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Abstract

Background: Genotyping of human papillomarvirus (HPV) is crucial for patient management in a clinical setting. This study
accesses the combined use of broad-range real-time PCR and high-resolution melting (HRM) analysis for rapid identification
of HPV genotypes.

Methods: Genomic DNA sequences of 8 high-risk genotypes (HPV16/18/39/45/52/56/58/68) were subject to bioinformatic
analysis to select for appropriate PCR amplicon. Asymmetric broad-range real-time PCR in the presence of HRM dye and two
unlabeled probes specific to HPV16 and 18 was employed to generate HRM molecular signatures for HPV genotyping. The
method was validated via assessment of 119 clinical HPV isolates.

Results: A DNA fragment within the L1 region was selected as the PCR amplicon ranging from 215–221 bp for different HPV
genotypes. Each genotype displayed a distinct HRM molecular signature with minimal inter-assay variability. According to
the HRM molecular signatures, HPV genotypes can be determined with one PCR within 3 h from the time of viral DNA
isolation. In the validation assay, a 91% accuracy rate was achieved when the genotypes were in the database.
Concomitantly, the HRM molecular signatures for additional 6 low-risk genotypes were established.

Conclusions: This assay provides a novel approach for HPV genotyping in a rapid and cost-effective manner.
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Introduction

Human papillomavirus (HPV), a small and nonenveloped

double-stranded DNA virus, is established as the key etiological

factor in cervical neoplasms [1–3]. The recognition of the central

role of HPV infections in the etiology of virtually all cervical

cancers has dramatically changed the perspectives of diagnoses

and prevention of this neoplasia [4,5]. Currently, HPV DNA

testing plays a pivotal role for atypical squamous cells of

undetermined significance, primary screening in conjunction with

cytology for the detection of cervical cancer and cervical

intraepithelial neoplasia, and follow-up in a variety of clinical

settings [6–12]. Genotyping assays are also instrumental in

assessing the impact of HPV vaccination on the risk of acquisition

and on the distribution of individual HPV types in a population

[8,9,13,14].

HPV infection can be monitored by detection of thirteen high-

risk oncogenic HPV types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52,

56, 58, 59 and 68) using a commercially available HPV testing

method such as the Hybrid Capture 2 assay (Digene Corporation,

Gaithersburg, MD), the only HPV assay approved by the US Food

and Drug Administration [11,15,16]. However, information on

HPV genotype is lacking in the cocktail detection method. Other

detection systems that determine HPV genotype include non-

amplification Southern and dot blot hybridization with type-

specific probes [17], type-specific PCR [18,19], and broad-range

PCR [5,20]. The disadvantage of type-specific PCR is that

multiple hybridization reactions are needed to access multiple

HPV genotypes in a single sample, while broad-range PCR such

as MY09/11 has the drawback of a large PCR fragment with less

sensitivity [21]. Under these circumstances, there is a clinical

demand for developing a simple and accurate method for

identification of infecting HPV genotype with high specificity

and sensitivity.

Recently, a high-resolution melting (HRM) analysis method

which incorporates double-stranded DNA saturating dye and

specifically designed data collection and analyzing software has

been developed. HRM analysis was first developed as a closed-

tube technology for genotyping DNA variants and mutation
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screening with advantages over the other techniques such as high-

throughput, rapid and non-destructive nature [22–29]. Instead of

using a labeled primer to analyze the domain in which the

mutation resides, Wittwer and his coworkers developed HRM

analysis using a saturation dye LCGreen I to substitute the need of

labeled primer [28]. The combined use of real-time PCR and

HRM for analysis of microbial DNA results in distinguishable

HRM profiles and generates unique molecular fingerprints that

facilitates its practical applications such as quantification of

pathogen load and microbial species identification [30–35]. If

required, heteroduplex formation or multiple PCR fragments can

be employed to distinguish microbial species with closely similar

HRM profile [30,31,36]. A modified HRM protocol incorporating

unlabeled probes has also been reported for genotyping of herpes

simplex virus that provides an alternative to detect and genotype

low copies of viral infection [23].

In this study, we reported a novel method based on the use of

HRM analysis and unlabeled probes to rapidly identify and

differentiate HPV genotypes in clinical specimens. Without

multiplexing, HPV genotypes can be completed with one PCR

within 3 h from the time of viral DNA isolation.

Materials and Methods

Patients
All cervical samples were collected from the Department of

Obstetrics and Gynecology, Chang Gung Memorial Hospital with

the approval by the Institutional Review Board (IRB 99-0112B)

and with informed consent from the patients. The genomic DNAs

of 140 consecutive HPV clinical specimens were obtained from the

sample bank for this study. The individuals who performed the

experiments do not know the genotype of these clinical specimens

until completion of HRM analysis.

Materials
The QIAamp DNA mini kit was purchased from Qiagen

(Hilden, Germany). The LightCycler 480 and the LightCycler 480

High Resolution Melting Master were purchased from Roche

Applied Science (Mannheim, Germany). The T&A cloning vector

was purchased from RBC Bioscience (Taipei, Taiwan). The

McTaq DNA polymerase was purchased from One-Star Biotech-

nology (Taipei, Taiwan). The UniPOL-Long Range PCR enzyme

mix containing Taq DNA polymerase and AccuPOL with 39R59

exonuclease activity was purchased from Ampliqon ApS (Skov-

lunde, Denmark). The EasyChip HPV genotyping system was

purchased from KingCar (Yilan, Taiwan).

Genomic DNA isolation
The QIAamp DNA mini kit was used to extract DNA from

cervical specimen and the genomic DNA was eluted in 50 ml of

elution buffer. The quality of the extracted DNA was checked by

conventional PCR to amplify a housekeeping gene glyceraldehyde

3-phosphate dehydrogenase (GAPDH) in a 50 ml of reaction

containing 5 ml of 106 PCR buffer (20 mM MgCl2), 2 ml of

10 mM dNTP, 0.5 ml of McTaq DNA polymerase (5 U/ml), 2 ml

of 5 mM forward primer GAPDH-F, 2 ml of 5 mM reverse primer

GAPDH-R (Table 1) and 2 ml of template DNA. The PCR

condition was 95uC for 5 min followed by 50 cycles of 95uC for

30 sec, 60uC for 40 sec, and 72uC for 60 sec. An additional 3 min

of extension at 72uC was performed after the last PCR cycle to

replenish PCR products followed by cooling at 4uC.

EasyChip genotyping
The HPV DNA testing was done routinely for patients who

attended our dysplasia unit. Clinical DNA samples were subjected

to EasyChip assay platform for HPV genotyping. The details of

HPV blot format and typing procedure were described previously

[37]. Briefly, 20 ml of the denatured amplicon was hybridized to

the blot and the genotype was determined using streptavidin-

alkaline phosphatase conjugate and substrate. After the blot was

dried, the HPV genotypes displayed on the blot were determined

using a standard visual assessment protocol.

Plasmid construction of L1 fragment from various HPV
genotypes

Partial HPV L1 region was amplified by PCR using the clinical

DNA samples of HPV16, 18, 39, 45, 52, 56, 58 and 68 and the

primer pair FRG5/FRG2 (Table 1). Briefly, the PCR reaction

(50 ml) was composed of 5 ml of 106 UniPOL buffer B (15 mM

MgCl2), 1 ml of 25 mM MgCl2, 2 ml of 10 mM dNTP, 0.5 ml of

the UniPOL-Long Range PCR Enzyme mix (5 U/ml), 2 ml of

forward primer FRG5 (5 mM), 2 ml of reverse primer FRG2

(5 mM) and 2 ml of template DNA. The PCR condition was 95uC
for 5 min followed by 50 cycles of 95uC for 30 sec, 46uC for

40 sec, and 72uC for 30 sec. An additional 3 min of extension at

72uC was performed after the last PCR cycle to replenish PCR

product followed by cooling at 4uC. The PCR product was then

cloned into the T&A cloning vector as described by the

manufacturer’s instruction (RBC Bioscience) and was confirmed

by DNA sequencing.

Symmetric and asymmetric broad-range real-time PCR
and HRM analysis

For symmetric amplification of the HPV genomic DNA, broad-

range real-time PCR was performed in a 384-well format using

LightCycler 480. Briefly, the PCR reaction (20 ml) was composed

of 10 ml of 26HRM master mix, 2 ml of 25 mM MgCl2, 0.8 ml of

5 mM forward primer FRG5, 0.8 ml of 5 mM reverse primer

FRG2, and 2 ml of template DNA. The amplification condition

was optimized for the use of FastStart Taq DNA polymerase by

incubating the reaction mixtures at 95uC for 15 min, followed by

50 cycles of 95uC for 15 sec, 46uC for 20 sec, and 72uC for 30 sec

with the ramp to 95uC at 4.8uC/s, to 46uC at 2.5uC/s, and to

72uC at 4.8uC/s. An additional 1 min at 72uC was added to

replenish the PCR product.

For asymmetric amplification of HPV genomic DNA, the PCR

reaction (20 ml) was composed of 10 ml of 26HRM master mix,

2 ml of 25 mM MgCl2, 0.4 ml of 2.5 mM forward primer FRG5,

2 ml of 5 mM reverse primer FRG2, 2 ml of 5 mM unlabeled probe

for HPV16 and HPV18 when indicated, and 2 ml of template

DNA. The unlabeled probe was modified by C6-amine or inverted

dT at the 39-end to prevent the probe from self-extension. The

amplification condition was optimized for the use of FastStart Taq

DNA polymerase by incubating the reaction mixtures at 95uC for

15 min, followed by 65 cycles of 95uC for 15 sec, 46uC for 20 sec,

and 72uC for 30 sec with the ramp to 95uC at 4.8uC/s, to 46uC at

2.5uC/s, and to 72uC at 4.8uC/s. An additional 1 min at 72uC was

added to replenish PCR product.

For HRM analysis, the PCR product was denatured by rising

temperature to 95uC at 4.8uC/s and was then cool down to 55uC
at 2.5uC/s for hybridization. The melting curve was acquired by

increasing the temperature from 55uC to 95uC at a ramp rate of

4.8uC/s with 25 acquisitions per degree of temperature.

HPV Genotyping by HRM
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Table 1. The primers and unlabeled probes sequences.

Primer/probe type Primer/probe name Sequences

Forward primer FRG5 59-CARTTATTTAATAARCCATATTGGITACA-39

Reverse primer FRG2 59-TGAAAWATAAAYTGYAAATCATATTCCTC-39

Forward primer GAPDH-F2 59-CCCTGGAGCCTTCAGTTGCAGCCA-39

Reverse primer GAPDH-R5 59-CGTTCTCAGCCTTGACGGTGCCAT-39

Unlabeled probe HPV-16-UP 59-ATTATGTGCTGCCATATCTACTTCAGAA-39

Unlabeled probe HPV-18-UP 59-TGCTTCTACACAGTCTCCTGTACCTGGGCA-39

doi:10.1371/journal.pone.0042051.t001

Figure 1. Sequence alignments of the L1 fragment PCR amplicons. Sequence alignments of the PCR amplicons corresponding to nt 6895 to
7115 of the L1 fragment (accession number NC_001526.1) for the indicated HPV genotypes. Only the sequences showing differences from the first
sequence are shown. Nucleotides identical to the nucleotide in the first sequence are indicated by dots. The underlined sequences were used for the
design of primers FRG5 and FRG2.
doi:10.1371/journal.pone.0042051.g001
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Results

To assess the combined use of real-time PCR and HRM

analysis for rapid detection and differentiation of HPV genotypes,

genomic DNA sequences for 8 high-risk HPV genotypes (HPV16,

18, 39, 45, 52, 56, 58 and 68) were subject to bioinformatic

analysis. These genotypes represent 98% and 75% of the clinical

isolates in Southeast Asia and Europe/US, respectively [37,38].

After multiple-sequence alignment of HPV genomic DNA

sequences from different genotypes using the Vector NTI and

BioEdit software packages, the fragments that are highly

degenerated and flanked by conserved DNA sequences were

chosen as the candidate targets for design of broad-range PCR to

amplify HPV genomic DNA. Accordingly, a L1 fragment

corresponding to nt 6895 to nt 7115 of HPV16 (accession number

NC_001526.1) with the size ranging from 215 to 221 bp for

different HPV genotypes was found to fulfill our selection criteria

(Fig. 1). Due to the conserved nature of these nucleotides among

various HPV genotypes, the nt 6895 to 6923 and nt 7087 to 7115

were selected to design the forward primer FRG5 and reverse

primer FRG2, respectively (Table 1).

We determined whether symmetric PCR of the L1 fragment

followed by HRM analysis provides distinguishable melting

profiles for HPV genotyping. To facilitate the assay, the PCR

products corresponding to L1 fragment of various HPV genotypes

were subcloned into the T&A cloning vector. These plasmids were

used as the template for PCR amplification using the primers

FRG5 and FRG2. Despite that most of the HPV genotypes

displayed unique HRM profiles, the melting profiles for some

HPV genotypes were not distinguishable. For example, HPV18

and HPV45 exhibited almost identical derivative plots and the

genotypes were not likely to be determined accordingly (Fig. 2A).

To overcome this problem, we determined whether appropriate

use of type-specific unlabeled probe(s) generates HRM profiles

sufficient for differentiating HPV genotypes. To facilitate the

Figure 2. Asymmetric broad-range real-time PCR of L1 PCR amplicon. A and B. The L1 fragments of HPV18 and HPV45 were subject to
symmetric (panel A) or asymmetric (panel B) PCR amplification using the primers FRG5 and FRG2. An unlabeled probe complementary to HPV18
target sequence was included in the reaction during asymmetric PCR. HRM analysis was then performed and the derivative plots for the indicated
genotypes were shown. C–F. Serial dilution of the plasmid (from 1 pg to 10 ag) harboring the L1 fragment of HPV18 were used as the templates for
asymmetric broad-range real-time PCR with the primer pair FRG5 and FRG2. (C) A typical LightCycler 480 amplification plot. (D) The Ct plotted against
the plasmid DNA concentration. (E) A typical high-resolution melting plot. (F) A typical high-resolution derivative plots. NTC, no-template control.
doi:10.1371/journal.pone.0042051.g002
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binding of unlabeled probe to the PCR product, asymmetric PCR

was performed to selectively amplify the DNA strain complemen-

tary to the unlabeled probe. An unlabeled probe specific to

HPV18 was designed (Table 1) and was added into the

asymmetric PCR reaction. As illustrated in Fig. 2B, the HPV18-

specific unlabeled probe resulted in an additional melting peak for

HPV18 and thereby the genotypes of HPV18 and HPV45 can be

unambiguously differentiated (Fig. 2B).

The detection limit of this method was evaluated by asymmetric

PCR amplification of 10-fold serially diluted plasmid DNA (from

1 pg to 10 ag) that contained 221-bp of HPV18 L1 fragment. The

amplification reaction was performed in the presence of 40 ng of

human genomic DNA to mimic the co-presence of HPV and

human genomic DNA in clinical specimens. As revealed by

amplification plots, as little as 10 ag plasmid DNA equivalent to 3

copies of HPV DNA was detectable in this assay condition

(Fig. 2C). The standard curve showed a dynamic linear range for

quantification across 6 logs of DNA concentrations and had a

correlation coefficient of 0.9986 (Fig. 2D). Notably, both the

melting and derivative plots were consistent when the amounts of

template DNA from 1 pg to 10 ag were subject to asymmetric

PCR amplification (Fig. 2E and 2F).

It is known that the last 6–7 nucleotides of PCR primers are

critical for amplification specificity and efficiency [39,40]. Due to

the degenerative nature of the FRG5 and FRG2 primers and the

HPV68 genomic DNA carrying 2 mismatches at the last 7

nucleotides of the FRG5 primer region, we determined whether

the efficiency for amplification of HPV68 DNA is affected. When

the amounts of template DNA ranging from 1 pg to 100 ag were

used, PCR amplification of HPV68 DNA was as efficient as for

HPV18 DNA with no potential skewing. The presence of human

genomic DNA also had no effect on amplification of HPV18 and

HPV68 DNA (Fig. S1). However, 10 ag of plasmid template DNA

for HPV18 but not HPV68 could be detected by this method,

indicating a decrease in amplification efficiency that either due to

skewing effect or a negative impact of human genomic DNA on

amplifying low amount of HPV68 DNA.

The HRM profiles for 8 high-risk HPV genotypes were then

generated by asymmetric broad-range real-time PCR in the

presence of the unlabeled probes specific for HPV16 and HPV18.

The melting temperatures and melting profiles provide molecular

signatures for the 8 high-risk genotypes that can be unambiguously

identified through high-resolution derivative plots (Table 2 and

Fig. 3A). When clinical samples with the indicated genotypes were

subject to the analyses, the melting patterns were in accord with

those obtained from plasmid DNA template (Fig. 3B). Agarose gel

electrophoresis further confirmed the generation of genotype-

specific PCR products (Fig. 3C). The distinct HRM molecular

signatures thereby provide a basis for genotyping of HPV

subtypes.

We further assessed our method in HPV genotyping of clinical

specimens retrospectively. A total of 140 clinical samples from

patients who were suspected of having precancerous lesion were

blind tested. Due to the nature of sample storage, only 119 of the

140 DNA samples were informative and generated PCR products

that were suited for HRM analysis (Table 3). As revealed by

EasyChip genotyping and DNA sequencing, 70 of the 119

informative cases were infected with high-risk HPV subtypes,

while 49 were infected with low-risk subtypes. In addition, 65 of

the 70 samples were infected with the HPV subtypes that were the

analytical subjects of this study. Of the 65 samples, 59 displayed

distinguishable HRM patterns that can be assigned to the correct

genotype with the typing rate equivalent to 91%. According to

EasyChip genotyping analysis, the remaining 6 samples were

infected with multiple HPV genotypes and can not be genotyped

accurately by HRM analysis (Table S1).

During our analysis of clinical specimens, several low-risk HPV

genotypes including HPV42, 62, 70, CP8304, CP8061 and MM8

were found to display their unique high-resolution derivative plots

(Fig. 4A and 4B). Of the 49 specimens that were infected with low-

risk genotypes, 32 of them belonged to HPV42, 62, 70, CP8304,

CP8061 and MM8 with 29 of them being genotyped accurately.

The correct genotyping rate reached 91% (Table 3). Furthermore,

2 cases of HPV11 and 2 cases of HPV81 that were assigned as

‘‘others’’ (Table 3) in the low-risk group were, at the beginning,

mistakenly classified as HPV54 and CP8304, respectively. All the

rest of the samples (n = 18) assigned in the ‘‘others’’ group for both

high-risk and low-risk genotypes was not falsely claimed as infected

with the HPV subtypes of interest. Together, an HRM database

for a total of 14 HPV genotypes was established that form the basis

for HPV genotyping.

Table 2. High-resolution melting profiles for high risk HPV genotypes disclosed by broad-range real-time PCR.

HPV genotype (n)a Tm ± SDb (6C) GC content (%) GenBank accession no.

HPV16 (5) 65.0960.49
79.1060.17

34 NC001526.1

HPV18 (5) 72.4560.26
79.5360.27

36 AY262282.1

HPV39 (5) 78.2660.20 36 M62849.1

HPV45 (5) 79.8160.17 36 X74479.1

HPV52 (5) 76.7060.27
82.2260.21

36 EU077211.1

HPV56 (4) 77.0760.03 33 EF177176.1

HPV58 (5) 73.8760.28
79.7460.21

34 D90400.1

HPV68 (5) 72.9660.22
78.1260.03

36 DQ080079.1

aNumber of test (strain).
bThe variance between 4–6 measurements with the indicated number of isolates.
doi:10.1371/journal.pone.0042051.t002
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Discussion

HPV is well recognized as a major cause of cervical cancer. The

development of high grade pre-cancer and invasive cervical cancer

could be due to persistent high-risk HPV infection. A rapid,

accurate and sensitive method to detect and differentiate HPV

genotypes is essential to identify high risk patients who are

otherwise found to have normal cytological results and women

with cervical cancer potential from the screened population. HPV

genotyping provides a reference point for HPV vaccination and

HPV prevalence in natural history studies during clinical practice.

Unlike hepatitis B vaccine, there is no acceptable antibody test for

HPV vaccines. If it is affordable, HPV genotyping assay should be

the first choice for HPV testing. In this study, a novel approach for

HPV genotyping is developed. This method is based on the

combined use of asymmetric broad-range real-time PCR and

HRM analysis. Accordingly, 8 high-risk and 6 low-risk HPV

subtypes can be identified that offers a novel approach for HPV

genotyping.

A number of HPV DNA genotyping methods including real-

time multiplex PCR, Hybrid Capture II INNO-LiPA v2 HPV

genotyping PCR, Roche Amplicor MWP HPV test and Digene

HC2 assay have been reported in the literature [16,41–45].

Recent trends in the application of HRM analysis for microor-

ganism identification [30,31,35] lead us to explore a new avenue

to identify and differentiate HPV genotypes. Through bioinfor-

matic analysis, we revealed that the 153–163 bp interprimer

regions of FRG5 and FRG2 is relatively conserved within isolates

of the same genotype, whereas nucleotide divergence is present

among different HPV genotypes. Therefore, the PCR amplicon

likely contains information for at least partial phylogenetic

characterization for HPV genotyping. We demonstrated that 8

high-risk and 6 low-risk HPV genotypes can be identified through

the HRM molecular signatures that were generated by asymmetric

broad-range real-time PCR of the L1 DNA fragment in the

presence of two HPV16- and HPV18-specific unlabeled probes.

The relatively small PCR amplicon also results in an increase in

the detection limit of this method when compared with the

previously reported broad-range PCR such as MY09/11 that has

a drawback of a large PCR fragment with less sensitivity [21]. Our

data indicate that as little as 10 ag of plasmid DNA carrying the

HPV18 PCR amplicon equivalent to 3 copies of HPV genome is

detectable by this method. Due to the 2 mismatches of the last 7

nucleotides in the FRG5 primer region, the detection limit for

HPV68 is slightly affected with 30 copies of genome being

detected. As judged by the Ct value obtained from the analysis of

clinical specimens, most of the samples contained more than 300

copies of HPV DNA. Hence, this assay should have sufficient

sensitivity for most of the clinical HPV genotyping analysis. When

it is combined with rapid-cycle PCR, HRM analysis requires

Table 3. The validation assay for 119 clinical HPV isolates.

HPV type Genotype No. of isolates tested No. of isolates assigned with correct genotype Correct genotyping rate (%)

High-risk HPV16 15 15 100

HPV18 2 2 100

HPV39 11 10 91

HPV45 5 5 100

HPV52 8 7 88

HPV56 3 2 67

HPV58 14 12 86

HPV68 7 6 86

Total 65 59 91

Othersa 5 - -

Low-risk HPV42 7 6 86

HPV62 7 7 100

HPV70 6 5 83

CP8304 6 6 100

CP8061 2 2 100

MM8 4 3 75

Total 32 29 91

Othersb 17 - -

aHigh-risk HPV genotypes that are not characterized in this study.
bLow-risk HPV genotypes that are not characterized in this study.
doi:10.1371/journal.pone.0042051.t003

Figure 3. High-resolution derivative plots for 8 common and high-risk HPV genotypes. A. The plasmids carrying genotype-specific DNA
fragment were subject to asymmetric broad-range real-time PCR followed by HRM analysis. The derivative plots for all 8 genotypes were plotted
together to reveal the differences among different HPV genotypes. B. Two clinical samples (red and blue curves) for each indicated genotype were
subject to asymmetric broad-range real-time PCR and HRM analysis. Derivative plots for the indicated HPV genotypes were plotted together with the
derivative plot obtained from plasmid DNA (black curve) to reveal the consistent melting patterns between these two different sources of template
DNA. (C) Agarose gel electrophoresis was performed to demonstrate the generation of genotype-specific PCR products from asymmetric broad-
range real-time PCR.
doi:10.1371/journal.pone.0042051.g003
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minimal time, and the material cost is usually less than $3. The

time required for the differentiation of HPV genotypes is

considerably short when PCR is performed directly with clinical

specimens. Approximate 3 h is required for genotyping of the

clinical samples with the isolated DNA as the starting material.

Figure 4. Unique high-resolution derivative plots for 6 low-risk HPV genotypes. Clinical isolates that did not have derivative plots typical of
those in our HRM database were analyzed. The HPV42, 62, 70, CP8304, CP8061 and MM8 genotypes were found to display their unique high-
resolution derivative plots. The derivative plots were plotted together to reveal the differences among different HPV genotypes (panel A). The
derivative plots for two to three measurements of each HPV genotypes were plotted to reveal the minimal inter-assay variability (panel B). Note the
consistent derivative plot pattern for each virus subtype.
doi:10.1371/journal.pone.0042051.g004

HPV Genotyping by HRM
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Multi-infection of HPV strains with various genotypes accounts

for approximate 8–22% of the HPV-infected patients [46–48].

The prevalence of multiple HPV infections varies in relation to the

method used to detect HPV DNA and the study population. In

addition, a potential skewing for amplification of HPV DNA in

specimens containing multiple HPV genotypes by PCR with

broad-range primers has been reported [49]. A technical

limitation of the current method is the incapability to clearly

identify the genotypes in these scenarios. Hence, among the

clinical samples we analyzed in this study, the HPV genotypes for

7 HPV-positive samples that are infected with multiple HPV

genotypes can not be identified by HRM analysis. However, the

distinguished HRM patterns provide a hint that multiple infections

may occur that required further identification with other methods.

In conclusion, the molecular signatures from HRM analysis of

the broad-range real-time PCR products are useful for detection

and genotyping of HPV infection. This approach can be extended

further to cover all the 13 high-risk HPV genotypes. With an

appropriate HRM molecular signatures database, this method

should allow rapid and cost-effective differentiation of HPV

genotypes.

Supporting Information

Figure S1 Effects of human genomic DNA on the
amplification of HPV DNA. A–C. Serial dilution of the

plasmid harboring the L1 fragment of HPV18 (panel A and C) or

HPV68 (panel B and C) corresponding to the indicated copy

number of template DNA were subject to amplification by

asymmetric broad-range real-time PCR in the presence or absence

of 20 ng of human genomic DNA. The copy numbers of the

template DNA were plotted against Ct values.

(DOC)

Table S1 The genotypes for the samples with multiple
infection.

(DOC)
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