1=2, m2=m1v1=2, and h2vh1 : ð10Þ

Here, the introduced female ratio (h2vh1) is repelled.

However, the invading male mortality culture, introduced at

infinitesimal density, advances and persists at equilibrium; see

Figure 5(d). The ratio of males at this equilibrium

M2=M1~m1=m2{2.

Figure 4 includes cases of equilibrium cultural coexistence. For

example, condition (9) is visible in tiles where h1~0:2 and

h2~0:4; the sharp change in color along the line m2~2m1

Figure 3. Mean-field density flows. Density flows in the (M1,F2,M2) space (restricted to F1:0) with type-I (‘‘saddle’’, M1~0) and type-II
(‘‘stable’’, M1w0) fixed points for mf~0:02, m1~0:01, m2~0:04; h1~0:4, h2~0:6.
doi:10.1371/journal.pone.0043364.g003

Sex Ratio, Culture, and Population Dynamics
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indicates the condition for cultural coexistence. When this

condition is not satisfied, the culture associated with the lower

female birth ratio always declines to extinction. In both cases, the

fixed points found numerically are identical to the analytical fixed

points for the respective equilibria: Eqs. (S16) for cultural

coexistence, and Eq. (S11) for competitive exclusion of both allele

and culture.

Invasion to extinction. Given the competitive advantage of

increased female allocation in our model, evolution of the sex-

linked trait might threaten population persistence. Our model’s

dynamics includes a case where successful invasion of a stable

resident is followed by extinction of the entire population. We

observe this result in numerical experiments where the invader has

both the greater female ratio and the greater male mortality rate,

so that Expression (4) fails to hold. The greater female ratio drives

invasion, but the invader’s combined genetic-cultural demography

does not satisfy the condition for a stable, positive equilibrium.

Hence, the successful invader would not advance from rarity

absent the resident group.

Figure 4 shows an example of invasion to extinction; note the

black region of the tile where h1~0:4 and h2~0:7. For a

particular mortality-rate combination, Figure 5(b) depicts the time-

dependent densities for a case of invasion to extinction. The

necessary conditions for invasion, see Eq. (8), are met. However,

h2whc2. Hence the invader grows when rare and excludes the

resident, but the invader cannot persist. Essentially, the invading

female ratio allele increases its initial density by ‘‘exploiting’’ males

of the resident group while competing for resources with resident

females. After some time the density of the resident females

reaches zero. The reduced density of females means that the

production of males (both resident and invader) is reduced.

Consequently, the invading group, once occupying the environ-

ment alone, cannot maintain a positive equilibrium density, and a

‘‘marriage squeeze’’ takes the population to extinction.

Given this result, one can envision a stable population where

immigration or mutation introduces new alleles over a lengthy

time scale. If a new allele has a higher female ratio than the

current resident, it will advance. A series of allelic substitutions

might increase the female ratio continuously. Our model does not

prevent the female ratio from surpassing the threshold defined by

Eqs. (4), where the population begins to decline to extinction –

recalling Hamilton’s [10] comment on sex linkage and sex-ratio

evolution.

Local Mate Density and Spatial Invasion
Invading an open habitat: the critical radius. Equations

(1) and (2) assume that densities mix homogeneously, a strong

simplification for most organisms. Furthermore, invasion most

often has a distinctly spatial character, expanding from one or

more foci of introduction [31]. To consider both effects, we

assumed a two-dimensional habitat with local mating and random

mobility of individuals. This elaborates our model as a reaction-

diffusion system [40]. Note, however, that our spatial but

deterministic reaction-diffusion equations still maintain an essen-

tial (local) ‘‘mean-field character’’ (in the statistical physics sense

and terminology) in that all correlation functions are still factorized

into products of concentrations [43,44]. A stochastic, spatial

individual-based model or its Langevin-type, stochastic reaction-

diffusion analogue (not addressed in this work) may, in principle,

lead to different behaviors [45,46]. For example, the region of

persistence in the case of a single-group two-sex population

becomes significantly narrower in a stochastic lattice-based model

[12].

Successful invasion in spatial environments ordinarily requires

that an initial invader cluster have some minimal size for further

growth [31,37,39,47]. This criterion may be due to an Allee effect

[47] or inherent geometrical constraints on cluster expansion [39].

For systems exhibiting the Allee effect under homogeneous

mixing, one can specify this minimal cluster size as the critical

radius (Rc) required for spatial invasion. Assuming radially

symmetric growth, one expects Rc*HDdiff , where Ddiff is the

diffusion coefficient [47]. For simplicity, we take Ddiff as a

constant across all individuals. The first goal of our spatial analysis

was to confirm this scaling relationship for the critical radius when

a single group is introduced in an open (unoccupied) habitat.

For spatial invasion in an open habitat, individuals diffusing

away from the perimeter of the invader cluster encounter mate

densities too low for population increase, given the Allee effect (i.e.,

extinction is stable). A small invader cluster can shrink as a result.

A cluster size exceeding the critical radius generates interior

densities sufficient to drive cluster expansion. The critical radius

depends on both density inside the cluster and the diffusion

coefficient. Therefore, calculating a critical radius demands

specifying initial densities within the circular cluster. We noted

that as we chose densities closer to, but exceeding, the Allee

threshold of the homogenous-mixing case, the critical radius

increased. Therefore, a reasonable (deterministic) choice is the

stationary density of the non-spatial model, which we can

calculate, given the female ratio and sex-specific mortality rates

[see Eq. (S6)].

We found the critical radius by performing a binary search,

using the initial interval of R[½1,20�. At each step, a simulation

runs with a particular initial radius, until all densities at all grid

points come to a stationary state (where all time derivatives are less

than ~10{6). In this final state either all grid points have the

positive, stationary densities of the non-spatial model, or all have

zero densities. The resolution of the grid (4 cells/unit distance) and

the discretization of a circle on a rectangular grid allow us to

measure non-integer radii. Time evolution of a shrinking (RvRc)

and a successfully growing, invading population (RwRc) are

illustrated in Figures 6 and 7, respectively.

We obtained the critical radius for various diffusion coefficients,

at certain fixed set of parameters [Figure 8]. As anticipated [47],

Table 1. Parameter regions and step sizes for numerical
integration.

Parameter Lower bound Upper bound Step

Series 1

h1 0.01 0.99 0.01

h2 0.01 0.99 0.01

m1 0.01 0.04 0.005

m2 0.01 0.04 0.005

mf 0.01 0.04 0.005

Series 2

h1 0.1 0.9 0.1

h2 0.1 0.9 0.1

m1 0.001 0.1 0.001

m2 0.001 0.1 0.001

mf 0.001 0.04 0.01

Each set of parameters identifies two runs: one with high (0:45) and one with

low (10{4) initial invader density.
doi:10.1371/journal.pone.0043364.t001
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the results confirm that the critical radius is proportional to the

square root of the diffusion coefficient.

Spatial invasion of a resident population. We extended

the between-group competition model to the spatial case with

diffusion, using the same grid size, resolution, and diffusion

coefficients as we used in the open-habitat model. The goal here is

to ascertain if there is a critical radius for successful invasion when

invaders can mate with residents in an occupied habitat.

We initiated simulations differently than in the open-habitat

case. Here, every grid point was initialized to the stationary density

of the resident group. Then, we introduced the invader within a

circle of a given radius, at a small density. The simulation ran until

all grid points come to a stationary state (where all time derivatives

are less than 10{6).

We found that no matter how small we set the invader density

and cluster radius, the result was always identical to the

homogeneously mixed case. That is, the allele with the higher

female ratio persists, and the ecological impact of the winning

female ratio depends on the male mortality rates. Male cultural

traits may coexist (type-II fixed point), or both females and males

of the lower female-ratio group go extinct (type-I fixed point).

Figure 9 shows a scenario where the invader has the same

Figure 4. Stationary population densities. Numerical integrations are performed for the scenario where the persistent stationary resident (group
1) is invaded by group 2, initially at an infinitesimal density (10{4). Large axes indicate common parameters in rows and columns; every tile has the
same axes, scaled as indicated in the bottom right corner. Color scales use independent color channels, therefore, resident and invader densities are
shown independently. Female mortality is fixed: mf ~0:02.

doi:10.1371/journal.pone.0043364.g004
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Figure 5. Population-density time series. Panel (a) shows successful invasion; (b) shows invasion followed by extinction; (c) shows coexistence of
resident males with the invader allele; (d) shows coexistence of invader males with resident allele. The vertical dotted line indicates the time when the
invader was added to the system, at 10{3 density (both males and females). Legends shown to the right of panel (b) describe data on all four panels.
Common parameter: mf ~0:03. Individual parameters: (a) h1~0:4, h2~0:7, m1~0:03, m2~0:03; (b) h1~0:4, h2~0:7, m1~0:05, m2~0:08; (c) h1~0:4,

h2~0:7, m1~0:03, m2~0:08 (here, F1~0 in the final equilibrium); (d) h1~0:7, h2~0:4, m1~0:05, m2~0:01 (here, F2~0 in the final equilibrium).
doi:10.1371/journal.pone.0043364.g005

Figure 6. Unsuccessful spatial persistence in the single-group system. Population dynamics in the single-group system (open habitat),
where the initial radius is less than the critical radius (R0~4:5vRc~5:1). Simulation time: (a) t~100, (b) t~150, (c) t~300. Parameters: h~0:5,
mf ~0:02, mm~0:03, Ddiff~1:0.

doi:10.1371/journal.pone.0043364.g006
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parameters as the open-habitat invasion in Figure 6. However, the

result is different, because of the presence of the resident

population. The invader can (effectively) exploit the resident

population as mates, enabling the invader to spread successfully

and eventually exclude the resident.

We understand the absence of a critical radius in the resident-

occupied environment by considering cases where even an

infinitesimal invader density can completely exclude the resident

in the homogenously mixed case. In the worst-case scenario (for

the invading allele and culture), we introduce only a small density

of invaders at only a single grid point, with a high diffusion rate.

Then, diffusion spreads the invader to all grid points, making its

density extremely small, but greater than zero. However, this is

enough for successful invasion at every grid point, independently

of other locations, as we noted in the model with global mixing. If

we introduce a greater density of invaders, with slower diffusion,

then the invader can quickly overtake the local area before

spreading out as a diffusive front. The eventual result will be the

same. Hence we conclude that there is no critical radius for

invasion with diffusion, if a resident population already occupies

the habitat.

Discussion

Most models of sex ratio evolution, whether analyzed as

evolutionarily stable sex allocation [9,13] or developed with

population-genetic detail [4], assume that a parent is related

symmetrically to female and male offspring. Hamilton [10] noted

that sex-linked inheritance of a gene for sex ratio breaks this

symmetry, and extraordinary sex ratios can evolve as a

consequence. Frank [48] summarizes effects of asymmetric

relatedness to offspring by sex, and cites several studies where

this asymmetry is correlated with strongly biased investment in the

sexes; see Uyenoyama and Bengtsson [49]. Our results specify how

the degree of bias can interact with a between-sex mortality

Figure 7. Successful spatial persistence in the single-group system. Population dynamics in the single-group system (open habitat), where
the initial radius is greater than the critical radius (R0~5:5wRc~5:1). Simulation time: (a) t~100, (b) t~300, (c) t~600. Parameters: h~0:5, mf ~0:02,
mm~0:03, Ddiff~1:0.
doi:10.1371/journal.pone.0043364.g007

Figure 8. Behavior of the critical radius of the single-group system. Square of the critical radius of a population at self-regulated equilibrium
of a single-group system, as a function of the diffusion coefficient (common for both sexes). The line shown is a fitting using minimum least squares,
with a correlation value of 0:99997. Parameters: h~0:5, mf ~0:02, mm~0:03.
doi:10.1371/journal.pone.0043364.g008
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difference to influence the population dynamic consequences of

sex ratio evolution.

Tainaka et al. [12] and Nitta et al. [50] developed spatially

detailed models to study how sex ratio might affect population

persistence. For successful mating, their model requires that at

least one fertile individual of each sex occupy a site neighboring an

empty site (where the offspring is placed). At the scale of

individuals, the dynamics is the simplest generalization of the

contact process [51–53] that can capture both two-sex reproduc-

tion and preemptive competition [30,31,38]. Given female and

male mortality rates, they find the sex ratio maximizing population

density, and note that sex ratios differing too much from this

singular value lead to population extinction [12]. Compared to the

mean-field result, the extinction effect due to biased sex ratio

sharpens in simulation of the stochastic, lattice-based model; the

range of sex ratios producing population persistence becomes quite

narrow. Since mating pairs form locally, biasing the sex ratio

rapidly diminishes the chance that an open site will be neighbored

by one individual of each sex. So, demographic stochasticity may

lead to extinction once sex ratio is biased, and genetic drift may

permit biased sex ratios to evolve even when bias is selectively

disfavored [54].

Our study generalizes the model of Tainaka et al. [12] by

including between-sex differences in mortality and detailing

outcomes of competition between different female ratios. Our

model limits expression of sex ratio to the heterogametic sex, so

that stronger bias in sex allocation has a competitive advantage.

Our results elucidate the ecological effects of interaction among

the degree of sex ratio bias and sex-specific mortality for

competitive/cultural invasion and demographic stability. In the

simplest case, an introduced female allocation and associated

cultural trait, male mortality, invades and excludes the resident

allele and culture. Complete exclusion requires only that the

invaders have the higher female allocation and that their male

mortality rate is lower than twice that of the resident males. If the

invader’s male mortality rate is large enough to exceed this limit,

but the difference in female allocation remains, the resident culture

(but not the resident allele) survives and coexists with the invader’s

culture.

Our analysis also identified an interesting invasion-to-extinction

scenario. A group with the greater female allocation and greater

male mortality (compared to the demographically stable resident)

cannot invade an empty environment. Yet it invades and excludes

the resident, and then goes extinct, because of its high female ratio.

Since the invaders can mate with the residents, they effectively

exploit the resident group in the early phase of invasion and, when

sufficiently numerous, drive the resident extinct. Thereafter, a

marriage squeeze leaves the invader declining to extinction. This

type of outcome, where sex ratio and an Allee effect can push a

population to extinction, may have application in the management

of pest populations [16]. Evolutionarily, the demographic conse-

quences of sex ratio bias may favor suppression of sex-ratio

distorters [10], and may promote (or be tolerated by) clonal

reproduction [55].

The basic two-group two-sex model we considered in this work

also allows for some straightforward, yet rich generalizations. In

this paper we focused on the scenario where following mating

between females and males of different groups, male offspring

acquire either cultural trait with probability 1=2. To capture

asymmetry in the biparental transmission of the cultural trait in

males, our model and the corresponding equations can be

generalized to an asymmetric case where male offspring resulting

from mating between a female of group i and a male of group j

acquire the cultural trait of group i or group j with probability p

and q, respectively (pzq~1). (Vertical cultural-transmission

probabilities can, indeed, vary across different combinations of

parental phenotypes [25].) While we do not analyze this

asymmetric model in detail, we included the corresponding

homogeneous mean-field equations and their fixed points in File

S1 with the basic findings and note that the qualitative behavior of

the system remains the same. In particular, both type-I and type-II

fixed points exist, corresponding to full invasion/exclusion and

partial invasion/cultural coexistence, respectively. Naturally, for

pwq (pvq) the size of the parameter region with cultural

coexistence narrows (widens) and the size of the surviving and

coexisting resident culture decreases (increases).

Note: The above generalization (asymmetric cultural transmis-

sion in cross-cultural mating) was suggested by an anonymous

referee during the review process of this paper.

Supporting Information

File S1 Analysis of the Mean-Field Fixed Points.

(PDF)
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Figure 9. Spatial invasion in the two-group system. Evolution of the invader population density while invading a stable resident population.
[Note that the initial radius is less than the critical radius (R0~4:5vR~5:1) for invasion into an open habitat]. For clarity, only the invaders’ density is
shown. Simulation time: (a) t~100, (b) t~450, (c) t~820. Parameters: h1~0:3, h2~0:5, mf ~0:02, m1~m2~0:03, Ddiff~1:0.

doi:10.1371/journal.pone.0043364.g009
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