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Abstract

Ecologists often use multiple observer transect surveys to census animal populations. In addition to animal counts, these
surveys produce sequences of detections and non-detections for each observer. When combined with additional data (i.e.
covariates such as distance from the transect line), these sequences provide the additional information to estimate absolute
abundance when detectability on the transect line is less than one. Although existing analysis approaches for such data
have proven extremely useful, they have some limitations. For instance, it is difficult to extrapolate from observed areas to
unobserved areas unless a rigorous sampling design is adhered to; it is also difficult to share information across spatial and
temporal domains or to accommodate habitat-abundance relationships. In this paper, we introduce a hierarchical modeling
framework for multiple observer line transects that removes these limitations. In particular, abundance intensities can be
modeled as a function of habitat covariates, making it easier to extrapolate to unsampled areas. Our approach relies on a
complete data representation of the state space, where unobserved animals and their covariates are modeled using a
reversible jump Markov chain Monte Carlo algorithm. Observer detections are modeled via a bivariate normal distribution
on the probit scale, with dependence induced by a distance-dependent correlation parameter. We illustrate performance of
our approach with simulated data and on a known population of golf tees. In both cases, we show that our hierarchical
modeling approach yields accurate inference about abundance and related parameters. In addition, we obtain accurate
inference about population-level covariates (e.g. group size). We recommend that ecologists consider using hierarchical
models when analyzing multiple-observer transect data, especially when it is difficult to rigorously follow pre-specified
sampling designs. We provide a new R package, hierarchicalDS, to facilitate the building and fitting of these models.
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Introduction

Transect surveys are often used to sample animal populations

and are a central component of many inventory and monitoring

programs. In such surveys, an observer travels along a set of lines

or visits a finite collection of points, recording all animals they

encounter within a fixed distance of the line (or point). If all

animals within this strip are encountered, researchers can make

inferences about abundance over a larger area by employing

standard design-based sampling protocols [1]. On the other hand,

if some animals are missed (as is almost always the case),

approaches are needed to correct for probabilities of detection

(p) that are less than one.

Distance sampling is one potential avenue for correcting for

incomplete detection of animals in fixed area polygons. In its

canonical form (e.g. [2,3]), distance sampling is a simple extension

of quadrat sampling, whereby an observer notes the perpendicular

distance of animals or groups of animals from the centerline (or

radial distance from a point). Analysts then fit models to distance

data that allow them to express the probability of detecting a

group of animals as a function g(x; h) of distance x, where h are

parameters to be estimated. Total abundance in the surveyed area

can then be estimated as

ĜG~
CÐ w

0
g(x; ĥh) dx

,

where w is half the transect width. In practice, g(x; h) must often

assumed to be 1.0 at distance x~0 when transects are traversed by

a single observer for parameters to be identifiable.

When animals are detectable from the air, from vessels at sea, or by

othermeans (e.g.avianauditorycounts),distancesamplingprovidesa

way to correct for imperfect detection in animal surveys without

having to physically capture and mark animals. Correcting for

imperfect detection is necessary when estimating absolute abun-

dance, and is also viewed by many as an essential component of trend

estimation because trends in detectability are typically confounded

with trends in abundance unless detectability is explicitly accounted

for [4,5]. For these reasons, practitioners routinely use distance

sampling in contemporary animal transect surveys.

Researchers have extended conventional distance sampling to

account for a variety of complications that arise in real life

sampling scenarios. Several studies have utilized multiple observers

to relax the assumption of complete detectability on the transect

line [6], and to model heterogeneity in detection as a function of

distance [7–9]. These features are common in many datasets, and
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can cause negative bias in abundance estimates if unaccounted for.

Other authors have extended conventional distance sampling to

model the effects of individual and external covariates on detection

probabilities [10–12]. As with conventional approaches to distance

sampling, estimators are often obtained via a two-stage approach,

whereby analysts first formulate models for multiple-observer and

distance data, and then estimate abundance using a Horvitz-

Thompson-like estimator [13,14].

Several authors have recently proposed using hierarchical,

Bayesian models in place of likelihood or moment-based estimators

to analyze distance sampling data [15–20]. The appeal of using

hierarchical models is undeniable, as they permit straightforward

inference about the relationship of animal abundance to habitat-

specific covariates [21], and allow parsimonious relationships to be

specified among abundance parameters in time and space [22]. For

instance, Moore and Barlow [18] and Chelgren et al. [19] recently

used hierarchical models to account for strata and year effects on

animal densities when analyzing line transect data.

Thus far, attempts to analyze line transect data with hierarchical

models have focused on single observer data. In this paper, we

develop hierarchical models for double observer data that permit

habitat covariates to influence abundance intensity, while simul-

taneously modeling effects of covariates on detection probability.

Since double observers are employed, these models allow for

v100% detection on the transect line (by contrast, previously

developed hierarchical modeling approaches had to assume 100%

detection on the line). Our approach can also accommodate

increasing dependence among observer detections as a function of

distance. Building upon previous work by Durban and Elston [23]

in the context of mark-recapture modeling, our approach for

modeling detections and abundance at the transect level is based

on data augmentation [24,25], using a reversible jump Markov

chain Monte Carlo (RJMCMC) algorithm [26,27] to sample

abundance and individual covariates.

Our modeling approach is applicable to sampling programs for

a variety of taxa; here, we focus on describing a generalized

hierarchical modeling framework, developing user friendly soft-

ware, and demonstrating the viability of our approach. After

describing our proposed model, we use a small simulation study to

verify that it provides reasonable inference about abundance for

multiple species with different habitat preferences. Finally, we

analyze data from a known population of golf tees that were

sampled via a double observer distance sampling protocol. Golf tee

clusters varied by the number of tees in each cluster, by color, and

by level of exposure, allowing us to fit models that expressed

detection probability as a function of covariates and to estimate

posterior distributions for these covariates. In contrast to most

population surveys, truth is known for this dataset and provides a

verifiable test of our modeling framework.

Methods

Hierarchical Model
We propose a hierarchical model for distance sampling data

consisting of several conceptually distinct components (Figure 1).

Writing the model hierarchically, we can use conditioning to treat

these components separately. Letting the notation ½X � define the

probability distribution or mass function of X , ½X DY � denote the

conditional probability of X given Y , we (symbolically) write the

likelihood of the hierarchical model as

½DataDParameters�
! ½DataDLocal abundance, Covariates, Detection parameters�
| ½CovariatesDLocal abundance, Covariate parameters�
| ½Local abundanceDAbundance intensity�
| ½Abundance intensityDHabitat parameters�:

Figure 1. Directed, acyclic graph (DAG) of the (areal) hierarchical model for distance data. Individual nodes indicate a parameter or vector
of parameters, and arrows represent conditional dependence. Notation is defined in Table 1.
doi:10.1371/journal.pone.0042294.g001

Hierarchical Models for Transect Surveys
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If conducting a Bayesian analysis, the posterior distribution is

then proportional to

½DataDParameters�½Prior distributions�:

Given samples from the posterior, one can make posterior

predictions of total abundance, so we might include another

component ½Total Abundance | Abundance intensity,
Covariate parameters, Local abundance� as well. Below,

we treat each of these components in turn. Notation is largely

defined in the text, but is also provided for convenience in Table 1.

Observation (Data) Model
The data collected in multiple observer transect surveys consist

of a collection of binary observations, Y, and covariates, Z.

Detections (Yijk~1) and non-detections (Yijk~0) are recorded for

each observer k for the ith group of animals encountered on

transect j. Covariates thought to influence detection probability

may also be recorded, with Zijl giving the value of covariate l for

the ith group of animals encountered in transect j. In practice, Z
may include both transect specific covariates (e.g. survey

conditions) or covariates associated with individual groups of

animals (distance, group size, species, etc.).

Suppose for the moment that we also knew the total number of

groups present in the area associated with transect j, Gj , as well as

covariate values for each group. In this case, we could augment the

total number of observed groups, Gobs
j with an additional

Gj{Gobs
j observations for which the Yijk were all zero. We adopt

this convention here, leaving it to a later section to describe the

procedure by which Gj and the missing covariates are estimated.

Conditional on Gj and Zj , we assume that observations Yijk are

Bernoulli distributed, with success probabilities pijk. We model the

pijk using a probit link function, expressing them as a function of

covariates in a manner analogous to generalized linear models

[28]. We also allow for increasing dependence among observers as

a function of distance by allowing for correlation between pij1 and

pij2 on the probit scale. Specifically, assuming two observers, we

have

probit
pij1

pij2

� �
*MVN

Xdet
ij1 bdet

Xdet
ij2 bdet

" #
,

1 rij

rij 1

" # !
,

where Xdet gives a design matrix incorporating any desired

covariates for detection probability, and bdet gives a vector of

regression coefficients. Correlation (rij ) is set to be a function of

distance by allowing rij~h(dij)r, where dij is the distance value

associated with the ith group in the jth transect and r is an

estimated parameter. For continuous data, we suppose that

dij[½0,w�, and for binned data, we suppose that distance bins are

represented by finite integers with dij[f1,2,Dg with D being the

farthest distance bin. Correlation could potentially be a function of

other covariates as well; however, there is typically limited

information with which to estimate it. In the following develop-

ment, we assume that correlation changes linearly on the probit

scale as a function of distance from the observer. With binned

Table 1. Parameter and data definitions.

Parameter Definition

N Total animal abundance in the study area

Gj Number of groups of animals located in area j

vj The log of abundance intensity in area j

tv Precision of log of abundance intensity; used to impart overdispersion relative to the Poisson distribution

lj Abundance intensity in area j ( = exp(vj))

bhab Parameters of the linear predictor describing variation in the log of abundance intensity as a function of habitat covariates

Zijk The value of the kth individual covariate associated with group i in transect j (for groups of animals never observed)

h Parameters describing the distribution of individual covariates at the population level

bdet Parameters of the linear predictor describing variation in the probit of detection probability as a function of observer and individual
covariates

r Parameter describing increasing correlation between Yij1 and Yij2 as a function of distance when there are double observers

Data Definition

Yijk Bernoulli response variable for whether the ith group in the jth transect was observed by observer k

Gobs
j

Number of groups observed by at least one observer during transect j

Oj Number of observers present when sampling transect j

Zijk The value of the kth individual covariate associated with group i in transect j if it was actually observed

Xhab Design matrix associated with habitat model

X det
ijk

Design matrix associated with the detection model for the ith group in the jth transect and observer k (note dependence on Zijk)

Sj Label for grid cell j (J of which are completely covered by transects, and L2J of which are unsampled cells).

Aj The area of grid cell j (perhaps scaled to its mean)

Parameters and data used in the hierarchical model for distance data.
doi:10.1371/journal.pone.0042294.t001

Hierarchical Models for Transect Surveys
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distance data (i.e. when observers record distance as falling into

one of a finite collection of distance intervals), we suppose that

h(dij)~
(dij{1)

D{1
,

and with continuous distance data,

h(dij)~
dij

w
:

In both cases, rij is assumed to be zero on the line (or in the first

distance bin). This assumption, termed ‘‘point independence’’ by

several authors [7–9], anchors the correlation function at distance

zero and makes observer dependence parameters identifiable. This

formulation also allows increasing dependence of observations as a

function of distance, a common phenomenon in distance sampling

[7–9].

Like the (more popular) logit link function, the probit link

function provides a transformation from ({?,?) space (the

space of the linear predictor) to (0,1) space (probability space).

However, use of a probit link allowed us to employ the

computationally efficient posterior sampling algorithm suggested

by Albert and Chib [29]. In particular, we augment each detection

with a latent variable, ~YYijk, where ~YYijkw0 if and only if Yijk~1.

Then, we suppose that

~YY ij1

~YY ij2

 !
*Normal

Xdet
ij1 bdet

Xdet
ij2 bdet

" #
,

1 rij

rij 1

" # !
: ð1Þ

With multiple observers, conditioning on one value of ~YY
reduces the probability density from a bivariate to a univariate

distribution. In particular,

½ ~YYij1D ~YYij2,bdet,rij �~Normal(mij1zrij( ~YYij2{mij2),1{r2
ij), ð2Þ

where mijk~Xdet
ijk bdet. The full conditional distribution for ~YYijk is

then a truncated normal, which can be updated within MCMC

using a Gibbs step; the bdet can also be updated directly with

Gibbs steps (see Text S1 for further details).

Covariate Model
Some covariates thought to influence detection probability are

collected at the transect level (e.g. survey conditions), and are

therefore known for all potential groups of animals (observed and

unobserved). However, for covariates associated with individual

groups of animals (e.g., distance, group size, species), an

underlying model is needed to link the observed covariates (for

observed groups) to unobserved covariates (for unobserved

groups). We model these individual covariates as having arisen

from a parametric distribution, possibly with overdispersion. In

general, let the covariate Zijk have the distribution

½g(h,eijk)�, ð3Þ

where g() specifies an arbitrary function, h gives hyper-priors, and

eijk specifies a random effect. We have implemented a number of

such distributions in our accompanying R package, hierarchi-

calDS. For instance, the user can choose ½g(h,eijk)� to be a

uniform, multinomial, Poisson, zero-truncated Poisson, over-

dispersed Poisson, or overdispersed zero-truncated Poisson distri-

bution. The overdispersed versions of the Poisson distribution are

modeled as in [30]; namely

Zijk*Poisson( exp (mzseijk)),

where eijk*Normal(0,1) and m and s are parameters to be

estimated. The zero-truncated versions of the Poisson distribution

are important for modeling covariates such as group size, which

are by definition §1 [31]. One can also choose to fix the

parameters of these distributions, or to specify hyper-prior

distributions. For further information, see accompanying R

package.

Process Model
Let S1,S2,SJ ,SJz1,,SL define a partition of the study area,

where Sj , jƒJ, denote areas covered by individual transects, and

Sj , jwJ, denote unsampled areas. In practice, these cells may be

irregularly shaped, or with different effective areas covered, Aj .

We suppose that the number of groups of animals located in the

Figure 2. True and estimated population size for simulated
data. True abundance is indicated in red, with posterior means and
estimated 95% credible intervals for abundance indicated by circles and
brackets, respectively. Panel (A) gives results for the simulation with
linearly increasing abundance, while panel (B) gives results for the
simulation with a quadratic relationship between abundance and a
habitat covariate.
doi:10.1371/journal.pone.0042294.g002
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area encompassed by area j, Gj , is Poisson distributed with

intensity parameter lj . Overdispersion, if present, can be

accommodated in the specification of lj . We model species-

habitat relationships by writing abundance intensity as a function

of habitat covariates (an intercept only model can be specified if no

such covariates are collected). Letting nj be the log of abundance

intensity in Sj , we impose the following model:

�v*Normal(Xhabbhab,t{1
n I):

Here, Xhab gives a design matrix incorporating any predictor

variables for abundance, bhab gives a vector of regression

coefficients, and tn denotes precision of the process model. The

resultant Poisson intensity is then lj~Aj exp (nj). In practice, we

find it convenient to scale Aj to its mean rather than use absolute

values. This formulation incorporates habitat covariates in a

manner analagous to generalized linear models [28], but also

includes possible overdispersion relative to the Poisson distribu-

tion, a prevalent feature in ecological datasets. Such overdispersion

can lead to left-skewed distributions for total abundance, similar to

the lognormal distribution often assumed in conventional distance

sampling [3].

Posterior Predictions of Abundance
The model as written focuses on abundance of groups. In

contrast, population managers often require estimates of density or

abundance that reference the number of unique individuals

inhabiting an area of interest. For surveyed cells (i.e., jƒJ),

abundance can simply be calculated as Nj~
PGk

k~1 nik, where nij is

the group size associated with observation i in the area covered by

transect j (which is itself a modeled covariate).

For areas that are unsurveyed (that is, j§J ), abundance Nj can

be sampled using the parametric model selected for group size. For

the zero-truncated Poisson model,

(Nj{Gj)*Poisson(hGj),

while for the zero-truncated overdispersed Poisson model,

(Nj{Gj)*Poisson((hz0:5s2)Gj):

Posterior predictions of total abundance are then calculated as

N~
P

j Nj .

Figure 3. Representation of golf tee population. Each symbol represents a different group of golf tees, with dark symbols representing yellow
tees and gray symbols representing green tees. Groups that were observed by at least one observer are indicated by solid symbols, while open
symbols indicate groups that were never observed. Squares represent tee groups that were exposed above surrounding grass, while triangles
represent unexposed groups. Group sizes are indicated by the proportional size of each symbol, with the smallest symbols representing groups of 1
animal, and the largest symbols representing a group of 8 individuals. Transect lines are represented by solid black lines, with dotted lines giving
survey area boundaries and demarcating the areas surveyed by each transect. The red line serves as the strata boundary (points north comprise the
northern stratum).
doi:10.1371/journal.pone.0042294.g003
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Prior Distributions
Bayesian analysis requires specification of prior distributions for

tn, bhab, bdet, and h. We chose a conjugate Gamma(a,b) prior for

tn, so that full conditional distributions were available in standard

form and could be sampled directly with Gibbs sampling. In all

subsequent analysis, we chose a~1 and b~0:01 to put ample

weight on plausible parameter values.

We gave the b, which are analogous to regression parameters,

vague Normal(0,1000) prior distributions, which is a common

strategy in regression problems (e.g. [32], Chapter 14). By contrast,

hyper-priors for individual covariates incorporated greater precision

to improve sampling efficiency. In our two subsequent examples, we

incorporated a Gamma(1:1,1:0) distribution for the log of group

size, and a Uniform(0,1) distribution for s (the standard deviation

for log group size random effects). For the simulation study and golf

tee analysis, species and exposure were modeled with a Dirich-

let(10,10) distribution, the conjugate prior for the categorical

distribution. Pilot analyses suggested little sensitivity of results to

our choice of prior distributions.

Data Augmentation and Bayesian Inference
As suggested previously, the primary challenge in implementing

a complete data model for multiple observer transect surveys was

in jointly sampling local abundance and individual covariates. We

chose to implement a reversible-jump algorithm (RJMCMC) to

sample abundance at the transect level, in a manner similar to

Durban and Elston [23]. The RJMCMC approach is commonly

used in cases where the dimensionality of the parameter space is

unknown (in our case, abundance is unknown) [27], and provides

a mechanism to grow or shrink the number of parameters during

posterior sampling. In our case, RJMCMC consists of several

steps, including (1) additions and deletions of unobserved animals,

(2) resampling of covariate values for unobserved animals, and (3)

sampling of ~YY values for new additions. These steps were

conducted independently for each transect since realizations for

each transect are conditionally independent; thus without loss of

generality, we present sampling details for a single transect.

Specification of the complete data model starts with specifying an

integer Mj that serves as the upper limit for the number of groups of

animals present in the sampled area of transect j. In practice, this

integer can be increased if it is found that the posterior group

abundance runs up against this bound [23,25]. However, choosing

too large of a value can dramatically increase computing time.

Addition and deletion steps consist of increasing or decreasing

the value of Gj , and are accomplished as follows:

N Propose a new value for Gj , G
0
j~Gjzu, where u*Discrete

Uniform({a,a), and a is a tuning parameter set to achieve a

target acceptance rate of 0.3–0.4.

N Accept proposal with probability r, where

Figure 4. Empirical and posterior predictive distributions of golf tee group size. Bar plots representing the probability mass for group size
in the golf tee experiment. Empirical distributions correspond to the actual distribution of group size used in the experiment, while posterior
distributions represent estimated posterior predictive distributions obtained after analyzing data with our hierarchical model.
doi:10.1371/journal.pone.0042294.g004
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r~

lu
j P

u
k~1

1{pGjzk,j

Gj{Gobs
j

zk
uw0

lu
j P

{u
k~1

Gj{Gobs
j

{kz1

1{pGj{kz1,j
uv0

:

8>>><
>>>:

Here, pij equals the probability that group i of transect j is

observed by one or more observer. If there is only one observer on

transect j, this probability is simply

pij~

ð?
0

Normal(x; Xijb
det,1)dx;

if Oi~2,

pij~

ð?
0

ð?
0

Normal
x

y

� �
;

Xdet
ij1 bdet

Xdet
ij2 bdet

" #
,

1 rij

rij 1

" # !
dxdy:

Figure 5. True values and estimated posterior distributions for simulated data. Kernel density estimates of marginal posterior distributions
are indicated in black, with true values used to simulate data indicated by red, vertical lines. Parameters indexed by ‘‘Cov’’ give covariate parameters,
‘‘Det’’ give detection parameters, ‘‘Hab’’ give habitat parameters, and ‘‘N’’ gives abundance. The first panel (‘‘cor’’) gives an estimate of the observer
dependence parameter. Species specific parameters are indexed by ‘‘sp1’’ (for species one) or ‘‘sp2’’ (species two).
doi:10.1371/journal.pone.0042294.g005
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This formulation, including the integral and specification of

variance as 1.0, corresponds to the inverse probit link function

[33].

The Metropolis ratio, r, follows directly from a sampling model

where the likelihood of observing Gobs
j individuals out of Gj total

animals is

Gj

Gobs
j

 !
P
Gj

i~1
p

Yij
ij (1{pij)

(1{Yij ),

where Yij~ max (Yij1,Yij2). Link and Barker [16] used a similar

model formulation in their complete data representation of

distance data.

Following the addition/deletion step, the next step in our

RJMCMC estimation scheme is to resample individual covariates.

For each such covariate, there are two categories of values to

update: (1) covariates for which a group of animals were in the

population and never observed, and (2) latent groups not currently

belonging to the population. Letting Gobs
j denote the number of

groups observed by at least one observer in transect j, and Gj be

the total number of groups for transect j at the previous iteration of

the Markov chain, the full conditional distribution for a given

covariate c, Zijc is given by

½Yij1~0,Yij2~0DZij ,b,Xij1,Xij2��½ZijcDh�,

for i[(Gobs
j z1,Gobs

j z2,Gj), which is just the observation model

(e.g. Eq. 1) multiplied by the prior distribution of the individual

covariate. We use a Metropolis-Hastings step to sample from this

distribution.

For ‘‘pseudo-groups’’ Gjz1,Gjz2,M (i.e., groups of animals

not currently in the population who might be added during a

future RJMCMC step), we simulate covariates directly from Eq. 3.

These distributions are used in place of the pseudo-prior

distributions suggested by Durban and Elston [23]. The difference

between our approaches is that in the present work we obtain

posterior samples of the parameters specified in g() (e.g. the

parameters describing the underlying covariate distribution), while

Durban and Elston fix these parameters. Simulations (see below)

suggest that this approach results in estimates with reasonable

properties, and also bypasses the need to tediously tune pseudo-

prior distributions. Assuming random placement of transect lines,

we selected a uniform distribution a priori to simulate pseudo-

group distances.

Estimation of remaining model parameters (conditional on a set

level of abundance) proceeded by cyclical sampling of model

parameters from their full conditional distributions [32]. In

particular, we employed a combination of Gibbs and Metropo-

lis-Hastings steps for posterior sampling. For Metropolis-Hastings

steps, candidate parameter values were sampled from uniform

distributions centered at the previous iterations parameter value

and with a range chosen to achieve an acceptance rate of 30–40%

as suggested by Gelman et al. [32]. For further details, see Text S1.

Computing
We developed generalized computing code to conduct MCMC

estimation, which we implemented in the R programming

environment [34]. This code has been incorporated into the R

package, HierarchicalDS. The package, which includes code, help

Figure 6. True and estimated detection functions for simulated data. Detection functions for each species are based on mean group sizes
for each species (4 and 2, respectively), and are made for observer 2 (who had an intermediate detective ability).
doi:10.1371/journal.pone.0042294.g006
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files, and an example analysis, is currently available on the

Comprehensive R Archive Network (CRAN; http://cran.r-

project.org/).

Examples
Simulated data. We first used simulation to verify that our

modeling approach provided reasonable estimates of abundance

and related parameters. In particular, we generated a double-

observer distance sampling dataset for two species with different

habitat preferences and covariate values, but with a common

detection function. For the first species, expected abundance

increased linearly with an arbitrary covariate (here, transect

number); expected abundance of the second species had a

quadratic relationship with the covariate (Fig. 2).

A total of 25 transects were simulated, each of which had two

observers assigned. In all cases, observers were picked randomly

from a pool of three total observers with different underlying

detection probabilities. The assumed detection function was made

to be a function of observer, distance, species, and group size.

Correlation between observers was modeled as a linearly

increasing function of distance on the probit scale, with a

maximum value of 0.5 at the farthest observable distance.

Using the true functional form for detection and habitat models,

we sampled the posterior distribution with two Markov chains of

length 270,000 with random starting values, recording posterior

values from one out of every 20 iterations to save disk space.

Convergence was determined by examining trace plots and other

standard convergence diagnostics [32], and occurred after

&20,000 iterations. Removing the first 20,000 iterations as a

burn-in and combining thinned versions of each chain resulted in

25,000 samples with which to conduct posterior inference.

Golf Tee Data. To further test our estimation approach, we

analyzed data from an experimental survey of golf tees collected at

the University of St. Andrews in 1999 [35]. This experiment

mimics many nuances of actual animal transect surveys, but has

the added advantage that true abundance is known. Several

authors have previously used these data to gauge the performance

of double observer transect estimators when estimating abundance

from a real world dataset [7,35].

The locations of 108 groups of green golf tees and 142 groups of

yellow golf tees were randomly assigned over a landscape with two

spatial strata (Fig. 3). Experiment designers placed 44 groups of

green and 86 groups of yellow tees in the northern stratum (area

~1040 m2), with the remainder being placed in the southern

stratum (area ~640 m2). Tees were distributed in groups of 1–8

tees according to a predefined distribution (Fig. 4), and were

further classified by level of exposure to surrounding grass, with

some tee groups partially hidden by grass (Exposure = 0) and

others more visible (Exposure = 1).

A total of 11 8-m wide transects were used to sample the

population of golf tees, with eight independent observers traversing

each transect. Transects varied in length, but completely covered

the study area. We attempted to model these data in a similar

manner to Laake and Borchers [7] (hereafter, LB), in order to

make valid comparisons. Like LB, we pooled observations from

observers 1–4 and 5–8 into two separate observation ‘‘teams’’ in

order to investigate the performance of double observer methods

in reconstructing true population size.

Using the double observer distance data, we attempted to

estimate abundance of each ‘‘species’’ of tee (here, green and

yellow) using our hierarchical probit formulation. We specified

separate models for abundance intensity (n) for each species,

making each a function of stratum. For the probit of detection

probability, we used the same model structure as selected by LB as

having the most support in the data. Symbolically, this model

expresses the expected value of detection probability (on the probit

scale) as

ObserverzDistancezSizezSpecieszExposure

zSize � SpecieszSpecies � Exposure,

where Size specifies group size, and the ‘*’ symbol denotes a

multiplicative interaction between variables. We modeled group

size as a realization of an overdispersed, zero truncated Poisson

process, and exposure as a categorical distribution.

We sampled the posterior distribution corresponding to the golf

tee data with two Markov chains with different starting values.

After an initial pilot run of 1000 iterations to adjust MCMC tuning

parameters to desired ranges, each chain was run for 100,000

iterations. Inspection of trace plots and other standard MCMC

diagnostics suggested that convergence to a stationary distribution

was obtained almost immediately; as such, we combined the final

90,000 iterations of each chain together for inference.

Results

Simulation Results
Estimated abundances mirrored truth in each transect (Fig. 2).

Estimated 95% credible intervals often included true parameter

values (i.e. the values used to simulate data), although there were a

few exceptions (Fig. 5). In particular, (i) the slope of the covariate-

abundance relationship was overestimated for species one

(posterior mean = 1.10 instead of 1.00), and (ii) the magnitude

of the distance effect on the detection function was consistently

underestimated. We do not regard these discrepancies as overly

problematic, however. Regarding (i), we were still able to capture

the general pattern of linear increase in abundance (Fig. 2).

Regarding (ii), we note that plots of realized detection functions

still compare favorably to those used to generate data (Fig. 6).

Golf Tee Results
For comparison with LB, we focus inference on the number of

groups of animals (noting that posterior distributions for absolute

abundance are also readily available). The posterior distribution

for abundance of golf tees had a mean of 226 groups and 95%

credible interval of (204, 251). By contrast, LB produced an

estimate of 252, which was much closer to the true population size

of 250. However, as LB note, this is somewhat accidental, as

estimates of the number of groups in each color and exposure class

differed substantially from true values. The hierarchical approach

does better in this context, producing estimates that are as good or

better than those generated by LB (Fig. 7). However, both

approaches underestimate abundance for unexposed tees. We

suspect that some of the unexposed tee clusters had very low

(perhaps even zero) detection probabilities, and that the simple

binary exposure covariate was insufficient to capture this variation.

Likelihoods for conventional mark-recapture distance sampling

(MRDS) estimators are often written as a function of several

different types of detection functions [7]. For instance, the

conditional detection function, piDj(d) gives the probability that an

object at distance d is detected by observer i given that is was

detected by observer j. Similarly, the individual detection function,

pi(d) gives the unconditional probability that an object at distance

d is detected by observer i; the duplicate detection function, p12(d)
gives the probability that the object is detected by both observers;

and the pooled detection function, p:(d) gives the probability that

the object is detected by at least one observer. If observers are truly
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independent, there are theoretical relationships between these

detection functions that should hold (e.g. p12(d)~p1(d)p2(d)); as

such, examining plots of these detection functions can be

informative when examining observer dependence. Similarly,

Buckland et al. [9] defined a dependence parameter, dd to express

observer dependence as a function of distance, where

dd~p12(d)=(p1(d)p2(d)). Although we have not included dd or

any of these detection functions explicitly in our modeling efforts,

we calculated these quantities post hoc using posterior means to

help in interpreting our results. Observer dependence (dd ) was

estimated to be near 1.0 (that is, no dependence) for a large

number of combinations of detection covariate values. Depen-

dence was maximized with small group sizes, the second observer

group, and green, unexposed tees (Fig. 8). This dynamic suggests

heterogeneity in detection for small groups of unexposed tees that

are far from observers.

As suggested by Royle [31], we were able to estimate a posterior

mass function for group sizes in the population (Fig. 4), which

compared reasonably with the known empirical distribution.

Similarly, we were able to estimate the proportion of unexposed

tees in the population; the posterior mean for green tees was 0.46

(95% CI: 0.30,0.61), and the posterior mean for yellow tees was

0.50 (95% CI: 0.40,0.60). By contrast, true values for this

proportion were 0.56 and 0.53, respectively. Finally, we were

able to estimate the effect of habitat covariates (in this case, strata)

on abundance intensity.

Discussion

Double-observer transect data are widely used to estimate

abundance of animal populations. Although previously available

estimators (notably, Horvitz-Thompson-like estimators [HT];

[35]) have proven remarkably versatile for estimating abundance

from such data, they are of limited utility in making inference

about the effects of ecological covariates on abundance, estimating

the distribution of individual covariates in a population, and in

making predictions about abundance in unsampled areas. The

latter is especially important when it is not feasible to employ

design-based statistical inference [1], either due to logistical or

political constraints (e.g. certain areas are impossible to sample) or

because the relative density of animals changes during the study

[36].

An alternative approach to extrapolating abundance over a

large spatial domain is to use a multi-stage statistical procedure,

where the outputs from the first stage of modeling (e.g. density

estimates) are used as inputs (data) for a second round of modeling

(e.g. using a spatial model with habitat covariates) [37,38]. This

approach is widely used for extrapolating line transect estimates to

unsampled areas in absence of a truly experimental sample design,

particularly for cetaceans [39,40]. However, care must be taken

that variability associated with model outputs in the first stage of

modeling are carried through when producing final abundance

estimates [36].

We have presented a general framework for hierarchical

analysis of double observer transect data that avoids many of

Figure 7. Posterior distributions for the abundance (number of groups) of golf tees of different types. Kernel density estimates of
posterior distributions are in black, while true values are represented by red vertical lines, and estimates from a conventional mark-recapture distance
sampling analysis (see Laake and Borchers [7]) are presented in blue.
doi:10.1371/journal.pone.0042294.g007
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these difficulties, obtaining posterior distributions for all param-

eters from a single analysis. In particular, abundance intensity can

be made a function of habitat covariates, so that extrapolation to

unsampled areas is straightforward (assuming that covariates are

known for these areas). Further, precision of abundance estimates

should be better than HT estimators whenever an explanatory

habitat covariate can be identified. Modeling data from multiple

observers allows us to relax the assumption of 100% detection on

the transect line. Observer dependence can be accommodated via

a bivariate normal distribution on the probit scale, helping to

account for an increase in detection heterogeneity as a function of

distance. To our knowledge, this is the first attempt at constructing

a hierarchical model for double observer transect data.

Our model performed well in estimating abundance of two

simulated populations whose abundance intensities were linearly

and quadratically related to a hypothesized habitat covariate.

Admittedly, we supplied the estimation model with the correct

functional form for habitat relationships, a convenience typically

not possible in real world estimation scenarios. Unfortunately, we

know of no universally accepted method for conducting model

selection among alternate functional forms for habitat-density

relationships when using a RJMCMC approach to estimation. For

instance, the popular deviance information criterion (DIC; [41])

has been shown to perform poorly in missing data applications

[42]. Presently, we suggest using a flexible functional form, with a

selection of habitat covariates guided by biology to parameterize

these relationships. Analysts can then examine credible intervals to

confirm whether such parameters are biologically meaningful.

Alternative model selection procedures (e.g. based on posterior

predictive loss criteria; [43]) are a subject of current research.

Our model also performed well when estimating the abundance

of a known population of golf tees, in some cases outperforming

conventional MRDS HT estimators. The estimates from both

approaches (hierarchical, MRDS) tended to underestimate the

number of golf tees that were visually obstructed; however, we

suspect that this was largely due to some groups of tees being

virtually undetectable. As such, this should not be seen as a failure

of our proposed method, but as an artifact of the particular

dataset. It is well known that transect data alone will produce

negatively biased estimates if some subset of the population is

unavailable for detection [44]; further elaborations are needed to

arrive at unbiased estimates in these cases [45–47].

We made a number of modeling choices that differ from the

way in which line transect data are typically analyzed. Some of

these choices, together with our rationale, are listed in Table 2.

Figure 8. Implied detection probability and observer depen-
dence for covariates maximizing dependence. The top panel
gives detection probability curves for the set of covariates that
maximize observer dependence (observer = 2, group size = 1, expo-
sure = 0, species = ‘‘green’’). ‘‘Individual’’ specifies detection probability
for observer 2 only; ‘‘Conditional’’ gives the probability of detection for
observer 2 given that the group was detected by observer 1;
‘‘Duplicate’’ gives the probability of detection by both observers;
‘‘Pooled’’ gives the probability of detection by at least one observer.
The bottom panel represents dependence, as summarized by the
parameter d (see [9]) for the same set of covariates.
doi:10.1371/journal.pone.0042294.g008

Table 2. Modeling choices and justification.

Modeling construct Choice Alternatives Advantages

Point independence Bivariate normal distribution
with correlation as a function
of distance

Individual random effect Not needed when there is one observer

Detection model link function Probit Logit, complimentary log-log Simplifies Bayesian computation through
Albert and Chib algorithm [29]

Data representation Complete data likelihood/data
augmentation

Observed data likelihood Eases explicit conditioning, simplifies
likelihood computations, and enables
extensions such as species misidentification

Estimation procedure Reversible Jump MCMC
(RJMCMC)

Fixed dimension Bayesian inference (e.g.
using occupancy-like setup [22])

Straightforward implementation for non-
uniform spatial support (e.g. unequal
transect lengths)

Choices, alternative(s), and advantages of the modeling choices we made when analyzing double observer line transect data.
doi:10.1371/journal.pone.0042294.t002
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One choice that deserves further explanation is our preference of

the RJMCMC formulation for conducting inference in favor of an

alternative ‘‘occupancy’’ parameterization recently advocated by

several authors (e.g. [15,16]). In a single site (or single transect)

analysis, the two parameterizations are effectively identical, with

the latter being more computationally efficient [16]. However,

with multiple sites (or transects), the parameterization chosen for

data augmentation can have practical ramifications for inference.

A limiting case in spatial models is that counts (e.g. abundances in

given transects) are distributed according to a Poisson distribution.

The Poisson distribution has the convenient property of propor-

tional scaling. For example, if transects differ in spatial support (i.e.

are of different area), then abundance in a given transect i can be

assumed to follow a Poisson(Ail) distribution. As we have shown

in this paper, this relationship can be incorporated with relative

ease using an RJMCMC data augmentation strategy (over-

dispersion relative to the Poisson distribution can be readily

accommodated). By contrast, the approach advocated by Royle

and Dorazio [15] and Link and Barker [16] requires use of an

occupancy parameter, y, the interpretation of which requires

reference to the value of M assumed in the model (e.g. y~al=M).

Further, the variance of expected abundance in this model (e.g.

Var(G)~y(1{y)=M~al{a2l2) is negatively biased with

regard to the Poisson variance (i.e. Var(G)~al). What effect this

has on conducting hierarchical inference on abundance is

presently unknown, but we recommend using the RJMCMC

approach whenever spatial support differs among the areas

sampled (e.g. when transects vary in size).

Although we are convinced that our approach is valuable for

making predictions in unsampled areas, there is clearly need for

more research in this area. By virtue of its hierarchical structure,

our approach can easily be extended to incorporate spatial

autocorrelation in abundance. For instance, Schmidt et al. [20]

recently used conditionally autoregressive (CAR) models to

account for spatial dependence in single observer transect data.

However, predicting abundance with such models can be tricky,

with spurious ‘‘edge effects’’ that can potentially compromise

estimates of landscape-wide abundance [48]. Best practices for

conducting posterior predictions with such models is a subject of

current research.

We are also interested in extending our hierarchical framework

to model partial observation and misclassification of species. In

multi-species transect surveys, this is a real issue, as multiple

observers often record species as unknown or have conflicting

records. Currently available estimation approaches are incapable

of handling such conflicts. Our data augmentation framework is

clearly capable of treating true species as a latent (unobserved)

variable, with misclassification introduced in the observation

component of the model; however, parameter identification under

such a scenario deserves further investigation.

We strongly encourage ecologists interested in abundance and

species-habitat relationships to consider hierarchical modeling for

estimation, especially when it is infeasible to conduct standard

designed-based inference. When surveys are replicated across time

and space, hierarchical models provide demonstrable advantages

over design-based modeling approaches, as information can be

shared across temporal and spatial domains [18,22]. For multiple-

observer transect surveys, our modeling framework and accom-

panying R package provides the tools necessary to implement a

diverse array of hierarchical models.

Supporting Information

Text S1 Posterior sampling algorithm for multiple
observer transect analysis.

(PDF)
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