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Abstract

Attractors represent the long-term behaviors of Random Boolean Networks. We study how the amount of information
propagated between the nodes when on an attractor, as quantified by the average pairwise mutual information (IA), relates
to the robustness of the attractor to perturbations (RA). We find that the dynamical regime of the network affects the
relationship between IA and RA. In the ordered and chaotic regimes, IA is anti-correlated with RA, implying that attractors
that are highly robust to perturbations have necessarily limited information propagation. Between order and chaos (for so-
called ‘‘critical’’ networks) these quantities are uncorrelated. Finite size effects cause this behavior to be visible for a range of
networks, from having a sensitivity of 1 to the point where IA is maximized. In this region, the two quantities are weakly
correlated and attractors can be almost arbitrarily robust to perturbations without restricting the propagation of
information in the network.
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Introduction

Biological regulatory networks, such as gene regulatory

networks (GRN), must balance the need to respond appropriately

to incoming stimuli with the need to maintain robust behavior.

Namely, the network must be able to distinguish and respond

appropriately to various environmental and internal signals. At the

same time, it cannot be so responsive that the input signals

completely alter the behavior of the network. Several studies, using

Random Boolean Networks (RBNs) as models of GRNs [1,2],

have investigated what topologies and logic transfer functions

allow these networks to exhibit such properties [3–9].

Boolean networks (BN) have long been used to study global

dynamic properties of biological networks, particularly as models

of GRNs [2]. When used in this context, each gene (also called

node) is represented as a Boolean variable. There is a clock that

determines when the state of the nodes is updated. In synchronous

networks, all nodes are synchronously updated at every time step,

according to a Boolean function and the current state of its input

nodes. Also, since BNs are deterministic and their state space is

finite, it follows that a state must eventually repeat, after which the

network will repeat a fixed sequence of states ad infinitum. These

state cycles are the ‘attractors’ of the BN [2]. In the context of

GRNs, it has been hypothesized that the attractors correspond to

the different cell types that the network can express [2].

BNs exhibit a rich range of dynamics. In particular, groups of

randomly generated of BNs (so-called ‘‘ensembles’’) fall into two

broad dynamical regimes: order and chaos [2]. The dynamic

regime of the network can be determined from its response to

perturbations, i.e., a deviation from the behavior prescribed by the

topology and logic of the network. In general, ordered RBNs are

very robust to perturbations – they behave similarly to the

unperturbed network – however they lack the ability to respond

differently to different perturbations [2,10]. BNs in the chaotic

regime tend to magnify small perturbations until the entire

behavior of the network changes. Due to that, their responses to

very similar perturbations differ widely. BNs operating in the

threshold between order and chaos, called ‘critical’, exhibit a mix

of both properties. They are robust to many perturbations, but not

to a subset of the possible perturbations. Due to this ability to

respond to specific perturbations, it has been proposed that

biological networks operate in this regime [2]. Studies of the logic,

topology, and response to perturbations of the yeast GRN have

supported this hypothesis [4,11,12].

The most common method to measure the response to

perturbations of a BN is to assess the number of nodes which

are in a different state, one time step after a single-node

perturbation, which is analogous to the Lyapunov exponent from

continuous-time systems theory [10]. In BNs, this can be

calculated analytically by the mean sensitivity of the Boolean

functions to their inputs [5]. Networks with sensitivity less than 1

are said to be ordered since a perturbation of size 1 will shrink, on

average, towards 0, while networks with sensitivity greater than 1

are said to be chaotic as the same initial perturbation will grow in

size with each time-step. These assessments of robustness studied

the response of RBNs to perturbations, starting from random

states.

Here, we aim to study what properties of the GRN confer

phenotypic robustness to the various cell types following

differentiation, using RBNs as models of GRNs. Thus, we focus
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on the response to perturbations when the network is on an

attractor since attractors correspond to the possible long-term

behaviors of the network. However, to survive, cells need abilities

other than phenotypic stability. One such property is the ability

to propagate information between the genes of the network. E.g,

signals both generated in the cell as well as arriving from the

environment need to be processed so that a proper response can

be generated.

One study has examined information propagation as a function

of the BN’s dynamical regime, as quantified by the average mutual

information (MI) between all pairs of nodes [3]. It was found that

in the limit of infinite-sized networks, this quantity maximizes in

the critical regime. In finite-sized networks, the maximization

occurs slightly in the chaotic regime. Information propagation in

RBNs has been also assessed by other methods, which also found a

maximization at the critical regime [4,6,7,9,13]. A subsequent

study has examined the distributions and properties of the MI

between nodes while the network is on an attractor [14]. The

distributions of MI within attractors (IA) differ widely between

networks in different dynamical regimes. The dynamic regime of

the network, aside from affecting the IA, is also expected to affect

the robustness of the attractors to perturbations, since this regimes

affects for example, the size of the basins of attraction of the

attractors [7,15].

In a biological setting, we expect that both the ability of the

network to process information and its robustness, i.e., its ability to

remain in a confined region of the state space (even in the presence

of noise [16]), are subject to selection. Selection ought to act on

these two abilities at the level of each attractor that the network

goes to, i.e., at the level of each cell type. It is unknown if these

selective pressures are related, e.g., whether one constrains the

other.

Here, we investigate the relationship between the information

propagating in an attractor and its robustness to perturbations,

depending on the dynamic regime of the network. First, we

present the methods, after which we study the mean behavior of

these properties as a function of the dynamic regime, followed by

the correlation between them. Afterwards, we investigate the

causes for observed relationships in each regime. In the end, we

present our conclusions.

Materials and Methods

In a RBN of N nodes, each node’s state at time t is a Boolean

variable. The node’s state at the next time moment, t+1, is given

by a Boolean function of a set of other nodes in the network. By

iteratively applying this update rule, the Boolean network traces a

trajectory through the state space. RBNs can be constructed by

sampling from an ensemble of networks. For our purposes, we

consider RBNs with exactly KN connections, which have been

sampled at random without replacement from among all N2

possible connections, as in the Random 2 algorithm in [17]. The

Boolean update rules have been sampled such that for each

combination of input states, the output has a probability p of being

1, independent of all other outputs. The mean sensitivity, s, of

these RBNs to single-node perturbations (the expected number of

nodes that will change state due to changing the state of a single

node) is 2Kp(12p) [5].

Attractor discovery was performed by initializing the network in

a random state and running the network until a state repeated. For

each network, 104 random starting states were used, which is

expected to be enough to find nearly all of the attractors of

networks of our size (N = 50) [18]. Transient lengths were limited

to 105 states.

We then assess the robustness and IAof the attractors. The

robustness of an attractor, RA, can be quantified by the fraction of

the number of single-node perturbations from all states of the

attractor after which the network returns back to the original

attractor [19]. The size of a perturbation is the number of nodes

whose state is perturbed at a moment in time. Here, we focus on

single-node perturbations, that is, we assume that multiple

simultaneous perturbations occur only on very long time scales,

and can thus be ignored. Formally, RA, is defined as the

probability that a trajectory starting from a state on an attractor

with one node perturbed, will return to that attractor. This was

calculated by perturbing each node in each state of an attractor,

running the attractor search method described above starting with

these states, and counting the fraction that returned to the original

attractor.

IA is obtained from the average temporal mutual information

between all pairs of nodes. The mutual information between two

binary sequences of length l is defined based on their information

entropy [20], which for a sequence c containing p1l 19s and p0l 09s

is defined as:

H(c):{p0log2p0{p1log2p1 ð1Þ

The entropy of the joint sequence between two sequences c1 and

c2 with p00l 0-0 pairs (with similar definitions for p01, p10 and p11) is

defined as:

H(c1,c2):{
X

m[f00,01,10,11g
pmlog2pm ð2Þ

The mutual information between two binary sequences is then

defined as:

I(c1,c2):H(c1)zH(c2){H(c1,c2) ð3Þ

The mutual information between the timeseries of two nodes of

a Boolean network, with the output timeseries shifted by one

timestep (denoted by c1), can be used as a measure of the amount

of dynamical correlation between an input and an output. We use

the average mutual information between all nodes as a measure of

the average efficiency of information propagation in the network

along that trajectory through state space [3]:

SIT~N{2
XN

i~1

XN

j~1

I(ci,c
1
j ) ð4Þ

If a network runs long enough, the attractor it reaches will

dominate the p’s used to calculate I. The average pairwise mutual

information in the attractor (IA) represents the average informa-

tion propagation in one of the long-term behaviors of the network.

In strongly chaotic networks (s.2), the attractor discovery

algorithm and robustness calculation become prohibitively expen-

sive, since the amount of steps required to reach an attractor grows

exponentially with sensitivity. For this reason, we opted to use

networks with p = 0.75. These generally have smaller attractors

and smaller transients than networks with the same sensitivity but

with p closer to 0.5, while the Mutual Information is very similar to

that of networks with the same sensitivity and p = 0.5 (Figure S1).

Robustness and Information in Boolean Networks
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Finally, we study only networks with a mean sensitivity of 0.5 or

greater, since below this value, instead of a network, there are only

small, disconnected clusters of nodes.

Results

We first study how SIAT and SRAT change with the sensitivity

of network ensembles. For this, we simulated networks with 50

nodes, p = 0.75, with the sensitivity being adjusted by varying K.

We searched for the attractors starting from 104 random initial

states, as described in Methods. Results are shown in Fig. 1. In

agreement with previous results [14], SIAT maximizes slightly in

the chaotic regime, at sensitivity s&1:7, due to finite size effects.

We note that the distributions of IA are heavy tailed, which is

visible in the large standard deviation of the distribution (shown in

grey), resulting in the relatively large sampling error considering

the number of samples obtained (104). Changes in the shape of

these distributions with sensitivity are discussed in [14]. Mean-

while, SRAT decreases monotonically with s.

To investigate the relationship between the information

propagation within an attractor and its robustness, we calculated

the correlation between the IA and RA from 104 attractors of

networks with varying sensitivity. We opted to use Kendall’s t rank

correlation metric [21] rather than linear correlation since the

relationship between IA and RA is not linear (Figure S2). Kendall’s

t calculates the fraction of pairs of (IA,RA) tuples which are

consistent [21], i.e. increasing/decreasing IA leads to increasing/

decreasing RA, respectively.

In ordered and chaotic networks, IA and RA are found to be

anti-correlated (Fig. 2), indicating that attractors that propagate

information more efficiently (i.e. that make more pairs of nodes to

be temporally correlated or make the fraction of correlated pairs to

be more strongly correlated) are generally more susceptible to

perturbations. This is in line with the intuition that an attractor

capable of propagating information is equally capable to

propagate a perturbation. Interestingly, there is a window of

weak positive correlation starting from s = 1 slightly into the

chaotic regime, returning to anti-correlation near the point where

SIAT is maximized. We next focus on explaining the observed

anti-correlation in the chaotic and ordered regimes.

In deeply chaotic networks (random maps), the notion of

distance between states is meaningless. That is, two states that

differ in only one node’s state are not necessarily ‘‘close’’ in the

state space. Consequently, the chance that the network will return

to a particular attractor after one node is perturbed while in that

attractor is the same as the chance that any randomly chosen state

leads to that attractor. This is, in turn, directly proportional to the

size of the set of states from which the network will settle into that

attractor (also known as the basin of attraction). Due to this, RA is

correlated with basin size.

Further, the size of the basin of attraction is directly related to

the length of the attractor, since each state of the attractor is

expected to ‘drain’ a similar amount of basin states. This linear

relationship was shown in [15]. The attractor length is anti-

correlated with IA since, in this regime, IA is spurious and thus is

lower in longer sequences than shorter ones [22]. In summary, in

the chaotic regime, RA is correlated with basin size, which is

correlated with attractor length, which is anti-correlated with IA,

causing RA to be anti-correlated with IA.

In the ordered regime, there are two differences to the above

reasoning. First, the basin size is anti-correlated with attractor

length [15]. Second, point attractors (IA~0) become prevalent.

Attractors with multiple states generally have positive, non-

spurious IA and, in this regime, attractor length and IA are

positively correlated. As a result, in the ordered regime, RA and

IAare negatively correlated.

Two of the above relationships change sign from the ordered

to the chaotic regime. For each of these relationships, there will

Figure 1. SIAT and SRAT as a function of sensitivity. N = 50, p = 0.75, K~ 8
3

s, 104 attractors were found per condition from at least 2000
networks generated randomly as described in Materials and Methods. Gray areas denote one standard deviation from the mean.
doi:10.1371/journal.pone.0042018.g001
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necessarily be a point of no-correlation. To test this, we plot the

pairwise relationships between IA, RA, and the properties above,

specifically basin size (BS) and attractor length (L) (Figure 3). The

correlation between basin size and attractor length is zero at

s = 1, as previously reported in [15]. The correlation between

attractor length and IA is zero almost exactly at the point where

mean SIAT maximizes due to finite size effects [3]. These points

correspond with the points of no correlation between IA and RA.

The region of weak, positive correlation between IAand RA is

also predictable from the chain of correlations described above, as

all of these are positive in this region. Relevantly, the fact that IA

and RA are weakly correlated implies that, for critical networks,

attractors can have a high value of IA with no strong restrictions

on the value of RA. Outside this region, it is unlikely, e.g., to find

an attractor with both high IA and high RA.

Since the sensitivity value for which SIAT maximizes depends

on the size of the network [3], we expect the size of the window of

weak positive correlation to shrink in larger networks and grow in

smaller networks. To test this, we recreated Figure 3 with N = 25

and found that this prediction holds (Figure S3).

Conclusions
We tested for a relationship between the robustness to

perturbations of an attractor in a RBN and the amount of

information propagated within the network when in that attractor.

By demonstrating that a chain of correlations exist between certain

properties of the attractors, we found that in the ordered and

chaotic regimes, these quantities are anti-correlated. That is, there

is a trade-off between robustness and information propagation. At

the boundary between order and chaos (s = 1), robustness is not

correlated with information propagation. Further, for finite size

networks, there is a small parameter range, starting at s = 1 and

extending into chaos, where robustness is weakly, positively

correlated with information propagation. This window extends

to the point of maximal information propagation, and its size

decreases with network size.

Discussion

From a single totipotent cell, via the processes of cell division

and differentiation, an organism is formed that consists of multiple,

widely distinct cell types. Since gene expression and most other

molecular mechanisms underlying this process are stochastic [23],

there is a need for multiple mechanisms, such as chromatin

remodeling, which constrain the kinetics of individual genes of

fully differentiated cells, since the patterns of expression levels of

the genes of these cells is clearly within very constrained regions of

the state space [24,25].

One key property that constrains gene’s expression levels is the

existence of multiple gene-gene interactions that form a regulatory

network. This network of interactions constrains their activities via

inhibitory or excitatory relationships. It is likely that throughout

the evolutionary process, these networks evolved towards, to some

extent, make differentiated cell types as phenotypically robust as

possible. Malfunctioning of this stability may be one of the

underlying causes of diseases such as cancer [26].

Aside from being responsible for the stability of differentiated

cells, this network of interactions between genes is also responsible

for the propagation of information between genes. This flow of

information is essential for survival. For example, some genes

express proteins that are responsible for the detection of specific

external signals, and following this detection, activate other genes

which will express proteins that will be responsible for a proper

response of the cell.

Provided that cellular fitness depends on such coordination of

genes’ activities, maximization of this coordinated flow of

information is likely to be selectively advantageous. To the extent

that RBN models capture the essential features of the organization

of genetic networks, we found that critical networks are naturally

favored as they allow maximizing this flow of information, without

compromising robustness of its attractors to perturbations.

As a final remark, it needs to be stated that real genetic networks

are not random, as they were shaped by selection. Also, it is

possible that there are networks with a specific topology and logic

of the transfer functions such that, while classified as ordered or

Figure 2. Kendall’s t rank correlation between IA and RA. N = 50, p = 0.75, K~ 8
3

s, 104 attractors were found per condition from at least 2000
networks generated randomly as described in Materials and Methods. For 104 samples, |t| values greater than 0.017 are considered significant (p-
value ,0.01).
doi:10.1371/journal.pone.0042018.g002
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chaotic, would also exhibit high capacity for information transfer

between the genes and, simultaneously, strong robustness to

perturbations. What our results indicate is that networks with these

properties are far rarer in these regimes than in the critical regime.

Given this, and since mutations are, seemingly, random, it is thus

more likely that the evolutionary process has reached these

favorable features by selecting for networks in, or near, the critical

regime.

Supporting Information

Figure S1 Mean N SIAT as a function of sensitivity for various

network sizes (N). p = 0.75, k~ 8
3

s, 104 networks were generated

for each condition and one attractor was sampled.

(TIF)

Figure S2 Joint distribution of IA and RA from attractors

sampled from 5000 networks p = 0.75, k = 4 (s = 1.5).

(TIF)

Figure S3 Kendall’s t rank correlation between RA, the size of

the attractor’s basin of attraction (BS), the length of the attractor

(L) and IA. N = 25, p = 0.75, 104 attractors were found per

condition from at least 2000 networks.

(TIF)
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