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Abstract

Ligating adapters with unique synthetic oligonucleotide sequences (sequence tags) onto individual DNA samples before
massively parallel sequencing is a popular and efficient way to obtain sequence data from many individual samples. Tag
sequences should be numerous and sufficiently different to ensure sequencing, replication, and oligonucleotide synthesis
errors do not cause tags to be unrecoverable or confused. However, many design approaches only protect against
substitution errors during sequencing and extant tag sets contain too few tag sequences. We developed an open-source
software package to validate sequence tags for conformance to two distance metrics and design sequence tags robust to
indel and substitution errors. We use this software package to evaluate several commercial and non-commercial sequence
tag sets, design several large sets (maxcount = 7,198) of edit metric sequence tags having different lengths and degrees of
error correction, and integrate a subset of these edit metric tags to polymerase chain reaction (PCR) primers and sequencing
adapters. We validate a subset of these edit metric tagged PCR primers and sequencing adapters by sequencing on several
platforms and subsequent comparison to commercially available alternatives. We find that several commonly used sets of
sequence tags or design methodologies used to produce sequence tags do not meet the minimum expectations of their
underlying distance metric, and we find that PCR primers and sequencing adapters incorporating edit metric sequence tags
designed by our software package perform as well as their commercial counterparts. We suggest that researchers evaluate
sequence tags prior to use or evaluate tags that they have been using. The sequence tag sets we design improve on extant
sets because they are large, valid across the set, and robust to the suite of substitution, insertion, and deletion errors
affecting massively parallel sequencing workflows on all currently used platforms.
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Introduction

Synthetic, oligonucleotide sequence identification tags (sequence

tags) can be attached to individual pieces of DNA allowing pooling

and sample tracking during massively parallel sequencing (MPS)

[1–3]. Sequence tags enable efficient distribution of the output

from these platforms among many individually identifiable

samples rather than extensive, deep sequencing of single individ-

uals or mixed samples. Thus, the ability to tag and track sequenced

DNA from many individuals in multiplex increases the efficiency

of MPS when the genomes being sequenced are small [4] or when

researchers want to apportion the output of MPS platforms among

smaller genomic regions of many individuals [5–7].

Groundbreaking prior work introduced the idea of sequence

tagging by incorporating tags to sequence reads using polymerase

chain reaction (PCR) primers and DNA ligation [1–3]. Yet, early

sequence tags were designed for specific platforms and platform-

specific error patterns, and few tag sets were created to address the

complement of errors (insertions, deletions, and substitutions)

affecting the uniqueness of each tag sequence across the suite of

current sequencing platforms. Errors can also be introduced to

sequence tags during tag synthesis and strand replication (library

preparation or template amplification), in addition to DNA

sequencing.

Errors in sequence tag synthesis occur during the coupling

reaction, when DNA bases are being joined to form the desired

oligonucleotide strand [8]. Coupling errors produce n-1, n-2, and

n-3 congeners containing deletion errors throughout the oligo

[9,10]. Relatively expensive purification techniques remove most

of these congeners, particularly the n-2 and n-3 varieties, but some

n-1 congeners remain, even with increasingly sophisticated

purification methods (e.g., HPLC) [11]. Thus, all synthetic

oligonucleotides have the potential to contain deletion errors,

and this potential increases significantly when expensive purifica-

tion is not used. However, expensive purification techniques are

increasingly cost prohibitive as the number of required sequence
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tags or adapters containing tags increases, and HPLC purification

can introduce additional problems if sequence tagged adapters or

sequence tagged primers are sequentially purified [12] without

accounting for carryover.

Errors in strand replication often occur during the amplicon

generation or library preparation process (c.f. [13]), because

researchers use thermostable DNA polymerases and PCR to

generate amplicons, increase library concentration by ligation-

mediated PCR, or add sequence tags to adapter-ligated fragments.

Thermostable DNA polymerases predominately incorporate

substitution errors to DNA strands during replication [14,15],

although most DNA polymerases can produce new DNA strands

containing insertion or deletion errors at a lower frequency

[15,16]. The error rate is template- and polymerase-dependent,

and modern proof-reading DNA polymerases having exonuclease

activity exhibit low rates of nucleotide incorporation error,

suggesting that these types of enzymes should be used in all

amplicon sequencing and library preparation procedures [17].

Similar synthesis errors accrue during downstream template

amplification (i.e., emulsion PCR [emPCR] for 454, Ion Torrent

and SOLiD platforms or cluster formation for Illumina), but this is

generally less of a problem because sequences are determined from

the consensus of many molecules on one particle or in one cluster.

Sequencing errors occur on all MPS platforms, but the type of

errors and the error rates vary across MPS platforms [18–25].

Sequencing errors on platforms from Roche 454, Applied

Biosystems (Ion Torrent), and Pacific Biosciences largely consist

of insertion and deletion errors, whereas sequencing errors on

platforms from Illumina and Applied Biosystems (SOLiD) are

generally substitutions [26,27]. Single-read sequencing error rates

vary from 0.5–5% [20,21,25,28] on Roche, Illumina, and Applied

Biosystems platforms to 18% on the Pacific Biosciences platform

[23]. Sequencing error rates are not uniformly distributed across

sequence reads from platforms that amplify the templates (e.g.,

Illumina, Ion Torrent and Roche) with most errors occurring at

the beginning and end of reads [18,22,29]. This biased distribution

of sequencing errors along a read affects sequence tags immedi-

ately adjacent to or far from the start of the sequence read [30] to

a greater degree than sequence tags offset from 59 or 39 ends.

Synthesis, replication, and sequencing errors negatively impact

the utility of sequence tags because they change the basepair

composition of individual tags by inserting bases to, substituting

bases within, or deleting bases from the identifying sequence. All

three types of error can cause one tag to appear identical to

another (crossover) or sufficiently alter a sequence tag such that it

is unrecognizable (loss) and untraceable to the source material. A

uniformly distributed error rate of 1.0% during an MPS

sequencing run producing 106 reads, each having an 8 bp

sequence tag, results in approximately 77,000 reads (8%) having

more than one error within the sequence tag (Figure S1).

Probability ensures that longer sequence tags, which allow

multiplexing of more samples, are affected by sequencing error

to a greater degree, and tags of longer length should have greater

minimum distance from all tags in the set.

Using error-correction schemes, researchers can construct

sequence tags that are more robust to synthesis, replication, and

sequencing errors (i.e., minimizing crossover and loss) while also

allowing the correction of certain types of errors. Hamady et al.

[31] used Hamming codes [32] to develop a set of error-correcting

sequence tags with which they successfully tracked a large number

of reads in multiplex (see also [33]). However, Hamming codes

assume that the errors occurring within each sequence tag are only

substitutions [34,35]. Insertion and deletion errors violate the

codeword scheme and reduce the utility of Hamming-based tags

when commercial synthesis does not completely remove n-1

congeners, standard Taq polymerase is used during strand

replication, or sequence data are generated on platforms

incorporating insertion and deletion errors (Figure 1; [36]).

Additionally, when Hamming-distance tags are constructed using

a binary representation of each base (e.g., T = 00; G = 01; C = 10;

A = 11), which we define as ‘‘binary encoding’’ (Figure S2), 33% of

substitution errors, while detectable, are uncorrectable because

sequencing errors occur among actual nucleotides (Figure 2; [37]).

Thus, sequence tags appropriately designed using Hamming codes

should use nucleotide representations of each base rather than

their binary encoding [37].

Sequence tags based on the edit metric or Levenshtein distance

[38,39] are superior to Hamming-distance tags, because edit

metric sequence tags are robust to the types of errors introduced

by oligonucleotide synthesis, replication, and DNA sequencing:

insertions, deletions, and substitutions. Edit metric sequence tags

allow for error correction according to the following formulas [38–

40]:

Required Edit Distance~2|(Errors)z1

or

Correctable Errors~(Edit Distance{1)=2

Figure 1. Insertion and deletion errors violate the codeword
scheme and reduce the utility of Hamming-based tags. Panel (A)
shows two sequence tags that are different from one another by seven
substitutions (Hamming distance = 7) – a distance more than sufficient
to differentiate tags in the presence of substitution errors. However,
these same two tags have an edit distance of two (B) – meaning that a
total of two insertions, substitutions, or deletions can turn Tag 1 into
Tag 2 and confuse samples. Although it seems improbable that two
indels or substitutions would occur in a sequence tag, consider the
third case (C) in which a single deletion event at the 59 end of a
sequence tag adjoining DNA template beginning with 59 guanine
confuses Tag 1 with Tag 2. Edit metric sequence tags of distance three
or greater would mitigate this mistake.
doi:10.1371/journal.pone.0042543.g001
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Thus, we can correct up to two sequencing errors in sequence tags

from a set having an edit distance of five. Although edit metric

sequence tags are provided by several commercial (e.g., Roche

454, Inc.) and non-commercial sources [40,41], there are few

available methods (c.f. [29]) of generating sets of edit metric-based

sequence tags. Furthermore, current methods may generate tags

that do not correctly follow the edit metric (Table 1), and current

methods are best suited to generating sequence tag sets comprising

tags of shorter length (#8 nt). The continually increasing output of

MPS platforms suggests that large collections of edit metric

sequence tags will be essential to distributing output across smaller

genomes, select genomic regions, and populations of individuals.

Here, we introduce EDITTAG, a collection of tools for testing

sequence tags for conformance to the edit or Hamming distance

metric, generating edit metric sequence tags, and programmati-

cally applying sequence tags to PCR primers and platform-specific

sequencing adapters. EDITTAG differs from similar programs by

providing: (1) a method to check the conformity of previously

designed tags, adapters, linkers, or primers to the edit metric; (2) a

method to generate edit metric sequence tags of arbitrary length;

(3) methods for prepending sequence tags to amplification primers

and inserting tags into platform-specific sequencing adapters; and

(4) multiprocessing support to speed tag generation when tag

lengths are long ($8 nt).

We use components of EDITTAG to validate a number of

existing sequence tag sets provided by commercial and non-

commercial sources, design several sets of edit metric sequence

tags of varying edit distance, and integrate a subset of edit metric

sequence tags to Epicentre Nextera adapters, Illumina TruSeq

adapters, and PCR primers. We then validate this subset of tags by

sequencing across the indices of indexed adapters and sequence-

tagged PCR primers on the Illumina (GAIIx and HiSeq 2000) and

Roche 454 (FLX Titanium) platforms.

Materials and Methods

EDITTAG provides a suite of Python (http://www.python.org)

programs for: validating sequence tags for conformance to the edit

or Hamming distance metrics, designing edit metric sequence tags,

and incorporating sequence tags to amplicons or platform-specific

sequencing adapters. We describe implementation details for each

of these EDITTAG processes, and we follow each description with

the steps we followed to implement or validate each process.

Sequence Tag Validation
The validate_edit_metric_tags.py program within EDITTAG

checks existing tag sets, alone or incorporated into PCR primers or

sequencing adapters, for conformance to the edit metric by

performing pairwise, edit distance comparisons between each tag

in the input set and all other tags in the set. In short, the program

iterates through the set of tags input; computes the pairwise edit

distance between all tags in the set using either a C-based Python

module or a pure-Python method; and outputs either the

minimum distance of the set, those tag pairs having an edit

distance less than the minimum expected, or the edit distance

between all members of a set, depending on the output options

selected by the user. This program is also capable of computing

the Hamming distance between sequence tag inputs based on

selection of the Hamming algorithm in place of the edit distance

algorithm by the user.

We used validate_edit_metric_tags.py to test the conformance

of eight existing sequence tag sets available from commercial

(Illumina, Inc. and Roche 454, Inc.) and non-commercial sources

[29,31,40–42] to their respective distance metric (Hamming or

edit) by appropriately formatting an input file for these tags (File

S1) and inputting this file to the program. We used the tag-

rescanning feature of design_edit_metric_tags.py (described below)

to determine the number of tags in these sequence tags sets having

minimum edit distances of three and five.

Sequence Tag Design
Technically, designing error-correcting sequence tags is a

matter of generating all n-length combinations of [A,C,G,T];

filtering tags based on subjective or platform-specific criteria

including removal of: combinations containing homopolymer

runs, combinations with undesirable base composition, or

individual tags that are perfect self-complements; and iteratively

comparing each tag in the remaining group against all other tags

in the remaining group to create the largest set that maintains

some minimum edit distance. Practically, the process is more

complex because the design of sequence tag sets requires

comparison of all tags in the candidate set to all other tags in

the candidate set. Given sequence tags of sufficient length, this

requirement rapidly approaches the limits of desktop computation.

Figure 2. Using Hamming codes to design binary encoded
sequence tags when synthesis, replication, or sequencing
errors mutate the nucleotide sequence reduces the number
of single-base errors that are correctable during downstream
demultiplexing. Here, we show two sequence tags (Tag 1 and Tag 2)
and both their nucleotide and binary encodings. Tag 1 and Tag 2 have a
Hamming distance of four between their binary representations and a
Hamming distance of two between their nucleotide representations.
Error 1 is correctable to Tag 2, because a single nucleotide substitution
(in purple) results in a single, binary difference (11 versus 01) between
Error 1 and Tag 2, and single binary errors are correctable when tags are
at least three binary differences from each other. Error 2 and Error 3 tags
also exhibit a single nucleotide substitution (in purple) but two binary
differences from Tag 1 and two binary differences from Tag 2. Because
there is more than a single binary difference, we cannot determine
whether the source tag was originally Tag 1 or Tag 2, we cannot correct
the error, and we must discard the read. More generally, because of the
binary encoding and the Hamming distance between tags (Hamming
distance four between binary representations, Hamming distance two
between nucleotide representations), we can correct single binary
errors seen in the substitutions around the perimeter of inset (B), but
we cannot correct double binary errors across the diagonals of inset (B).
Because these single nucleotide, double binary substitutions (i.e., across
the diagonals) comprise two of six potential substitution mutations, we
cannot correct 33% (2/6) of single nucleotide substitution errors.
doi:10.1371/journal.pone.0042543.g002
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For example, the full set of 10 nucleotide tags contains 1,048,576

members, which requires 550 billion pairwise edit distance

comparisons across all tags in the candidate set. If storage of each

result requires 8 bits, then storing the entire array requires

approximately 500 GB - a daunting object with which to work.

Additionally, this considers only the first stage of processing and

ignores the additional computational and storage overhead

required to select and test subsets of edit metric sequence tags.

Thus, we modified the approach used by the lexicode algorithm

[43] to speed up processing, reduce memory consumption, and

enable parallelization of jobs across multiple processors. Briefly,

our approach first generates all n-length combinations of

[A,C,G,T]. Then, if the remaining group is sufficiently large, we

apportion tags into discrete batches of 25,000 tags, and we

distribute each batch among the available number of processing

cores to (optionally) remove those tags having problematic

composition (homopolymers, improper GC, perfect self-comple-

ments). After filtering, we rebuild the set of candidate tags returned

from each processing core, and we create the following data

structure, where the 0th position of each ‘‘row’’ below is a

sequence tag ‘‘key’’ to which we pair a ‘‘value’’ comprising a list of

all tags in the set:

(

(tag0,½(tag0),(tag1),(tag2),(tag3)�),

(tag1,½(tag0),(tag1),(tag2),(tag3)�),

:::

)

If this data structure is sufficiently long (more than 500 ‘‘rows’’ as

illustrated above), we apportion the structure into batches

containing 500 ‘‘rows’’, and we distribute each batch among the

available number of processors. Iterating over each row, we then

compute the edit distance between the ‘‘key’’ and all sequence tags

in the value list using either a C-based Python module (http://

pylevenshtein.googlecode.com) or a pure-Python method. To

reduce memory consumption when iterating over millions of tags,

we produce a summary vector for each key giving the count of all

other sequence tags having values that fall within edit distance

categories (0, 1, 2, …, N), and we use the 0-indexed position of the

count in the vector to denote the edit distance. Thus, the vector:

1,12,124,5½ �ð Þ

corresponds to a key having a single tag edit distance 0 from the

key, 12 tags edit distance one from the key, 124 tags edit distance

two from the key, and five tags edit distance three from the key.

We then reduce the data by keeping only those keys having the

maximum count of comparisons at the minimum desired edit

distance, a technique that allows us to reduce the remaining

number of pairwise comparisons over the entire data set by

approximately 99% (estimated from the generation of eight

nucleotide, edit distance three tags).

After reducing the data, for each key we compute the edit

distance between the key and all sequence tags in the value; we

drop any tags in the value less than the desired edit distance; and

we iterate over the remaining tags in the value, retaining only

those tags that are also the desired edit distance from one another.

Finally, we determine the count of remaining tags in the value list

for each key, and we return the key (and its values) having the

largest value list. Additionally, we include an option that quickly

returns subsets of keys within this final set having edit distances

from the key at values greater than the minimum desired edit

distance.

We used this approach to design sets of edit metric sequence

tags ranging from four to 10 nucleotides in length and having edit

distances of three. We used the shortcut method described above

to select subsets, within each of these sets, having edit distances

from four to nine. After creating these edit distance tags, we

validated each set of resulting tags for conformance to the edit

metric using validate_edit_metric_tags.py, the program described

in the previous subsection.

Sequence Tag Application
EDITTAG provides two convenience programs for integrating

sequence tags to platform-specific adapters and PCR primers. The

first program (add_tags_to_primers.py) is meant primarily for

integration of sequence tags to PCR amplicons when designing

sequence-tagged PCR primers. In brief, this program adds

sequence tags to the 59 ends of both upper and lower PCR

primers, optionally removes common bases between each

sequence tag and primer sequence, optionally prepends both

primers with a sequence (GTTT) promoting +A addition [44] to

facilitate adapter ligation, uses Primer3 [45] to evaluate tagged

primers for complementarity problems and the presence of

hairpins, and outputs all tagged primers to an sqlite (http://

www.sqlite.org) database or comma-separated file for subsequent

evaluation and selection.

The second program (add_tags_to_adapters.py) simply inte-

grates designed sequence tags to adapters and/or primers by

inputting the list of desired sequence tags, the adapter/primer

sequence 59 of the sequence tag location, and the adapter/primer

sequence 39 of the sequence tag location. This program is largely

meant to reduce mistakes when manually positioning sequence

tags within large numbers of adapters or primers.

Testing Sequence Tag Integration to PCR Primers
To test the design and resulting utility of PCR primers

sequence-tagged using the helper program, we integrated the

entire set (n = 164) of 10 nucleotide, edit distance five sequence

tags (File S2) to primers amplifying the rbcLa locus in land plants

[46,47]. We used the resulting database to select 95 hairpin-free,

sequence tagged primers (File S3) which we had commercially

synthesized, adding a single 39 phosophorothioate linkage to each

oligo (Integrated DNA Technologies, Inc.). We used these primers

to amplify the rbcLa locus in 190 tropical forest tree species (2695

reactions) in a reaction mixture containing 5.0 mL CTAB-

extracted [48], purified (AMPure) DNA, 0.3 mM KAPA dNTP

mix, 0.2 mM each primer, 16 KAPA HiFi PCR Buffer, 0.5 U

KAPA HiFi HotStart polymerase and the following touchdown

PCR thermal profile: 95uC for 30 s; 20 cycles of 95uC for 30 s,

66uC for 30 s minus 0.25uC per cycle, 72uC for 1.5 min; 20 cycles

of 95uC for 30 s, 60uC for 30 s, 72uC for 1.5 m; 72uC for 15 min.

Following PCR, we visualized amplicons by running 7 mL of PCR

product on 1.5% agarose gels for 90 minutes at 100 V and

staining with ethidium bromide.

We cleaned PCR amplicons and normalized amplicon concen-

trations across samples using SequalPrep normalization plates

(Invitrogen, Inc.), combined sequence-tagged PCR amplicons

from a 96-well plate into a single pool, and concentrated the pool

using a SpeedVac. Prior to sequencing, we used T/A ligation to

add standard 454 GS FLX Titanium sequencing adapters to the 59

and 39 ends of each amplicon pool [49]. We quantified the

resulting adapter-ligated amplicon pools using qPCR (KAPA

Biosystems), we combined amplicon pools at equimolar ratios, and
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we sequenced amplicon pools using a portion of one 1/8th plate of

a 454 GS FLX Titanium sequencing run (UCLA Genotyping

Core). We demultiplexed the resulting sequence data using

demuxipy (https://github.com/faircloth-lab/demuxipy/); com-

bined the read counts by sequence tag from each pool of rbcLa

amplicons to minimize the variance introduced to counts by

differences in template quality, template quantity, and PCR;

averaged the count of reads per sequence tag across pools; and

computed fold difference between the average number of reads

per sequence-tag and the global average number of reads.

Validating Edit Metric Tag Addition to Nextera-style
Adapters

To validate edit metric sequence tags incorporated to Nextera-

style sequencing adapters, we first removed the Epicentre-

provided IDX1 and IDX8 adapters from the Nextera barcoding

kit to ensure the edit distance of the remaining set (n = 10 adapters)

was three. We then created 14 new Nextera adapter sequences by

incorporating six nucleotide, edit metric three sequence tags to

each adapter, and we used validate_edit_metric_tags.py to ensure

we maintained an overall edit distance of three among all

members of the set (File S4). We commercially synthesized and

HPLC-purified these new adapters (Integrated DNA Technolo-

gies, Inc.), and we incorporated each indexed adapter to target

enriched [50] genomic DNA using PCR, according to the Nextera

manual (Epicentre Biotechnologies). Following PCR, we quanti-

fied the indexed libraries using qPCR (KAPA Biosystems), pooled

sequencing libraries at equimolar concentrations into groups of 12,

and sequenced the pooled libraries using two lanes of an Illumina

GAIIx DNA sequencer (LSU Genomics Facility). Because we were

interested in validating our ability to sequence across these indices

and because we wanted to fairly compare our ability to sequence

across edit metric and ‘‘standard’’ (Hamming distance) sequence

tags, we demultiplexed sequence data using the standard Illumina

pipeline, counted, and compared the number of reads assigned to

each sequence tag.

Validating Edit Metric Tag Addition to TruSeq-style
Adapters

To validate edit metric sequence tags integrated to TruSeq-style

sequencing adapters, we used the helper program (add_tags_to_a-

dapters.py) to incorporate 10 nt sequence tags of edit distance five

to a set of 135 TruSeq-style adapters (File S5). We commercially

synthesized all 135 adapters (Integrated DNA Technologies, Inc.),

with a replicate subset of 24 that were HPLC-purified using a

randomization protocol to ensure adapters did not follow each

other on the HPLC (eliminating relevant carry-over), and we

conducted two experiments.

In the first experiment, we focused on a subset of adapters

where the first 6 nt of the 10 nt tag conforms to a minimum edit

distance of 3 (BFIDT-000 to BFIDT-045). We made an equimolar

pool of the 24 adapters, and we used this adapter pool to construct

a library with a single genomic DNA sample using Illumina

TruSeq reagents (leaving out the standard Illumina adapters). We

then pooled this mixed library with a subset of Nextera-style

adapters (total library mass = 1% TruSeq style; 99% Nextera-

style), and we sequenced libraries using a single lane of a GAIIx

(see details above). We demultiplexed sequence data using the

standard Illumina pipeline, counted, and compared the number of

reads assigned to each sequence tag.

In the second experiment we incorporated 12 EDITTAG

indexed adapters and 12 Illumina TruSeq indexed adapters to

DNA libraries using a modified version of an on-bead library

preparation method [51] and reagents from New England Biolabs.

Following preparation, we quantified libraries using qPCR (Kapa

Biosciences, Inc.), normalized library concentration across sam-

ples, and enriched individual or pooled libraries for ultra-

conserved elements using 2560 probes [50,52]. Following PCR

recovery and Qubit quantification of the target-enriched libraries,

we pooled libraries at equimolar ratios, assuming an average

fragment size of 350 bp, and we sequenced replicate library pools

using two lanes of an Illumina HiSeq 2000 DNA sequencer

(Cofactor Genomics, Inc.). Because we were interested in

validating our ability to sequence across these indices and because

we wanted to fairly compare edit metric and Hamming distance

sequence tags we demultiplexed sequence data using a modifica-

tion of the standard Illumina pipeline and compared the number

of reads assigned to EDITTAG-designed and Ilumina TruSeq

sequence tags. We also included, in one sequencing lane (L007),

several (n = 52) additional libraries identified by sequence-tagged

adapters designed using EDITTAG (File S5) at equimolar ratios to

other libraries in the pool, and we compared the total number of

reads across all libraries having EDITTAG-designed sequence

tags (n = 64) to all libraries having Illumina TruSeq sequence tags

(n = 12).

Results

We validated several (n = 14) sets of pre-existing sequence tags to

ensure that all pairwise comparisons within these tag sets were

greater than the minimum expected edit or Hamming distance

(Table 1, Table S1, File S6). Several freely available sets of edit

metric sequence tags [41] or edit metric sets output by tag design

programs [29] contained pairwise comparisons below the mini-

mum expected edit distance (Figures S3, S4). Only those tags

provided by Qiu et al. [40] and Roche, Inc. maintained a

minimum edit distance sufficient to correct one error (edit distance

$3) across all pairwise comparisons (Figures S5, S6, S7). Sequence

tags designed by BARCRAWL were equal to or greater than a

minimum edit distance of two (Figure S8), a result predicted by

their design scheme. Readers should note that BARCRAWL does

not explicitly use the edit metric as its design algorithm nor does

BARTAB attempt error correction during demultiplexing. As a

result, sequence tags designed using BARCRAWL are robust to

insertion, deletion, or substitution errors, but they should not be

used with correction algorithms that assume the edit metric, unless

the tag set is culled to remove those tag pairs with edit distance

#3.

Hamming-distance sequence tags from Meyer et al. [3]

conformed to their expected minimum Hamming distance.

Although the binary encoded Hamming-distance sequence tags

from Hamady et al. [31] conform to their expected minimum

Hamming distance, the binary encoding of each tag allows only

66% of errors to be corrected (Figure 2). Several commercial

sequence tags provided in the TruSeq sRNA library preparation

kit (Illumina, Inc.), the sequences of which researchers may

integrate to adapters for use with DNA or cDNA libraries, do not

conform to the expected, minimum, pairwise Hamming distance,

potentially violating the codeword scheme when IDX41 is

combined with either IDX11 or IDX31 (Figure S9).

We designed several large sets (Table 1, Table 2) of sequence

tags of four to 10 nucleotides in length and having a minimum edit

distance of three, and we selected all subsets of these sequence tags

having edit distances at values greater than the minimum distance

within each length category (File S7). We tested the conformance

of EDITTAG-designed sequence tags to the edit metric by

analyzing all resulting tag sets using our method to compute the
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minimum, pairwise edit distance between members of a given tag

set (validate_edit_metric_tags.py). All tag sets contained members

having observed edit distances equal to or greater than the

minimum expected edit distance (e.g., Figure 3, Table 1).

We successfully amplified the rbcLa locus using each of the 95

primers integrating 10 nt, edit distance five sequence tags (Figure

S10). After sequencing, we recovered data from all samples

amplified using sequence-tagged primers, and the average fold-

difference of read counts per sequence tagged primer did not differ

from one (Figure S11), suggesting that incorporation of edit metric

sequence tags to primers did not affect amplification or

sequencing.

We successfully sequenced and assigned samples to bins for the

10 nt, edit metric tags incorporated into custom adapters designed

for the Nextera (v1; Epicentre Inc.) library preparation system (File

S4) and 10 nt edit metric tags incorporated into TruSeq-style

adapters with both 6 nt and 10 nt index reads (File S5). The

number of reads we recovered from indexed Nextera samples did

not differ between the Epicentre indices and the extended set of

EDITTAG indices (Figure S12). The number of reads assigned to

Figure 3. Pairwise edit distance between 25 tags of five nucleotides in length and edit distance three designed using EDITTAG.
doi:10.1371/journal.pone.0042543.g003

Table 2. Counts of four to 10 nucleotide, $3 edit distance sequence tags sets designed using EDITTAG.

Code Sizes Edit Distance

3 4 5 6 7 8 9

ID Tag Length 4 7 - - - - - -

5 25 7 - - - - -

6 61 15 5 - - - -

7 211 41 11 4 - - -

8 531 103 24 8 3 - -

9 1936 301 62 18 6 3 -

10 7198 971 164 40 14 5 3

We did not include, in any set, sequence tags having .2 homopolymers, GC content outside the range 40%,GC,60%, or perfect self-complementarity.
doi:10.1371/journal.pone.0042543.t002
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the 24 tags of the pooled adapter set varied significantly (Figure

S13a), but when we ligated individual tags (rather than ligating an

equimolar pool of tags) to template molecules during library

preparations and directly compared sequence tags design using

EDITTAG to Illumina TruSeq indexes, we did not detect a

difference in performance (Figure 4, Figure S13b). Additional

sequence tags designed using EDITTAG exhibit performance

equivalent to commercially supplied indices (Figure S14).

Discussion

Researchers should validate the codeword scheme of sequence

tags incorporated into adapters or PCR primers. Our validation of

existing sequence tag sets and/or design methods suggests some

sources of sequence tags contain errors (Table 1), and that

judicious removal of individual tags violating a particular code-

word scheme can yield valid, albeit smaller, tag sets (Table 1,

Table S1). Commercial sources of sequence tags are not free of

these errors. The effects of set corruption on subsequent

demultiplexing can range from minor data loss that only affects

the sequence tags crossing-over, to complete data loss within a

sequencing lane or plate. Therefore, researchers should carefully

select the most robust sets of sequence tags available to mitigate

the potential for data loss while maximizing the likelihood of data

recovery in the presence of sequencing, replication, and oligonu-

cleotide synthesis errors.

We designed several large sets of edit metric sequence tags

falling into several edit distance categories (Table 2). Although the

number of tags within each edit metric set is large, our

methodology likely did not yield the largest potential set of edit

metric tags for two reasons. First, given sufficient numbers of

sampling draws, evolutionary algorithms are likely to produce

Figure 4. Number of HiSeq reads returned for libraries prepared using Illumina TruSeq adapters versus libraries prepared using
adapters integrating edit metric sequence tags designed using EDITTAG.
doi:10.1371/journal.pone.0042543.g004

Not All Sequence Tags Are Created Equal

PLOS ONE | www.plosone.org 8 August 2012 | Volume 7 | Issue 8 | e42543



larger sets of edit metric sequence tags relative to Conway’s

lexicode algorithm [36,53]. However, the approach proposed by

Ashlock et al. [36,53] depends on a genetic algorithm that we felt

would be slower and more computationally demanding than our

lexicode-based approach when evaluating longer sequence tags.

Additionally, evolutionary algorithms are sampling-based and

unlikely to return identical tag sets across small numbers of runs,

which may be problematic depending on the purpose of tag

design. Second, our computational shortcut to find tags of edit

distance greater than the minimum desired distance increases

speed, but it does not return the largest sets of edit metric sequence

tags within edit distance categories greater than the minimum

input. One can easily maximize the size of each edit metric

sequence tag set returned by EDITTAG by running the program

for only the tag length and minimum edit distance desired. We

believe that the shortcut method we used is generally sufficient for

most applications, and the amount of computational time this

approach saves is large, particularly when evaluating sequence tags

over eight nucleotides in length.

Our testing of sequence-tagged PCR primers suggests that the

integration of primer design software to the amplicon-tagging

process may increase the success of the tagging process by allowing

researchers to avoid primers having problematic secondary

structures resulting from the placement of sequence tags. Our

sample of different primers having integrated tags was relatively

small, and we recognize that additional trials using other primers

in different organisms will provide a better understanding of the

utility of this approach. One specific advantage of this approach is

that it is ecumenical because we ligate platform-specific adapters to

pooled PCR products after amplification. Thus, researchers can

use this approach to obtain sequences from the same PCR primers

or product pools on multiple platforms (e.g., 454, Ion Torrent, and

Illumina) providing flexibility today and into the future using

platforms and adapters that have yet to be developed or released.

Our tests of Nextera and TruSeq-style adapters integrating edit

distance tags suggest that both of these approaches were successful

and return a number of reads equivalent to indexed adapters from

commercial sources. Unfortunately, following the Illumina acqui-

sition of Epicentre, the company modified the structure of Nextera

adapters and discontinued the original kits. Thus, the primers that

we tested will not work directly with the new Illumina Nextera kits,

although edit metric sequence tags could be used to develop an

extended set of primers for these new kits.

Pooling of TruSeq-style adapters prior to ligation produced

highly variable numbers of reads relative to the equal ratio of

adapters we added to the reaction. Variance in the quantification

of the input oligonucleotides and pipetting likely contribute to read

number variance, but the extent of the variance we observed

suggests differences in ligation efficiency among individual

adapters, supporting earlier observations of this behavior [54–

56]. As expected, library preparations directly ligating individual

adapters to samples in the standard fashion (T/A ligation) do not

show obvious differences in read numbers (Figure S13b). Thus, the

sequence tags we designed and integrated to sequencing adapters

performed as one would expect.

In practice, researchers often consider ‘‘sequencing error’’ as

being comprised of a single error term, identical to the approach

we used in the simple models presented in Figure S1. It is

important to remember, however, that the error found in sequence

reads is actually a composite of several, different sources of error:

errors arising during oligonucleotide synthesis, errors arising

during the sequence replication process, and errors arising during

the sequencing process. Each source of error has a potentially

unique bias that contributes to the overall error term. For

example, incomplete coupling during oligonucleotide synthesis

results in n-1 deletion errors in the final oligonucleotide pool that

combine with low-rates of substitution errors on certain sequenc-

ing platforms and affect the recovery of sequence tagged DNA

reads. Thus, even if a sequencing technology free from deletion

errors is used, deletions will still be present in sequence tagged

data. The presence of deletions violates the assumptions of certain

distance metrics, particularly the Hamming distance, and these

violations may corrupt the set of sequence tags used, returning

erroneous and potentially misleading data. This example high-

lights the reasons why it is best to use edit metric-derived sequence

tags that are robust to insertions, deletions, and substitutions.

Conclusions

Our results suggest that all sequence tags should be evaluated

prior to their use during MPS because some tags sets do not

conform to the metric that maintains the uniqueness of sequence

tags in the presence of synthesis, replication, and sequencing errors.

We suggest that edit metric sequence tags are superior to tags

designed using Hamming distance metrics because edit metric tags

are robust to substitution, insertion, and deletion errors, the suite of

which likely affect sequence tags at some point during every MPS

workflow. Previously, large sets of edit metric sequence tags did not

exist for tracking hundreds or thousands of DNA targets during

MPS, nor was there a reliable way to generate these edit metric tag

sequences. We provide a flexible, computational method to

generate large sets of edit metric sequence tags and computer code

for incorporating these tags to PCR primers or sequencing adapters.

Performance of these edit metric sequence tags during sequencing is

equivalent to commercial sources. The tag sets we designed are an

improvement over alternatives because they are larger, valid across

the set, and more robust to the sources of error affecting recovery of

sequence-tagged MPS data. These tag sets may also be used in a

variety of configurations to improve the accuracy of tracking and

assigning reads to samples [12] and enable concurrent sequencing of

hundreds of thousands of samples.

Availability
Data supporting Figure 4 and Figures S11, S12, S13, S14 are

available from Dryad (doi:10.5061/dryad.4m0v8474). All source

code and sequence tags generated as part of this manuscript are

available from: http://github.com/faircloth-lab/edittag/ under

BSD and Creative Commons Attribution licenses. Documentation

for the source code is available at http://faircloth-lab.github.com/

edittag/. We will provide updated information about validated

sequence tags as well as ongoing and future tests of different tag

sets and tagging approaches at http://bad-dna.org/tags/.

Supporting Information

Figure S1 The number of reads returned having errors within

sequence tags of different lengths at uniformly distributed

sequencing error rates of 1%, 5%, and 18%. The simulation

assumes one million reads are returned per sequencing run.

(PDF)

Figure S2 Nucleotide bases can be encoded using a binary

representation of each base. For example, we can use a pair of

binary values to represent (A) a single nucleotide (a single bit of

binary data - 0 or 1 - is insufficient to encode to all nucleotide

bases). When encoding sequence tags using their binary represen-

tation (B), the binary designation for each base can be arbitrary

but must be systematic. The binary representation (C) of each

sequence tag is then used in place of the nucleotide representation
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to compute the desired distance metric and for subsequent sample

identification.

(PDF)

Figure S3 Pairwise edit distances between 96 sequence tags

described in Supplementary Table 4 of Adey et al. [41]. The

minimum expected edit distance of the set is four. The minimum

observed edit distance of the set is two.

(PDF)

Figure S4 Pairwise edit distances between 75 sequence tags

designed using create_index_sequences.py from Meyer et al. [29].

We generated these tags using: ‘python create_index_sequences.py

-l ,length. -d 3’. The minimum expected edit distance of the set

is three. The minimum observed edit distance of the set is two.

(PDF)

Figure S5 Pairwise edit distance comparisons between 24

sequence tags described in Qiu et al. [40]. The minimum expected

edit distance of the set is three. The minimum observed edit

distance of the set is three.

(PDF)

Figure S6 Pairwise edit distance comparisons between 132

sequence tags provided as part of the Roche-454, Inc. multiplex

identification (MID) tag set. The minimum expected edit distance of

the set is four. The minimum observed edit distance of the set is four.

(PDF)

Figure S7 Pairwise edit distance comparisons between 132

sequence tags provided as part of the Roche-454, Inc. rapid library

multiplex identification (RL-MID) tag set. The minimum expected

edit distance of the set is four. The minimum observed edit

distance of the set is four.

(PDF)

Figure S8 Pairwise edit distance comparisons between 81

sequence tags designed using BARCRAWL [42]. We generated

these tags using: ‘barcrawl -l 6 -m 3’. BARCRAWL uses a hybrid

approach to account for substitutions and a single deletion that

produces sequence tags approximately equal to a minimum edit

distance of two, allowing tags to differentiate samples sufficiently in

the presence of insertion, substitution, and deletion errors but not

allowing for error correction.

(PDF)

Figure S9 Pairwise Hamming distance comparisons between the

48 sequence tags provided as part of the Illumina TruSeq library

preparation kits. The tags used within the DNA and RNA kits are

a subset of those used within the smallRNA kit. The minimum

expected Hamming distance of the set is three. The minimum

observed Hamming distance of the set is two.

(PDF)

Figure S10 Agarose gel image of rbcLa amplicons generated

using fusion-style primers integrating 10 nucleotide, edit distance

five sequence tags.

(PDF)

Figure S11 Fold difference in the average number of reads per

well (across two plates) for PCR amplicons incorporating sequence

tags designed using EDITTAG relative to the average number of

reads per plate.

(PDF)

Figure S12 Comparison of the number of reads returned for

libraries incorporating adapters having six nucleotide Epicentre

Nextera indices or EDITTAG-designed indices.

(PDF)

Figure S13 Comparison of the number of reads returned for

libraries prepared using two methods. We prepared the first library

(A) by ligating an adapter pool to DNA fragments, and we

prepared the second (B) by ligating individual adapters to DNA

fragments. Although the numbers of reads are different between

runs, note that variance is much higher (.2 orders of magnitude)

in (A). Additionally, some adapters (e.g., BFIDT-012) performing

poorly in (A) function well in (B).

(PDF)

Figure S14 Comparison of the number of reads returned for 64

libraries incorporating adapters having 10 nucleotide EDITTAG-

designed indices versus 12 libraries incorporating Illumina TruSeq

adapters. Outliers represent failed enrichments.

(PDF)

Table S1 The counts of sequence tags within commercial and

non-commercial sets having a minimum edit distance of three or

five.

(PDF)

File S1 Commercial and non-commercial sequence tags in an

input format suitable for validation using EDITTAG.

(TXT)

File S2 Ten nucleotide, edit distance five sequence tags that we

incorporated into PCR primers and Illumina-style sequencing

adapters.

(TXT)

File S3 PCR primers incorporating 10 nucleotide edit metric

sequences tags for amplifying rbcL in land plants.

(XLSX)

File S4 An extended set of sequencing adapters incorporating

edit metric sequence tags for use with the Epicentre Nextera

library preparation kit.

(XLSX)

File S5 Illumina-style adapters (n = 135) incorporating 10

nucleotide, edit distance five sequence tags. The first 46 of these

sequence tags also have an edit distance of three across the first six

nucleotides of the index, so they will work in place of TruSeq

indexes.

(XLSX)

File S6 All edit distance computations across the tag sets

contained within File S1.

(XLSX)

File S7 All edit metric sequence tags we generated as part of this

research.

(TXT)
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