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Abstract

Genetic variation underlying the regulation of mRNA gene expression in humans may provide key insights into the
molecular mechanisms of human traits and complex diseases. Current statistical methods to map genetic variation
associated with mRNA gene expression have typically applied standard linkage and/or association methods; however, when
genome-wide SNP and mRNA expression data are available performing all pair wise comparisons is computationally
burdensome and may not provide optimal power to detect associations. Consideration of different approaches to account
for the high dimensionality and multiple testing issues may provide increased efficiency and statistical power. Here we
present a novel approach to model and test the association between genetic variation and mRNA gene expression levels in
the context of gene sets (GSs) and pathways, referred to as gene set – expression quantitative trait loci analysis (GS-eQTL).
The method uses GSs to initially group SNPs and mRNA expression, followed by the application of principal components
analysis (PCA) to collapse the variation and reduce the dimensionality within the GSs. We applied GS-eQTL to assess the
association between SNP and mRNA expression level data collected from a cell-based model system using PharmGKB and
KEGG defined GSs. We observed a large number of significant GS-eQTL associations, in which the most significant
associations arose between genetic variation and mRNA expression from the same GS. However, a number of associations
involving genetic variation and mRNA expression from different GSs were also identified. Our proposed GS-eQTL method
effectively addresses the multiple testing limitations in eQTL studies and provides biological context for SNP-expression
associations.
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Introduction

Establishing genetic variation (e.g., single nucleotide polymor-

phisms (SNPs)) associated with variation in mRNA gene expres-

sion is a key component to further understand the molecular basis

of human traits, including complex disease and response to drug

therapies. The genetics of human mRNA expression level has

been extensively studied and many mRNA expression regulatory

loci or expression quantitative trait loci (eQTL) have been

identified using a variety approaches, often based on the use of

cell line model systems [1]. Yet, additional research in this area is

needed to fully characterize and understand the mechanisms by

which eQTLs regulate mRNA gene expression. A basic under-

standing regarding the locations of eQTLs relative to the genes in

which they regulate has been established. A cis-acting eQTL, or

cis-eQTL, describes a DNA sequence variant located within or

outside the gene transcription unit up to a couple mega-bases away

[2,3], while trans-acting eQTLs, or trans-eQTLs, are considered to

be located much further from the associated transcription unit.

Trans-eQTLs that are associated with many mRNA gene

expressions are termed ‘‘hotspots’’ or ‘‘master regulators’’, and

are presumed to influence many biological functions [4]. Mapping

eQTLs in humans could help to identify the functional loci

contributing to variation in human traits and has been applied to

the study of many complex traits, such as asthma [5], type 2

diabetes [6], adult height [7], Crohn’s disease [8], and celiac

disease [9].

Identification of eQTLs in humans has been performed using

analytical methods previously developed for disease-risk genetic

studies by treating each mRNA gene expression level as a

quantitative trait with linkage analysis methods for family-based

data [10–13] and association analysis methods for unrelated

individuals [14–17]. More recently, the rapid development and

cost reduction of genomic arrays to capture genome-wide single

nucleotide polymorphism (SNP) and mRNA expression data have

resulted in the use of genome-wide association (GWA) analyses

using independent samples [18–22]. The eQTL mapping

approach with genome-wide data involves assessing the association

between all possible SNP-expression pairs. These eQTL GWA

studies have resulted in a large number of expression associated

SNPS (eSNPs) [21,23,24]. The success of eQTL association

mapping methods as compared to disease-risk studies may be due
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to the strength of eQTL signals and lack of phenotype

heterogeneity; however, there are much greater multiple testing

issues to consider with eQTL association mapping and therefore, a

possible substantial loss in statistical power to detect the weaker

associations.

A recent approach to reduce multiple testing and improve

inference in genomic association analysis involves the consolida-

tion of SNPs or expression probes into sets of related genes [i.e.,

gene sets (GS)], followed by a determination if the gene set is

associated with a trait [25,26]. Gene set analysis (GSA) was

initially proposed for microarray expression data as a Gene Set

Enrichment Analysis (GSEA) [6,27]. The GSEA method made use

of a priori biological knowledge of genes to determine the GSs,

such as biochemical pathways. While many GSA methods for

expression have been developed [28], recent GSA methods for

expression studies have been extended for use with genome-wide

SNP data [25,29]. GSA methods designed for expression and SNP

data fall into two separate categories, competitive or self-

contained, based on the null hypothesis tested and within each

category, methods differ widely in the statistics used for the GSs

and how to assess the significance of these statistics [26,29]. A

common feature among most of the methods developed for GSA is

the use of databases to define the GSs. These databases usually

group genes that fall into a biological pathway or have similarly

defined characteristics. A number of databases exist with different

approaches and definitions for grouping genes, such as Gene

Ontology [30], KEGG [31], and PharmGKB [32].

A number of recent efforts have been applied the GS

enrichment methodology towards identifying eQTLs. While this

strategy provides a reasonable follow up analysis to the SNP-

expression pair-wise analyses, it still requires the exhaustive pair-

wise tests to be performed and the necessary permutations for

unbiased association testing [33,34]. In particular, Li et al.

proposed a method in which the eQTL p-values within a GS

are combined using Fisher’s method, followed by approximation

of the distribution of the test statistic under the null hypothesis

using Satterwhite’s approximation [35]. An alternative approach

to methods based on summary statistics (i.e., p-values) is one in

which the association of SNP genotypes with mRNA gene

expression levels within a given pathway is assessed with using

multivariate model [36]. Examining eQTLs in the context of the

Protein Interaction Network has also been done [37].

In addition to the use of GS analysis method for reducing the

dimensionality of genomic data, the use of principal components

analysis (PCA) has also been used in the analysis of high

dimensional genomic data as a means to extract the features

(e.g., components) with the most variation. The selected subset of

principal components (PCs) accounting for a majority of the

overall variation observed in the genomic data can then be

analyzed in a manner similar to the original data. Gauderman et

al. introduced the use of PCA for assessing the association of

multiple SNPs within a candidate gene [38].

In this paper, we present a new approach to identify genetic

variation associated with the mRNA expression by modeling SNP

and mRNA expression variables within the context of pre-defined

GSs. This method, referred to as gene set eQTL (GS-eQTL), is

illustrated using data from a cell line model system [39–41] and

the GSs (or pathways) defined in PharmGKB (http://www.

pharmgkb.org/) [32] and KEGG (http://www.genome.jp/kegg/)

[31]. Application of GS-eQTL to these two sets of GSs enable us

to detect 28,597 GS-eQTL associations with an empirical false

discovery rate (FDR) less than 0.05 (436 GS-eQTLs in

PharmGKB and 28161 GS-eQTLs in KEGG). Replication of

two of these top GS-eQTL associations using data in HapMap was

also completed resulting in GS-eQTL p-values ,0.05 (e.g.,

replication of the GS-eQTL).

In summary, our proposed approach has demonstrated its

applicability and potential for analyzing the associations between

SNP and mRNA expression data beyond the traditional single

marker eSNP analyses. The use of GSs reduces the multiple testing

and focuses on biologically relevant hypotheses. The current study,

involving cell line data and PharmGKB and KEGG GSs,

illustrates these two attractive features. Such methods and

subsequent findings will become increasingly important in aiding

the functional translation of disease risk or pharmacogenomic

association findings.

Materials and Methods

Cell Line Model System
EBV-transformed lymphoblastoid cell lines (LCLs) from 96

African-American (AA), 96 Caucasian-American (CA), and 96

Han Chinese–American (HCA) unrelated subjects (sample sets

HD100AA, HD100CAU, HD100CHI) were purchased from the

Coriell Cell Repository. NIGMS collected and anonymized the

samples, and all subjects provided written consent for their

experimental use.

DNA from the LCLs was genotyped using Illumina HumanHap

550 K and 510 S BeadChips, which assayed 561,298 and 493,750

SNPs, respectively. Genotyping was performed in the Genotype

Shared Resource at the Mayo Clinic. The genotyping data had

been described previously [39–41]. SNP quality control proce-

dures consisted of removal of SNPs with low call rate (,95%), low

minor allele frequency (MAF) (,0.05), and departures from Hardy

Weinberg Equilibrium (p,0.001). Subjects with call rates ,95%

were also removed from the analysis. SNP genotypes were coded

in terms of the number of minor alleles (e.g., 0, 1 or 2) (i.e.,

additive genetic model). Missing genotypes were imputed with the

mean dosage value for the SNP. Population stratification was

assessed due to the use of cell lines representing multiple races/

ethnic groups, as discussed in Li et al. [40] and Niu et al. [41], in

which an eigen analysis was used to detect and adjust for

population stratification [42].

Total RNA was extracted the cell lines using Qiagen RNeasy

Mini kits (QIAGEN, Inc.). RNA quality was tested using an

Agilent 2100 Bioanalyzer, followed by hybridization to Affymetrix

U133 Plus 2.0 Gene-Chips, which contains a total of 54,613 probe

sets, in two batches. mRNA expression array data were obtained

for all of the cell lines with no missing data and normalized on a

log2 scale using GCRMA [43]. The data had been used in

previous reported studies (NCBI Gene Expression Omnibus,

http://www.ncbi.nlm.nih.gov/geo, SuperSeries accession number

GSE24277) [39–41]. The mean and standard deviations (SD) were

calculated for each mRNA expression probe set with the GCRMA

normalized values. Outliers with mRNA expression values more

than 4 SD from the mean expression value were replaced with the

maximum outlier value (mean expression value +/24 SD). Similar

to the genotype data, prior to GSA the expression values were

adjusted using the same model including the race effect,

population stratification eigenvectors, gender, and batch effect.

Gene set eQTL association analysis (GS-eQTL)
SNPs within 20 kb of the flanking sequence of a gene were

mapped to the gene, with multiple SNP-to-gene mappings

allowed. mRNA expression probe sets were also mapped to their

respective genes. All PharmGKB [32] and KEGG [31] GSs were

downloaded and genes mapped to GSs with multiple gene-to-GS

mappings allowed (http://www.pharmgkb.org/, http://www.
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genome.jp/kegg/). For GSs containing SNP genotypes (GSSNP) or

mRNA expression values (GSexpression), we define a ‘‘cis-GS’’

association to reference an association between SNPs and

expression probe sets that mapped to the same GS (GSSNP =

GSexpression). A ‘‘trans-GS’’ association is defined to represent the

association between SNPs and expression probe sets that mapped

to different GSs (GSSNP ? GSexpression). Hierarchical clustering

using hclust, an R function [44], was used to visualize the overlap

existing between the PharmGKB and KEGG GSs. We defined a

distance measure between GSs to be 1–t, where t represents the

average proportion of genes shared between the GSs.

With SNPs and expression probes mapped to GSs, we sought to

model the association between all GSSNP and GSexpression within

PharmGKB and KEGG GSs using a multivariate linear model.

Let GSSNP and GSexpression represent all the adjusted SNP

genotypes and expression probe set values, respectively, mapped

to genes contained in a GS. For each set of SNPs within the given

GS, GSSNP, we performed a principle component analysis (PCA)

to reduce the dimensionality of GSSNP [45]. This approach has

been applied with success in other GSA methods to produce a

lower-dimensional GS [46,47]. In addition, PCA is a commonly

used approach for modeling the association of multiple SNPs

within a gene, as opposed to GS [38,48]. The design matrix was

then constructed using the components that explain 80% of the

variance of the adjusted SNP genotypes within the GS of interest

(i.e., design matrix of predictors variables is defined as X =

PCA80%(GSSNP)). Similarly, PCA is also applied to GSexpression,

where we also keep the components that explain 80% of the

variance of the adjusted mRNA expression values (i.e., response

variable is defined as Y = PCA80%(GSexpression)).

Next, we define the GS-eQTL model as Y = B0 + B1*X + e,

where B1 represents the vector of SNP effects (represented by the

principal components needed to explain 80% of the variation), B0

represents the intercept and e is the error assumed to follow a

normal distribution with mean zero and common variance,

N(0,s2). The test of association between the expression and SNP

GSs is then completed by assessing B1 using a multivariate analysis

of variance with a Wilk’s lambda test statistic where under the null

hypothesis this vector of effects equals zero (H0: B1 = 0). To

account for the multiple testing and correlation between GS tests

we computed false discovery rates (FDR) using 10,000 permuta-

tions [49]. Permutations were completed by shuffling the samples’

expression values while holding the SNP data fixed and re-

performing all GS-eQTL analyses for each permutation.

Replication of top two GS-eQTL results
Replication of two KEGG GS-eQTL (one cis and one trans)

associations detected in the analysis of SNP and mRNA expression

data measured on the Coriell cell lines was completed using

publically available data on the HapMap cell lines. SNP data was

downloaded for the Phase 2 HapMap CEU (unrelated) cell lines,

while gene expression data was downloaded from the Gene

Expression Omnibus (GEO) for GEO7792 (http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc = GSE7792). GS-eQTL analyses

were completed in a similar fashion as outlined for the GS-eQTL

analysis of the Coriell cell line model system mRNA expression

and SNP data.

Results

Gene set mapping
A total of 60 and 201 GSs were downloaded from PharmGKB

and KEGG databases, respectively, and were used to map SNPs

and expression probe sets measured on the LCLs. Table 1

summarizes the total number of genes, SNPs and expression probe

sets mapped to PharmGKB and KEGG GSs, as well as, GS sizes

and amount of gene overlap between different GSs for both

resources. For PharmGKB the GS sizes ranged from 2–64 genes

with an average size of 14 genes compared to a range of 1–1100

genes with an average of 70 genes for KEGG GSs. The number of

genes overlapping between different GSs was also larger for

KEGG GSs as compared to PharmGKB GSs. When only

considering GSs with overlapping genes, KEGG averaged a

10.5 gene overlap while PharmGKB averaged a 2.7 gene overlap.

General GS categories and sub-categories (KEGG only) were

also identified for PharmGKB and KEGG GSs (Table S1). The

PharmGKB categories designate different therapeutic groups,

while the KEGG categories delineate biological functions or areas

to classify the GSs. For the PharmGKB and KEGG GSs used in

our analysis, there were 10 and 7 GS categories ranging between 1

and 25 and 1 and 85 GSs, respectively (Figure 1).

Top GS-eQTL associations
There were 436 PharmGKB GS associations between overall

genetic and gene expression variation with FDR values ,0.05.

The top 20 PharmGKB GS-eQTL associations are presented in

Table 2. For KEGG GSs, there was a large number of highly

significant GS associations (minimum nominal p = 3.84x102129);

however, the majority of the top results were driven by the 13 GSs

which include the human leukocyte antigen (HLA) genes. Among

the top 100 results (nominal p,10240), only 7 involved GSs

without HLA genes. After removing these HLA genes from the

GS-eQTL analysis for the KEGG GSs, there were 28161 GS

associations with FDR values ,0.05. The top 20 KEGG GS-

eQTL associations are presented in Table 3.

For both the PharmGKB and KEGG GSs, cis-GS associations

were the most significant: PharmGKB ‘‘VEGF pathway’’

(p = 7.46610218) and KEGG ‘‘Metabolic pathways’’ (nominal

p = 7.8660285). All PharmGKB and KEGG GS associations with

FDR,0.05 are displayed in the heatmaps (Figure 2), with SNP

and expression GSs indexed on the x- and y-axis, respectively. The

SNP and expression GSs are ordered on the axes by the order

established using hierarchical clustering with distances between

GSs, where distance is 1 – t (t = average proportion of genes

shared between GSs). The clusters are shown on the left and upper

axes in Figure 2, with the colors indicating the GS categories.

While the average ‘‘distance’’ between different GSs for

PharmGKB and KEGG are 0.97 and 0.91, respectively, there

are clusters of GSs due to overlaps of genes. However, Figure 2
does not indicate a strong clustering among GSs within the same

category, with a lower average distance between GSs within the

same category as compared to the average distance between GSs

in different categories (PharmGKB = 0.47 verses 0.97; KEGG

= 0.49 verses 0.98).

Figure 2 also provides a visual for the GSs which are involved

in a large number of significant associations, either as a SNP or

expression GS. The highly associated SNP GSs appear as vertical

lines in the heatmaps, indicating their association with a large

number of expression GSs, while the highly associated expression

GSs similarly appear as horizontal lines. Table 4 lists the five SNP

and expression GSs involved in the most GS associations for

PharmGKB and KEGG. For PharmGKB, ‘‘EGFR Inhibitors

Pathway PD’’ had the most associations (31 associations) as an

expression GS, while ‘‘Antiarrhythmic Drug Pathways’’ had the

most associations (32 associations) as a SNP GS. For the analysis of

the KEGG GSs, the expression GS involved in the most

associations was ‘‘Pathways in cancer’’ (142 associations), while

the ‘‘Calcium signaling pathway’’ was involved in the most

Genetic Variation of Expression Using Gene Sets
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associations (142 associations) as a SNP GS. Figure 3 is a plot of

the number of associations for each GS against each GS’s average

distance (based on the proportion of overlap of genes) to the GSs

associated with it. The five highly associated GSs for PharmGKB

and KEGG all have average distances .0.87, indicating that the

large number of associations is not simply due to an overlap

between GSs.

Next, Figure 4 shows boxplots of the log transformed p-values

for all SNP and expression GS associations by GS category. The

largest PharmGKB GS category, Antineoplastic and Immuno-

modulating Agents, also contained the most significant association,

a cis-GS association for the ‘‘VEGF pathway’’ (nominal

p = 7.46610218). The KEGG category, Global Map, contained

the most significant cis-GS association for the GS ‘‘Metabolic

pathways’’ (nominal p = 7.86610285). Comparing the SNP and

expression GS associations by PharmGKB and KEGG categories,

little differences were observed. The level of association results also

appeared to be evenly distributed amongst the categories, other

than the KEGG Global Map category having many more highly

significant associations than the other categories for KEGG.

Cis- verses trans- gene set associations
To assess if we observed more cis- or trans- GS associations for

both the PharmGKB and KEGG GSs, we tested whether a

disproportionate amount of cis- or trans-GS associations among the

findings with FDR ,5% were observed. For the PharmGKB

associations with FDR ,5%, there were 19 out of 60 (32%) cis-

and 417 out of 3,540 (11.8%) trans-GS associations (empirical

p,4.061024). In contrast, for the KEGG GS-eQTL analysis, 188

out of 201 (94%) cis-GS associations had FDR ,5% while and

27,973 out of 40,200 (70%) trans-GS associations had FDR ,5%

(empirical p,1.061024). Figure 5 illustrates this larger number

of significant GS associations for cis-relationships as compared to

trans-relationships for both PharmGKB and KEGG GS-eQTL

analyses.

Replication of top two GS-eQTLs
Replication of the top KEGG GS-eQTL associations involving

the Pathways in Cancer and Neuroactive ligand-receptor interac-

tion was completed using publically available SNP and mRNA

expression data measured on the CEU HapMap LCLs. The

analysis cis GS-eQTL association between the Pathways in Cancer

GS in the HapMap data resulted in a p-value of 0.00076.

Similarly, the trans-association between the variation in mRNA

expression levels for genes within the Pathways in Cancer GS and

the genetic variation for genes within the Neuroactive ligand-

receptor interaction GS was replicated with a p-value of 0.036.

Table 1. Summary of gene expression and SNP GS mappings for PharmGKB and KEGG.

Source
Total genes
mapped Genes per GS Gene overlap SNPs mapped Expression probe sets mapped

Avg. Max Min Avg. Max Min Max Min Max Min

PharmGKB 511 13.93 64 2 0.76 18 0 4384 172 192 2

KEGG 5333 70.02 1100 1 1.96 126 0 50871 35 2149 1

doi:10.1371/journal.pone.0043301.t001

Figure 1. Barplots for number of GSs in PharmGKB and KEGG categories.
doi:10.1371/journal.pone.0043301.g001
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Table 3. Top 20 KEGG GS-eQTL associations after removing the genes within the HLA region.

Type GSexpression GSSNP

GS-eQTL
p-value FDR

Gene Set
No.
Genes

No.
Probe
sets

No.
PCs Gene Set

No.
Genes

No.
SNPs No. PCs

cis Metabolic pathways 1100 2149 67 Metabolic pathways 1100 50871 189 7.9610285 ,561028

trans Metabolic pathways 1100 2149 67 Neuroactive ligand receptor
interaction

302 14725 173 2.6610258 ,561028

trans Metabolic pathways 1100 2149 67 Calcium signaling pathway 178 12520 172 5.3610250 ,561028

trans Metabolic pathways 1100 2149 67 Pathways in cancer 330 18667 175 1.1610245 ,5x1028

trans Metabolic pathways 1100 2149 67 Vascular smooth muscle contraction 125 8588 162 5.9610245 ,5x1028

trans MAPK signaling pathway 273 683 48 Metabolic pathways 1100 50871 189 7.5610243 ,561028

trans Metabolic pathways 1100 2149 67 Cytokine cytokine receptor interaction 278 9377 162 1.1610242 ,561028

trans Metabolic pathways 1100 2149 67 Focal adhesion 201 12846 169 7.3610242 ,561028

trans Pathways in cancer 330 893 50 Metabolic pathways 1100 50871 189 1.3610239 ,561028

trans Metabolic pathways 1100 2149 67 Axon guidance 129 9757 163 2.8610239 ,561028

trans Metabolic pathways 1100 2149 67 Dilated cardiomyopathy 92 7964 155 4.5610239 ,561028

trans Metabolic pathways 1100 2149 67 Chemokine signaling pathway 190 9422 157 7.5610239 ,561028

cis* Pathways in cancer 330 893 50 Pathways in cancer 330 18667 175 4.9610238 ,561028

Trans Metabolic pathways 1100 2149 67 Neurotrophin signaling pathway 126 6436 146 2.1610237 ,561028

Trans Metabolic pathways 1100 2149 67 Arrhythmogenic right ventricular
cardiomyopathy ARVC

76 8274 158 2.7610237 ,561028

Trans Metabolic pathways 1100 2149 67 Hypertrophic cardiomyopathy HCM 89 7492 154 3.2610237 ,561028

Trans Metabolic pathways 1100 2149 67 Purine metabolism 159 9165 159 7.2610237 ,561028

trans* Pathways in cancer 330 893 50 Neuroactive ligand receptor
interaction

302 14725 173 1.9610236 ,561028

trans MAPK signaling pathway 273 683 48 Pathways in cancer 330 18667 175 2.1610236 ,561028

trans Metabolic pathways 1100 2149 67 GnRH signaling pathway 101 6256 152 4.1610236 ,561028

*GS-eQTL associations assessed in HapMap for replication.
doi:10.1371/journal.pone.0043301.t003

Figure 2. Heatmaps with points indicating associations (FDR ,5%) between SNP (x-axis) and expression (y-axis) GSs. SNP and
expression GSs are indexed based on hierarchical clustering using distances between GSs (distance determined by average proportion of genes
shared between GSs). The color of the points indicate the level of association significance (blue = less significant, red = more significant)
doi:10.1371/journal.pone.0043301.g002
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Discussion

Using SNP and expression genome-wide data collected on a cell

based model system we applied a new approach, GS-eQTL

analysis, to identify genetic variation associated with mRNA gene

expression in the context of GSs or pathways. By modeling the

genetic variation and expression using GSs we were able to

increase statistical power by reducing the multiple testing inherit

Figure 3. Scatter plot of the number of associations (FDR ,5%) each GS was involved in against the average distance between each
GS and GSs associated with it.
doi:10.1371/journal.pone.0043301.g003

Table 4. Top five SNP and expression GSs involved in the most associations (FDR ,5%).

Source Data type Gene Set No. significant associations

EGFR Inhibitors Pathway PD 31

Selective Serotonin Reuptake Inhibitors SSRI Pathway 29

Expression Methotrexate Pathway 28

Doxorubicin Pathway 26

PharmGKB Antiarrhythmic Drug Pathways 22

Antiarrhythmic Drug Pathways 32

Taxane Pathway 23

SNP Imatinib 19

Doxorubicin Pathway 18

Fluoropyrimidine PK 16

Pathways in cancer 142

Metabolic pathways 141

Expression Cysteine and methionine metabolism 136

ABC transporters 131

KEGG Insulin signaling pathway 130

Calcium signaling pathway 147

Tyrosine metabolism 142

SNP Ether lipid metabolism 142

Nucleotide excision repair 141

Antigen processing and presentation 141

doi:10.1371/journal.pone.0043301.t004
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with high dimensional genomic data and combining the genetic

variation and mRNA expression of functionally related genes, as

defined by PharmGKB and KEGG. GSs have recently been used

in a variety of settings for increased power [50–53]; however,

limited research has been completed to apply the ideas of GSA to

the study the genetics of gene expression and eQTL analysis.

After adjusting for multiple testing, we determined a large

number of significant GS-eQTL associations (FDR ,5%) for both

GSs in PharmGKB and KEGG. Replication was attempted for

two of the top association for KEGG GSs using the publically

available data on the HapMap samples. The ‘‘Pathways in

Cancer’’ cis GS-eQTL and the trans GS-eQTL association

between the variation in mRNA expression levels for genes within

the ‘‘Pathways in Cancer’’ GS and the genetic variation for genes

within the ‘‘Neuroactive ligand-receptor interaction’’ GS were

both replicated using the publically available data from HapMap

Figure 4. Boxplots of log transformed p-values for GS-eQTL association results by category. (A) PharmGKB and (B) KEGG.
doi:10.1371/journal.pone.0043301.g004

Figure 5. Boxplots of log transformed p-values for cis- and trans-GS association results. (A) PharmGKB and (B) KEGG.
doi:10.1371/journal.pone.0043301.g005
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with p-values of 0.00076 and 0.036, respectively. The first

canonical correlation between the mRNA gene expression and

SNP genotypes for ‘‘Pathways in Cancer’’ cis GS-eQTL and the

trans GS-eQTL association between the ‘‘Pathways in Cancer’’

and the ‘‘Neuroactive ligand-receptor interaction’’ GSs was 0.98

for both GS-eQTLs.

Examining all pairwise SNP-expression associations within the

‘‘Pathways in Cancer’’ found an association between rs2235529

within WNT4 and the mRNA expression level of CDC42

(208727_s) with a p-value of 1.61610242 (Bonferroni correction

for testing all pairwise associations within this GS results in a p-

value = 3.9610235). These two genes are 25 kb apart, suggesting

a typical cis regulatory relationship. There were an additional 31

eQTL associations within ‘‘Pathways in Cancer’’ GS with

Bonferroni adjusted p-values ,161029, with cis associations

observed for 5 genes within the GS. For the second replicated

GS-eQTL between the ‘‘Pathways in Cancer’’ GS and the

‘‘Neuroactive ligand-receptor interaction’’ GS, the most significant

eQTL association involved SNP rs1160198 from gene GLRA2 and

expression of IGF1R (Bonferroni adjusted p-value of 7.9561028).

The large number of associations identified for KEGG may be

due to the correlation structure that exists among the KEGG GSs

or ‘‘master’’ regulating genes or GSs. Grouping the significant GS

associations by category did not show a large difference between

categories in terms of strength of association. There were also GSs

involved in many GS associations either as a SNP or expression

GS, which are analogous to eQTL ‘‘hotspots’’ in previous

literature [4,54,55]. The SNP GSs with many associations can

be considered ‘‘master regulator’’ GSs in terms of regulating the

expression of other GSs, while expression GSs with many

associations appear to be regulated by many different GSs. The

concept of ‘‘master regulator’’ GSs may not be as straightforward

as a single gene ‘‘master regulator’’ in a biological sense, but the

GS associations may be indicating the interaction or regulation

between many components involved in a complex system of

biological processes or functions. Among the top findings for both

GS resources, we also observed a greater proportion of cis GS-

eQTL associations as compared to trans GS-eQTL associations, as

one would expect from previous eQTL research [56].

Given the use of functionally defined GSs to perform GS-eQTL

analysis, there are broader implications from these findings to

consider beyond the standard SNP verses expression analyses,

particularly for the regulatory function and/or regulation of drug

pharmacokinetic (PK) and pharmacodynamic (PD) pathways. The

PK and PD pathways are well characterized and studied

pathways, and are composed of the elements involved in either

the metabolism (PK) or targeted action (PD) of drugs. Thus,

further understanding of these pathways has significant clinical

impact. The trans GS-eQTL associations provide hypotheses to

further pursue regarding the genetics of gene expression. For

example, one of the top trans-GS associations for PharmGKB

involved the expression of the ‘‘Thiopurine’’ pathway and the

genetic variation of the ‘‘Anti-arrhythmic Drug’’ pathway. While

these two pathways are curated for two completely different drugs,

their genetic components appear to be associated.

Similarly with the KEGG results, there were many trans-GS

associations which suggest novel hypotheses to be further explored.

From the top 30 KEGG results, 25 involved the expression or

genetic variation of the KEGG GS ‘‘Metabolic pathways,’’

indicating a significant role for these genes in the genetics of

human mRNA expression. Due to the non-specific nature of many

GSs, other methods, such as gene level tests, will be needed to

follow up on these initial findings to determine the potential

‘‘drivers’’ of these associations. Thus, this method is highlighted as

an effective first step to help focus follow up association and/or

functional studies to establish novel associations between genome-

wide genetic sequence variation and mRNA gene expression.

The use of human cell lines from unrelated subjects (i.e.

lymphoblastoid cell lines from HapMap samples) for eQTL studies

have recently been successful in identifying many significant

findings [24,57]; however, tissue-dependent patterns of gene

expression may limit the generalization of our findings. A recent

study suggests little eQTL overlap between tissues [58], while

other work has found a more substantial eQTL overlap exists

across tissues when considering sample size differences between

eQTL studies [59]. Nonetheless, tissue dependent gene expression

could play a considerable role in the context of our approach,

especially when examining certain PK pathways that involve many

genes that encode metabolic enzymes which are highly expressed

in the liver. Future work is needed to consider GS-eQTLs studies

where mRNA is measured in diverse tissue types, such as liver and

adipose tissues.

In this manuscript, we focused on GS-eQTL analysis between

GSs and pathways contained within PharmGKB and KEGG with

SNPs mapped to within 20 kb of the 39 and 59 ends of each gene.

Considering variation beyond 20 kb may include more functional

variants, but studies have shown that much of the key variation lies

within 20 kb of the gene transcription start and end sites [60].

Additionally, the current definitions of PharmGKB and KEGG

pathways are incomplete and have a clear bias towards studies

involving certain genes and therapeutic agents, and thus limit the

scope of our conclusions. However, the novel GS-eQTL analysis

proposed has the ability to easily be extended to other pathway or

GS sources such as Gene Ontology (GO) [30].

Application of PCA in our GS-eQTL analysis method

effectively reduced the dimensionality of the genomic data.

However, in applying PCA one must deal with missing data. In

our analysis, we removed SNPs with a call rate ,95%. Due to the

small amount of missing genotypic data, we chose to impute the

mean SNP genotype (in terms of the number of minor alleles) for

missing genotypes. Another approach to deal with missing

genotypic data would be to use one of the various genotype

imputation methods [61]. A second limitation is that PCA only

assesses linear relationships as a means of dimension reduction

between the data which may not be optimal for all GSs. Future

work is on-going to determine an approach to reduce the

dimensionally of the genetic and mRNA expression data using

both linear and non-linear relationship, such as kernels [62,63],

along with the application of this approach to other forms of

genomic data, such as microRNA or methylation data.

In conclusion, we have demonstrated an efficient approach to

analyze the high dimensional data for studying the genetics of gene

expression with application of the GS-eQTL approach to

determine novel relationships between GSs and pathways within

PharmGKB and KEGG. A systems biology approach with GSs is

a natural application towards studying the genetics of gene

expression to reduce the high-dimensionality of the data and to

make use of GSs grouped based on a biological process or function

in which there already may be an expected relationship between

the annotated GS processes or functions. Developing and applying

new approaches, such as ours, to analyze the high-dimensional

genomic data to identify associations is a necessary step towards

establishing the regulatory relationships at the molecular level,

which will help translate findings from disease risk or pharmaco-

genomic studies towards meaningful biology.
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