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Abstract

Microsatellite markers are used for loss-of-heterozygosity, allelic imbalance and clonality analyses in cancers. Usually, tumor
DNA is compared to corresponding normal DNA. However, normal DNA is not always available and can display aberrant
allele ratios due to copy number variations in the genome. Moreover, stutter peaks may complicate the analysis. To use
microsatellite markers for diagnosis of recurrent bladder cancer, we aimed to select markers without stutter peaks and a
constant ratio between alleles, thereby avoiding the need for a control DNA sample. We investigated 49 microsatellite
markers with tri- and tetranucleotide repeats in regions commonly lost in bladder cancer. Based on analysis of 50 blood
DNAs the 12 best performing markers were selected with few stutter peaks and a constant ratio between peaks heights. Per
marker upper and lower cut off values for allele ratios were determined. LOH of the markers was observed in 59/104 tumor
DNAs. We then determined the sensitivity of the marker panel for detection of recurrent bladder cancer by assaying 102
urine samples of these patients. Sensitivity was 63% when patients were stratified for LOH in their primary tumors. We
demonstrate that up-front selection of microsatellite markers obliterates the need for a corresponding blood sample. For
diagnosis of bladder cancer recurrences in urine this significantly reduces costs. Moreover, this approach facilitates
retrospective analysis of archival tumor samples for allelic imbalance.
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Introduction

Microsatellite analysis utilizes short, highly polymorphic repeat-

ed sequences within the genome. The number of repeats forming a

specific microsatellite often varies between the maternal and

paternal allele. Microsatellites are used to determine allelic

imbalance (AI) or loss-of-heterozygosity (LOH) at particular loci

in tumor genomes and can be used as a marker for the presence of

tumor cells. To this purpose microsatellite analyses compare the

intensity of amplification products of the paternal and the

maternal allele from a tumor sample against the ratios from a

corresponding normal control (for example leukocytes). When the

microsatellite marker is informative (the length of the two alleles

differs) the amount of product from both alleles will be the same.

On a capillary sequencer this is displayed as two peaks of about

equal height. LOH or AI of a chromosomal region in cancer is

usually concluded when the ratio between the allele peaks in

tumor DNA is smaller than 0.5–0.7 or over 1.5–2 when compared

to the control [1,2,3,4].

Bladder cancer (BC) is the fifth most common malignancy in the

Western world after breast, prostate, colorectal and lung cancer

[5]. More than 70% of primary BC manifest as low grade, non-

muscle invasive (pTa, pT1) tumors. After removing these tumors

by transurethral resection (TUR), the recurrence rate is high (70%)

and many patients will develop multiple metachronous recurrenc-

es [6]. Progression from a non-muscle invasive (NMIBC) to a

muscle invasive cancer (MIBC) occurs in 10–20% of cases,

especially if the original tumor was of high grade [7,8].

At present, the standard procedure for diagnosing BC is

cystoscopy. Cystoscopy is an invasive diagnostic approach that is

unpleasant for the patient, who has to undergo such controls every

3–12 months for many years after resection of the primary tumor.

We estimate that between 1–2 million cystoscopies are being

carried out per year in EU and USA for follow up of these

patients. Unfortunately, the cytological examination of cells

present in voided urine alone does not provide a safe screening

alternative for cystoscopy because of its low sensitivity, especially

for the detection of low-grade tumors [9]. Similarly, current

molecular urine based assays such as fluorescent in situ hybrid-

ization (FISH), NMP22 and BTA have sensitivities that are low for

the detection of mostly low grade and stage recurrent BC [10,11].

As a result, a number of different molecular analyses on DNA

isolated from cells present in voided urine samples have been

developed with the goal to improve the sensitivity of detection and

to reduce the frequency of invasive cystoscopy examinations. One

of those assays involves the detection of mutations in the FGFR3

gene [12]. Mutations in this gene are very frequent in pTa bladder

tumors (up to 75% [13,14]). However, this assay is not an option
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for detecting tumors without a mutation in this gene, especially

since for patients with an FGFR3 wild type primary tumor, the

frequency of FGFR3 mutations in recurrences is much lower than

for patients with an FGFR3 mutant primary tumor (19% and 81%,

respectively) [15].

Many tumors display genomic alterations like gene mutations

and numerical aberrations affecting short genomic regions to

entire chromosomes. These tumor-specific genomic alterations can

be detected by molecular techniques such as FISH [16,17] or by

microsatellite analysis (MA). Assays detecting these alterations are

proving to be particularly helpful in the identification of cancer

patients via noninvasive or little-invasive methods [18,19,20,21].

In bladder cancer for instance, losses of parts of or total

chromosome 9 are commonly observed as they arise early in the

development of the tumor [22]. Progression of the disease is

usually accompanied by additional numerical alterations involving

chromosome 8p, 10, and 17p [23,24,25]. We and others have

previously shown that the detection of recurrent bladder cancer

can be improved by microsatellite analysis of in cells obtained from

voided urine samples [4,26].

During this work we observed that the PCR products from

microsatellites with dinucleotide repeats often had multiple

(stutter) peaks due to dissociation of the DNA strands and

aberrant reannealing. In addition, many microsatellite markers

had aberrant ratios between peak heights in control DNA, possibly

due to copy number variations in the genome. Moreover, the need

to analyze control blood DNA made the microsatellite assay (MA)

expensive [27]. To address these problems more systematically, we

have selected tri- and tetranucleotide repeats in genomic regions

commonly affected in bladder cancer and designed primers

around these repeats for amplification [28]. These new microsat-

ellite markers were then tested for constant peak height ratios and

technical performance (i.e. no stutter peaks, fair amplification) in a

series of blood DNA samples. The 12 best performing markers

were subsequently analyzed in urine DNAs from healthy

individuals to determine the cut off values of the ratio of the peak

heights in order to obtain a specificity of 95%. Finally, we

validated the markers in urine DNAs from patients diagnosed with

a recurrent bladder tumor.

Materials and Methods

Samples
Blood samples were collected from 50 patients with bladder

cancer. Urine samples were collected from 106 individuals without

history of neoplastic disease. These tumor-negative samples were

derived during a screening study in elderly males (over 50 years of

age) without previous signs of bladder cancer [29]. DNA from 104

primary tumors was available for LOH analysis. All tumors were

non-muscle-invasive (89% Ta, 11% T1). All tumors were grade 1

or 2. Urine samples from patients scheduled for TUR were

collected before resection of a histologically proven recurrent

tumor from 102 patients. Informed written consent was obtained

from all patients, and research protocols were approved by

institutional review boards or ethical committees in the two

involved countries (the Central Denmark Region Committees on

Biomedical Research Ethics Denmark and the The Medical

Ethical Committee of the Erasmus MC (METC), the Nether-

lands). Clinicopathological data for these samples is given in Table

S1.

DNA extraction and LOH analysis
After collection, the urine was checked for the amount of

leukocytes, erythrocytes and nitrite with a dipstick (Siemens

MultistixH 10 SG). Cells were pelleted by centrifugation at

3,000 rpm for 10 minutes at 4uC. Cell pellets were washed twice

with 10 ml PBS, resuspended in 1 ml PBS, transferred to an

Eppendorf vial, and collected by centrifugation for 5 minutes at

6,000 rpm. Supernatant was discarded and the cell pellet was

stored at 220uC until DNA isolation. DNA was extracted from

blood, tumor tissue (formalin fixed paraffin embedded (FFPE)) and

urine and purified with appropriate kits (Qiagen, Hilden,

Germany) following instructions of the manufacturer. Concentra-

tions of DNA were measured with a Quant-iT PicoGreenH
dsDNA Assay Kit (Molecular Probes, Leiden, The Netherlands).

PCR of different microsatellite markers was performed with

separate primer pairs of which 1 oligonucleotide was labeled at the

5-end with the fluorescent dyes 6-FAM (Invitrogen). Amplification

of specific DNA was done in a reaction volume of 15 ml including

0.2 mM dNTPs, 2.5 mM MgCl2, and 0.5 U AmpliTaq. Cycling

was performed with a Biometra thermocycler using the following

temperature conditions: 95uC for 5 min, 28 cycles at 95uC for

45 s, 55uC for 45 s, and 72uC for 45 s, followed by a final

extension step of 10 min at 72uC. The PCR products were

subsequently denatured for 1 min at 95uC in HiDi formamide

(Applied Biosystems) and separated on an ABI PRISM 3100

Genetic Analyzer equipped with a 36 cm capillary array loaded

with POP-7 polymer. 500-Liz was used as internal size standard

(Applied Biosystems). Analysis of the samples was carried out with

Figure 1. Flow chart of the study.
doi:10.1371/journal.pone.0043345.g001
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the GeneMarker software version 1.7 from SoftGenetics (State

College, PA).

Statistical analysis
The Statistical Package for the Social Sciences 18 (SPSS, Inc.)

was used for data analysis. Sensitivity, specificity, and predictive

values were determined for every marker and for all markers.

Diagnostic accuracy for the model with methylation markers as

determined by AUC (Area under the curve). Results were

considered statistically significant at p,0.05.

Results

Selection of microsatellites
Our project consisted of different phases (Figure 1). We

previously used a group of 20 microsatellite markers for detection

of recurrent bladder cancer in voided urine of patients under

surveillance for possible recurrent tumors [4,18,30,31,32]. How-

ever, with several of these markers assessing allele ratio was

difficult due to stutter peaks. Also, these markers did not accurately

cover the most interesting areas of LOH in bladder tumors. In

addition, in many patients the allele ratio in control DNA varied

possibly due to genomic copy number variations as displayed in

Figure 2A. Based on this experience we decided to select a new

panel of microsatellite markers with a relatively constant ratio

between alleles thus obliterating the need for a control blood DNA

sample. To reduce the chance of stutter peak formation, we

selected 49 tri- and tetranucleotide repeat-containing microsatel-

lites from the UCSC genome browser (http://genome.ucsc.edu),

and the Généthon panel (http://cedar.genetics.soton.ac.uk/pub)

in regions of chromosomes 8, 9, 10, 11 and 17 that display LOH in

bladder cancers [28]. The microsatellite markers had to have a

minimum level of heterozygosity of 65% and a fragment length

between 100–300 bp to reduce amplification difficulties of sheared

DNA.

Technical reproducibility and cut off values for each
marker

The markers were then tested on 50 blood samples and 12

microsatellites markers with the highest percentage of heterozy-

gosity and a peak ratio between alleles that was close to 1 were

selected for further study (Table 1, Figure 2B). Information about

the other 37 markers is given in Table S2. Figure 3 shows

electropherograms of the markers. We determined the best settings

for reproducibility by varying input DNA concentration and

number of cycles. Based on this we chose to use 5–10 ng of input

DNA in 28 PCR cycles for subsequent experiments. To determine

the cut off values such that each marker would be 95% specific in a

diagnostic urine test, we assayed them in duplicate on urine DNAs

from 106 non-cancer controls of 50 years and older. The 12

markers with their upper and lower cut off values are listed in

Table 2. Table 2 also shows that the standard deviations are below

10%.

Performance of the microsatellite assay in tumors
Subsequently the markers were tested on DNA from the

primary bladder tumors of 104 patients. Ninety-two tumors were

pTa, 11 were pT1, and of 1 tumor no stage information was

available. Twenty-four tumors were grade 1, 79 grade 2, while

grade information was missing in 1 case. LOH or allelic imbalance

was defined when the ratio of the peaks was higher than the upper

border or lower than the lower border as indicated for each

marker in Table 2. LOH for one or more markers was found in 59

tumors (57%), while 45 tumors did not have LOH for any of the

markers tested. The most frequently lost markers were all on

chromosome 9, D9S299, D9S252, and D9S752 (LOH in 29–37%

of all samples) (Table 3). Any LOH was found in 53/92 (58%)

pTa, 6/11 (55%) pT1 and in 12/24 (50%) G1 and 47/79 (60%)

G2 tumors. The allele ratios in tumor DNA were much more

variable than in normal blood or urine DNA, due to LOH/AI

(Figure 2C).

Determination of the sensitivity of the markers to detect
recurrences in urine-derived DNA

Subsequently, we determined the sensitivity of the markers for

the detection of recurrent tumors in the same patients of whom we

analyzed the primary tumor. A total of 102 urine samples were

Figure 2. Overview of the variation between allele ratios for different markers. On the Y-axis, the ratio between the two alleles is given. On
the X-axis, the different microsatellite markers are listed. A. The boxplots show that some previously used markers have a large variation in their allele
ratio based on an analysis of blood DNA samples from 50 individuals. B. Behavior of the 12 selected markers, indicating they have very little variation
in their allele ratio when tested on normal blood and urine from healthy individuals. C. In primary tumor DNA the allele ratio is much more variable
due to LOH/AI.
doi:10.1371/journal.pone.0043345.g002

Table 1. Microsatellite markers selected for this study.

Marker Size Locus Het F/R Sequence

D8S1109 143–167 8p 0.88 F TCAGAATTGCTCATAGTGCAAGA

R ACTGTCTTGGTACATTTGTTTACCC

D8S1125 221–233 8p 0.69 F CCCCCTAAAATTTAGCTCCA

R TATGCCTAGCCCTCCTTTCT

D8S1130 128–148 8p 0.94 F GAAGATTTGGCTCTGTTGGA

R TGTCTTACTGCTATAGCTTTCATAA

D9S252 152–176 9q 0.75 F CAAATTTGGCCTTGAACCAT

R AGCCCAGATATCCCCAAGTT

D9S299 178–198 9q 0.70 F AAGTGTTGCATCAGAGCCTC

R AGTGTGAACATTATTTCATTCTGG

D9S304 135–175 9q 0.86 F GTGCACCTCTACACCCAGAC

R TGTGCCCACACACATCTATC

D9S752 178–201 9q 0.73 F CAGAGGTTGCAGTGAGCTA

R GCAAAGTCAGGCCATTATAC

D9S1118 141–177 9q 0.79 F CAGGATATTATGTGATGGAATCC

R CTGCTGACTCCAAAAATATGC

D11S1981 134–178 11p 0.85 F AATTCCTTTACTCCAGAAAGG

R CAGATTTCTGCTTTCCCAGA

D11S1999 109–137 11p 0.78 F TACATGGCAGCAGGCATATA

R GAGTAAACAAGATTGCTAGATAGGC

D17S969 111–132 17q 0.73 F ATCTAATCTGTCATTCATCTATCCA

R AACTGCAGTGCTGCATCATA

G10693 174–194 17p 0.94 F ACATACAGCACAGGCCAAAT

R CCAGTCTTCCGTCACTATGC

Het: the expected heterozygosity (%) according to the CEPH database (http://
www.cephb.fr/en/cephdb/browser.php). F/R: forward or reverse primer.
doi:10.1371/journal.pone.0043345.t001
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available, obtained before resection of a recurrent tumor in these

patients. Microsatellite assays were performed in duplicate. LOH

was assumed when the allele peak ratio of both tests was outside

the cut off values shown in Table 2. Markers D9S752, D9S252,

D9S304, D9S299 and G10693 displayed LOH in approximately

20% of the samples (Table 4). Of the 102 samples, 43 samples did

not show loss for any of the tested markers. If we assume that false

positive tests are not possible since all patients had a recurrence,

the sensitivity of the 12 markers together is 58%. Sensitivity

according to grade of the primary tumor is given in File S1. The

specificity of the test is per definition 100% because all urines were

associated with a recurrent tumor. If we selected urines from those

patients whose primary tumor had LOH for at least 1 marker,

sensitivity for detection of the recurrence in urine DNA increased

to 63%. When combined with cytology data, this sensitivity

increased to 80% (File S2).

Discussion

In this study we describe an approach to select microsatellite

markers for determining copy number and tumor-associated LOH

that have an excellent technical performance. The approach was

previously used by Frigerio et al., who implemented marker-

specific thresholds by assessing normal DNA from blood and

control tissue [1]. However, our approach differs in that we

preselected our markers for constant allele ratios thereby

enhancing accuracy and by the fact that we selected tri- and

tetranucleotide repeats that have no or few stutter peaks. By

upfront assessing the lower and upper cut off values based on an

analysis of control DNAs, the need to compare patient samples

with corresponding blood is therefore avoided. This selection

procedure can be applied to any tumor type. This approach also

facilitates retrospective analysis of archival tumor samples for

allelic imbalance.

We examined the amount of input DNA and the optimal

number of PCR cycles. The amount of input DNA is important

because too low concentrations may result in preferential

amplification of one of the two alleles leading to false positive

LOHs [33]. Microsatellite markers are ideal for determining loss

or amplification of genomic regions on FFPE-derived DNA

because both alleles of a marker will be similarly affected by the

quality of the DNA (length) provided that the difference in length

between alleles is not too great. Microsatellite analysis is cheap

with costs in the order of about 1 euro per assay. For a panel of 10

markers, costs, including DNA isolation, would amount to less

than 15 euros. A disadvantage is that microsatellites are not

suitable for multiplexing. In our experience this always leads to

inefficient amplification of some of the markers and this results in

larger standard deviations in duplicate experiments.

Losses on chromosomes 8, 9, 10, 11 and 17 are frequent in

bladder cancer and can be detected by microsatellite analysis. This

study determines the potential of bladder cancer detection by

microsatellite analysis on a set of urine samples collected before

transurethral resection of the accompanying tumor (pre-TUR

urine). The establishment of marker-specific threshold values

based on measurements of allele ratios in urine samples from 106

healthy individuals has allowed us to define the specificity of the

method for the subsequent study. Since the individually deter-

mined threshold values guaranteed optimal specificity for each of

the markers analyzed, we interpreted an LOH at 1 single locus

already as indicative for the presence of tumor cells. Applying this

rule, we obtained for pre-TUR urine samples an overall sensitivity

of 58% for the detection of recurrent tumors and 63% when

patients were stratified for LOH in their primary tumor. This

sensitivity is comparable to the sensitivity that we previously found

with the first set of microsatellite markers even though the new

panel of markers was specifically designed to cover for those

genomic regions that display LOH in non-muscle invasive bladder

tumors (NMIBC). Diagnostic accuracy for the model with all 12

markers was 73% as determined by AUC (Area under the curve).

This accuracy was still 73% when only six markers were tested

(D9S252, D9S752, D9S304, D8S1125, D8S1130, G10693). With

Figure 3. Examples of the electropherograms for the selected markers, ordered to their chromosomal position. On the Y-axis, the peak
intensity is given. On the X-axis, the fragment size is given in basepairs. On the left side, results from normal tissue are shown. Note that these markers
have few or no stutter peaks and a fairly constant ratio (close to 1) between the heights of the two alleles. On the right side, results from
representative tumor samples with LOH are shown.
doi:10.1371/journal.pone.0043345.g003

Table 2. Upper and lower borders set at 95% specificity
based on urine samples from healthy individuals.

Marker Av Ratio Stdev 95% interval

D8S1109 1.09 0.08 0.93–1.29

D8S1125 1.04 0.08 0.85–1.19

D8S1130 1.15 0.09 1.00–1.40

D9S252 1.08 0.06 0.97–1.23

D9S299 1.10 0.07 0.95–1.27

D9S304 1.10 0.11 0.86–1.33

D9S752 1.12 0.08 0.92–1.31

D9S1118 1.10 0.10 0.97–1.42

D11S1981 1.14 0.09 0.93–1.39

D11S1999 1.12 0.09 0.93–1.45

D17S969 1.11 0.08 0.95–1.33

G10693 1.11 0.07 1.00–1.29

doi:10.1371/journal.pone.0043345.t002

Table 3. Observed heterozygosity and percentage LOH/AI in
tumor samples for each marker.

Total Het% LOH/AI%

D8S1109 103 66 9

D8S1125 104 70 11

D8S1130 104 86 13

D9S252 103 77 30

D9S299 104 74 29

D9S304 103 82 18

D9S752 103 80 37

D9S1118 103 86 25

D11S1981 103 88 17

D11S1999 102 87 15

D17S969 104 71 9

G10693 104 72 9

doi:10.1371/journal.pone.0043345.t003
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this selection, we were able to identify 95% (56 of 59) of all samples

showing LOH when tested for all 12 markers. The main

advantage of using a smaller selection of microsatellite markers

is, next to a reduction in costs, the reduction of the amount of

input DNA needed, making this assay also accessible for those

samples where only a very limited amount of tissue is available.

In other studies we used mutation analysis of the FGFR3 gene in

order to diagnose recurrent tumors [34] [35]. FGFR3 mutations

are found in 60–70% of NMIBC and hence provide an ideal tool

for surveillance of patients since the mutation assay is 100%

specific. Sensitivity, however, depends on the presence of sufficient

tumor cells in urine and this is also a caveat for the microsatellite

assay. Sensitivity increases when multiple urine samples are

analyzed. With a sensitivity of 50% analyzing 2 samples would

increase the sensitivity to 75% etc. A combination of microsatellite

analysis with the markers presented here and the FGFR3 test is the

subject of a longitudinal study on 800 urine samples from 147

patients (Zuiverloon et al., in preparation).
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