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Abstract

Despite the known relevance of genomic structural variants to pathogen behavior, cancer, development, and evolution,
certain repeat based structural variants may evade detection by existing high-throughput techniques. Here, we present
ruler arrays, a technique to detect genomic structural variants including insertions and deletions (indels), duplications, and
translocations. A ruler array exploits DNA polymerase’s processivity to detect physical distances between defined genomic
sequences regardless of the intervening sequence. The method combines a sample preparation protocol, tiling genomic
microarrays, and a new computational analysis. The analysis of ruler array data from two genomic samples enables the
identification of structural variation between the samples. In an empirical test between two closely related haploid strains of
yeast ruler arrays detected 78% of the structural variants larger than 100 bp.
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Introduction

Although single nucleotide polymorphisms (SNPs) are thought

to play a significant role in phenotypic distinction, recent whole

genome comparisons suggest that structural variants (insertions,

deletions, duplications, translocations, and inversions) also play

important roles in the distinction between species, strains, and

even individuals [1–6]. In addition, these structural variants

correlate with many diseases and such genome instabilities are an

underlying characteristic of cancer [7].

Despite the importance of structural variants, current technol-

ogies cannot reliably detect all variants. PCR can only monitor a

limited number of variants per reaction, limiting the number loci it

can feasibly monitor.

Array-based comparative genome hybridization (aCGH) re-

quires two genomic samples labeled with different fluorophores

and can detect copy number changes but not necessarily the site of

the change [8–15]. The two samples are hybridized to a single

microarray and scanned. Comparing the intensities in the two

channels at each probe or set of genomicaly proximal probes

determines the presence of duplications (higher intensity than

expected compared to other probes in the same sample or

compared to the other sample) and deletions (lower than expected

intensities). While the location of a deletion in the genome is

apparent if one knows the genomic location of the relevant probes

and if the deletion removes enough probes from the sample

sequence, aCGH does not provide the genomic location of

duplications. Furthermore, aCGH cannot necessarily detect

rearrangements, though very high density arrays may be able to

detect candidate rearrangements when low intensity probes, those

spanning the relocation boundary, surround probes of the

expected intensity.

Paired-end high-throughput sequencing permits many forms of

structural variants to be discovered by detecting deviations from

the expected distance between ends [16,17]. In this technique,

often called Paired End Mapping (PEM), a sequencing library is

generated by randomly shearing DNA fragments. The library can

be described by the mean and variance of the fragment lengths.

The ends of the fragments are sequenced and mapped to a

reference genome and the analysis looks for sites spanned by pairs

of reads whose average mapped distance differs from that of the

library as a whole. A deletion in the experimental genome presents

as reads that map far apart in the reference genome; an insertion

presents as reads that map nearby. A analysis compares the

observed average distance between ends spanning some site to the

predicted and tests for a significant difference. Thus, control of the

variance of the fragment lengths is key to PEM. High variance

reduces the power of the technique to observe indels. Either by
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control of the shearing or by size selection of the product, PEM

seeks to limit the variance of the fragment lengths. Depending on

the fragment lengths, PEM may also require difficult circulariza-

tion protocols that limit read lengths and thus mappability (eg

circularization followed by digestion with MmeI) [18].

Sequencing has the potential to detect all sequence changes, but

its practical limitations depend on the technology used (which

determines the read length, the availability of paired reads, and the

mean and standard deviation of the distance between pairs of

reads) and the coverage depth. In general, all sequencing

Figure 1. The ruler array method uses a digest-ligate-extend protocol to generate a labeled DNA sample to detect distances
between genomic points. (a) One or more restriction enzymes digest the input DNA sample, leaving a set of sticky ends. (b) An adapter DNA
molecule is ligated to the ends, providing a biotin moiety for purification of the ligated material and an initiation site for the polymerase extensions.
(c) The ligated material is purified using streptavidin coated beads. (d) Primers, DNA polymerase, and labeled nucleotides are added and primer
extensions occur. (e) An extension terminates either upon reaching the end of the template molecule or randomly due to the polymerase’s
processivity. Since the output material includes many partial extension products, sequences close to the restriction site occur more frequently than
do sequences far from the restriction site. When the labeled sample is hybridized to the microarray, probes close to the restriction site yield
correspondingly higher intensities than the distal probes. When this material is labeled (the polymerase may incorporate labeled bases or modified
bases or the product may be labeled with a system like ULS) and hybridized to a microarray, probes near the restriction site in the genome will
observe a high intensity while probes farther away observe lower intensities.
doi:10.1371/journal.pone.0043210.g001
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approaches can detect SNPs since single nucleotide changes are

small compared even to the short reads produced by current high

throughput techniques [19,20].

Sequencing and assembly based approaches cannot resolve

differences in periodic structures that are not spanned by

sequenced fragments [1,21]. For example, consider a repetitive

element of length 1kb. No read in a 300 bp shotgun library will

span the element, thus producing a contig boundary at every

instance of the element. While long fragments, contigs, and

scaffolds are available with various circularization protocols or

techniques such and BACs, these techniques are difficult and not

routinely applied to most new genome projects. In addition, even

high quality genome assemblies may produce ambiguous results

near repetitive elements [22,23].

To monitor the plasticity of both repetitive and nonrepetitive

elements of genomes we have developed a microarray technology

called a ruler array that measures the distance between pairs of

defined sequences in a genome. Every microarray probe sequence

defines one end of a ruler with the other end defined by a sequence

feature such as a restriction site. The ruler measures the distance

between the two ends and thus can detect structural changes in the

intervening sequence. Thus ruler arrays can detect changes in the

size of repetitive sequences that are proximal to a unique probe

sequence and a suitable restriction site. As such, the ruler array

offers a complement to sequencing based approaches for structural

variant discovery.

Results

The ruler array protocol generates a population of labeled DNA

fragments where the probability that the population contains a

specific sequence is inversely related to the sequence’s physical

distance to a selected restriction site (Figure 1). When the labeled

material is hybridized to a microarray, probe sequences proximal

to restriction sites yield correspondingly higher intensities than

distal probe sequences (Figure 2). The observed intensity falloff is

roughly log-linear and consistent with a model in which the

extension terminates with equal probability at each base (Figure

S1). The ruler array protocol generates this population of

fragments by first digesting a genomic sample with a restriction

enzyme and ligating an adapter to the resulting ends. Polymerase

extensions are then initiated from a primer that is complementary

Figure 2. Log-intensities from a ruler array experiment over part of chromosome VII demonstrate the log-linear decrease in
observed array intensity as distance increases from the restriction site. The red marks indicate probe observations from the S288c channel
and the green marks indicate observations from the S1278b channel. Note the similarity between the channels (blue marks towards bottom show
the ratio between channels) and the relatively log-linear fall off between the restriction sites (brown tick marks at bottom). Note that the intensities
are highest over the restriction sites (tick marks at bottom) and fall off roughly linearly.
doi:10.1371/journal.pone.0043210.g002
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to the adapter, producing many copies of sequence proximal to the

adapter but fewer copies of distal sequence as the limits of

processivity for the polymerase are approached and it stochasti-

cally terminates.

Comparing ruler array hybridization data from two genomic

samples reveals differences between the corresponding genomes

(Figures 3 and S2). When a sequence is farther from the restriction

site in one genome than the other, the observed probe intensities

beyond that sequence will be lower in the corresponding channel.

Thus, a discontinuity in a line fitted to the intensities in one

channel and the absence of a discontinuity in the intensities of the

other indicates a sudden jump in the distance of the probes from

Figure 3. Schematic ruler array probe intensities at an insertion (top) show a drop over the insertion site. When probe intensities from
a strain with an insertion are mapped to the reference genome, the intensities drop at the insertion site relative to the log-linear falloff over sequence
that contains no indels. The bottom track maps the observed probe intensities to the strain from which the sample was generated, showing the
expected linear falloff. In our protocol, samples from both strains are hybridized such that the analysis method can use the reference strain intensities
to account for noise.
doi:10.1371/journal.pone.0043210.g003

Ruler Arrays Reveal Haploid Structural Variation

PLOS ONE | www.plosone.org 4 August 2012 | Volume 7 | Issue 8 | e43210



Ruler Arrays Reveal Haploid Structural Variation

PLOS ONE | www.plosone.org 5 August 2012 | Volume 7 | Issue 8 | e43210



the restriction site (Figure 4). The intensity drop does not generally

depend on the content of the insertion or deletion, only the change

in distance between genomic points.

We compared the genomes of the S. cerevisiae haploid yeast

strains S288c and S1278b [24] using ruler arrays with strain

specific genome assemblies serving as a control. Ruler array

performance was calculated by comparing ruler array variant

predictions to two sets of assembly-derived predictions. During

curation of the long read S1278b assembly, we selected 106

apparent indels of more than 100 bp relative to S288c for PCR

confirmation. These indels were identified by several alignment

programs (FSA [25], Blast [26], Blat [27], custom code) and by

manual inspection of the alignment results. Thirty-six of the 106

resulted in PCR gel bands whose length differed by roughly

100 bp or more, giving a false positive rate of 66% for the early

S1278b assembly (Table S1 lists the confirmed changes). We

detected a total of 114 additional indels between the genomes

beyond the 106 selected for confirmation based on the final

S1278b assembly.

Two ruler array replicates identified roughly 75% of the PCR

confirmed changes (28 and 25 of 36) and many (28 and 20 out of

114) of the set of 100 bp changes. Due to noise and protocol

variations between the replicates (such as the polymerase used), the

two replicates discover similar but not identical sets of indels and

their intersection represents a set of high quality calls. The two

replicates also generated a number of false positive calls,

predictions that do not correspond to a change of more than

4 bp. There were 553 false positives for the first replicate and 414

for the second.

We used a single replicate of an aCGH experiment between

FY4 and S1278b to compare aCGH’s performance against that of

the Ruler Array. The experimental protocol used the non-

enzymatic ULS labeling system to avoid amplification or dye

incorporation biases.

Our HMM analysis of the aCGH experiment produced 183

calls. Twelve appear incorrect given the two genome assemblies

and 33 are confirmed by the assemblies. The remainder occur in

repetitive regions (e.g. TY, sigma, tau, and delta elements) such

that both the CGH data and the assembly are likely to be

incorrect.

The aCGH experiment found 21 of the 35 ‘‘must-find’’ indels

and missed the remaining 14. Thirteen of the 35 were originally

added to our list of known indels because of the aCGH

experiment, so their detection is not surprising. Figure 5 shows

two examples of insertions that the aCGH experiment misses

because there is no change in the unique probes surrounding the

changes.

To more accurately compare the aCGH experiment to the

Ruler Array experiment, we re-ran the analysis using only array

probes with a unique genomic location; this excludes probes that

map to TY or other repetitive elements. By only including

unique probes, we now know the location of any change that the

aCGH experiment detects. On this input, the same HMM

analysis produced only 18 calls and found 6 of the 35 ‘‘must

find’’ events.

Our ruler array experiments comparing S288c to S1278b

revealed non-uniform polymerase processivity at particular

sequence elements. Poly A, AT, or AAT repeats, often found

at transcription stop and start sites [28], sometimes caused rapid

termination of the polymerase extension and a corresponding

drop in observed intensity. In many cases, a small change in the

length of such a repeat sequence leads to a discontinuity in the

ruler array signal such as one might expect from a large

insertion. Thus, we detect certain insertions and deletions as

small as 2 bp when they occur in these repeats. Figure 6 shows

two such examples. These repeats may also cause reduced signal

in downstream sequence.

Discussion

We have shown that the ruler array technology can detect

structural variants between two closely related strains of haploid

yeast, detecting changes of more than 100 bp with high frequency.

We found that ruler arrays can fail to detect structural variants

between haploid genomes for three reasons. First, a variant may be

too close or too far from the restriction site being used such that

the variant’s discontinuity is not detectable. Second, an insertion

may carry a restriction site that counters an expected intensity

drop. Third, the ruler array may miss changes in poorly tiled

regions of the genome such as the telomeres or long clusters of

repetitive elements.

Diploid genomes present challenges for the ruler array as the

signals from the two chromosomes will be averaged, thus making

detection more difficult. Furthermore, the two chromosomes

might contain different restriction sites due to SNPs, generating

additional signal that may be difficult to interpret.

The ruler array obviously depends on the characteristics of the

polymerase. As mentioned, certain sequence elements cause

frequent termination. On normal sequence, the polymerase’s

processivity determines the slope of the decrease in signal over

distance. A polymerase with poor processivity generates a higher

slope and thus a greater change in observed intensity for a given

indel than a more processive polymerase. However, our

experience indicates that the benefits of the higher slope are

outweighed by the fact that fewer microarray probes observe the

change in intensity (the higher slope means the signal reaches

background over less distance). Other characteristics of the

polymerase, such as priming efficiency, may influence the overall

efficiency of the reaction and the maximum signal level. These

characteristics may change the sensitivity of the method but are

Figure 4. The ruler array analysis recognizes structural variants by fitting line segments to the microarray data and detecting
differences in those segments between channels. (a) The observed Ruler Array intensities (red is S288c and green is S1278b) at TRP1 reveal the
presence of the synthetic 1182 bp insertion (bacterial HISG) in this S1278b trp- strain. The adjacent segment, which contains GAL3 and no differences
between S1278b and S288c, shows no differences between strains and the two channels’ intensities track very closely to each other. (b) The dashed
black lines show the fitted segments at TRP1, emphasizing the insertion’s position by the difference in the segments fitted to the two channels. The
sequences of the tiling array probes are from the S288c genome.
doi:10.1371/journal.pone.0043210.g004
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unlikely to generate spurious calls as they would effect both

channels equally.

We believe the ruler array offers a novel and potentially useful

technology for surveying related genomes for structural changes in

both repetitive and non-repetitive DNA elements. While the

current protocol suffers from a high false positive rate, it offers an

effective complement to sequencing-based approaches. Further

refinement could lead to the development of a ruler array based

sequencing assay as a proofreading technique to check newly

assembled genomes for large structural variants indicative of

misassembly.

Materials and Methods

Adapter Design
The adapter (and therefore primer) sequences were chosen to

match the overhang left by EcoRI, have minimal genomic

matches in yeast, and have a melting temperature suitable for

the polymerase extensions. The sequence used was

59 P-AATTGGAGGAGGGAAGGGGG-B 39

39 CCTCCTCCCTTCCCCC 59.

where P indicates a 59 phosphate (necessary for the ligation) and B

indicates a 39 biotin to allow purification of the ligated material

from the remainder of the reaction mix.

Note that the shorter oligo serves both as part of the adapter (in

the ligation reaction) and as the primer in the polymerase

extensions.

Sample Preparation
The ruler array protocol begins with 20 mg of pure S. cerevisiae

genomic DNA prepared using standard laboratory protocols.

The DNA sample was digested using a suitable restriction

enzyme (eg, EcoRI). Digested DNA was then treated with Calf

Intestinal Phosphatase (CIP) to remove the 59 phosphate from

the digested products in turn preventing genome reassembly

during adapter addition. Phenol Chloroform extraction and

ethanol precipitation removed restriction enzymes and CIP.

Purified digested genomic DNA was ligated to 1.6 mM of biotin

labeled primer pair for 16 hours at 16uC. Ligation products were

bound to Streptavidin beads using the Dynabeads kilobase

Binder kit. Polymerase extension reactions were initiated with

Vent Exo- or ExTaq polymerase from the ligated primer.

Aminoallyl dUTP are included at a concentration of .3 mM in

the extension reactions and the DNA extension products were

labeled with Alexa Fluor reactive dyes using established

protocols. Labeled DNA is purified using a QIAGEN spin

column. Dye incorporation was assessed by nanodrop and DNA

containing between 30 and 100 pmol of dye was applied to a

Agilent yeast whole genome array (238 k non-control 60 bp

probes, Agilent microarray design 147411). After incubating at

65uC for 40 hours arrays were scanned using Agilent DNA

Microarray Scanner and images were feature extracted using

Agilent feature extraction software.

Data Processing
Probes were mapped to the October 2006 S288c reference

genome from the Stanford Genome Database using Blat [27]. We

retained probes that had only a single hit of more than 50 bp;

probes mapping to multiple locations were ignored. We normal-

ized the two channels to each other by multiplying the Cy5

intensities by median(Cy3)/median(Cy5) to account for differences

in the amount of dye hybridized in each channel. We further

normalized by computing the regression line of the log-

transformed Cy5 values on the log-transformed Cy3 values and

then rotating the log values such that this line is the diagonal.

Our analysis method performs simultaneous segmentation and

linefitting on the log-transformed intensities. A basic, single-

channel segmentation and linefitting procedure minimizes

X

i

(xi{x̂xi)
2

s2
i

z log (P(parameters))

where xi is the log-transformed intensity observation, s2
i is the

estimated variance for the observation, and the probability of the

parameters penalizes the use of more segments. The estimated

variance depends on the local co-linearity of the log-transformed

intensities and a term based on the intensity.

We extended this segmentation and linefitting method to

handle both channels simultaneously and incorporate prior

probabilities of using the same segment boundaries in both

channels and to using the same segment slopes in both channels

(we found that using the same intercept yielded worse perfor-

mance than constraining only the slope). The analysis of the

resulting fitted segments calls an indel at a segment boundary that

exists in one channel but not the other or at segment boundaries

at which the intensity change differs substantially between

channels (Figure S3). The supporting methods (Text S1) present

a more thorough description of the normalization and analysis

technique.

The ruler array analysis software and sample data are available

at http://cgs.csail.mit.edu/rulers/.

Data and Code
The datasets used for this work and the code (source and

compiled) are available at http://cgs.csail.mit.edu/rulers. The

array data is available at GEO under accession number

GSE23524.

Figure 5. The ruler array can detect structural variants that array-CGH misses. (A) The ruler array (data in top track) successfully detects the
insertion of roughly 100 bp on chromosome eight while the unique probes in the aCGH data show no difference. The red and green points show the
channel intensities and the blue line shows the log-ratio. (B) The Ruler Array (data in top track) successfully detects the insertion of a TY element on
chromosome eleven while the unique probes in the aCGH data show no difference. While the CGH data does show a difference in ratio over
repetitive elements such as the TY family, it cannot localize the changes to particular insertion sites such as this one. In the aCGH plot, the FY4
intensities are green and the S1278b intensities are red; the ratio is shown in blue. Both methods clearly show a deletion in S1278b at the left edge of
the plot.
doi:10.1371/journal.pone.0043210.g005
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Supporting Information

Figure S1 Plot of predicted log-intensity vs distance for
intervals of size 1000, 2000, 4000, and 8000. The

probability of termination at any base is.001 in all four intervals.

Note the relatively linear shape over most of the interval followed

by a more rapid decrease as the end effects become dominant.

(PNG)

Figure S2 Ruler array data at a TY element insertion on
chromosome XI in S1278b. Note the blue line, which

indicates the channel ratio. To the right of the insertion, marked

by the black arrow, the ratio is close to one. To the left of the

insertion, the S1278b probe intensities are lower than the S288c

intensities and the ratio increases accordingly.

(PNG)

Figure S3 The four cases in which the Ruler Array
analysis infers the presence of an indel from the
segment fitting output. In (a), the segment fitting used one

segment to fit the green channel but two segments to fit the red

channel; consequently, the analysis makes a call at the split point

in the red channel. In (b), the segment fitting used two segments in

each channel. The green channel is greater to the right of the

break but of lower magnitude to the left. If the change is large

enough, the analysis calls this boundary an indel. This change is

commonly observed at AT repeat length changes. Example (c)

illustrates another change common at repeat length or repetitive

element changes. There is a segment boundary in both channels,

but the intensities drop much more in one channel than the other.

A restriction site, or the insertion of an element that contains a

restriction site such as a TY, generates the signature seen in (d).

(PNG)

Table S1 The 36 PCR-confirmed indels between S288C
and S1278b used for Ruler Array validation.

(TXT)

Text S1 Supporting text one presents the the normali-
zation methods and linefitting technique.

(PDF)
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Figure 6. Two examples of Ruler Array data (S288c in red, S1278b in green) and genomic sequence demonstrating the
impact of AT repeat length changes on polymerase processivity. The S1278b intensities fall suddenly over the repeat. Both
examples were sequenced in both directions to confirm the repeat length difference, 14 bp in the upper example and 2 bp in the lower.
doi:10.1371/journal.pone.0043210.g006
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