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Abstract

The IkB kinase a (IKKa) is implicated in the differentiation of epithelial and immune cells. We examined whether IKKa also
plays a role in the differentiation and maturation of embryonic human neuronal progenitor cells (NPCs). We find that
expression of an extra copy of IKKa (IKKa+) blocks self-renewal and accelerates the differentiation of NPCs. This coincides
with reduced expression of the Repressor Element Silencing Transcription Factor/Neuron-Restrictive Silencing Factor (REST/
NRSF), which is a prominent inhibitor of neurogenesis, and subsequent induction of the pro-differentiation non-coding RNA,
miR-124a. However, the effects of IKKa on REST/NRSF and miR-124a expression are likely to be indirect. IKKa+ neurons
display extensive neurite outgrowth and accumulate protein markers of neuronal maturation such as SCG10/stathmin-2,
postsynaptic density 95 (PSD95), syntaxin, and methyl-CpG binding protein 2 (MeCP2). Interestingly, IKKa associates with
MeCP2 in the nuclei of human neurons and can phosphorylate MeCP2 in vitro. Using chromatin immunoprecipitation
assays, we find that IKKa is recruited to the exon-IV brain-derived neurotrophic factor (BDNF) promoter, which is a well-
characterized target of MeCP2 activity. Moreover, IKKa induces the transcription of BDNF and knockdown expression of
MeCP2 interferes with this event. These studies highlight a role for IKKa in accelerating the differentiation of human NPCs
and identify IKKa as a potential regulator of MeCP2 function and BDNF expression.
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Introduction

IKKa is a component of the IKK complex (a, b, c), which is an

important regulator of NF-kB pathway and plays a major role in

cell proliferation/differentiation and inflammation. IKKa also

regulates the production of active p52 NF-kB factor, which is

essential for the development of the immune system [1].

Moreover, IKKa has anti-inflammatory properties and can inhibit

the IKKb/NF-kB activity and lower the expression of inflamma-

tory cytokines [2,3]. Recent studies have identified several NF-kB-

independent functions for IKKa [4]. IKKa localizes to the nucleus

and phosphorylates proteins such as CREB binding protein (CBP),

the silencing mediator of retinoid and thyroid hormone receptor

(SMRT), forkhead box A2 (FOXA2), and b-catenin. All of these

proteins are expressed in the brain and are implicated in various

aspects of neurodevelopment [4–9]. In animal models, IKKa-

mediated phosphorylation of histone-3 (H3) and CBP contributes

to memory reconsolidation in the hippocampus [10]. Moreover,

IKKa phosphorylates the estrogen receptor and promotes

estrogen-regulated gene expression [11]. Estrogen is a neuroster-

oid that modulates dendritic growth and synaptogenesis in the

central nervous system [12]. Thus, IKKa may play a role in

neurodevelopment.

IKKa is constitutively active in human neuronal progenitor cells

(NPCs). Moreover, the level and activity of IKKa decreases in

neurons exposed to DNA damaging agents whereas elevation of

IKKa is neuroprotective and augments neuronal resiliency to

stress [13]. Here, we report that expression of an extra copy of

IKKa accelerates the differentiation and maturation of human

embryonic NPCs. Our data also identify IKKa as a modifier of

MeCP2, which is a prominent regulator of neuronal gene

expression [14]. Thus, manipulating the levels and activity of

IKKa may be a useful strategy to enhance neuronal differentiation

and regulate MeCP2 activity.

Results

Elevation of IKKa affects the proliferation and
differentiation of human neuronal progenitor cells

IKKa regulates the differentiation of several cell types including

epithelial and immune cells including monocytes, B cells, and

regulatory T cells [15–19]. Interestingly, the level of IKKa protein

is increased several fold during monocyte-to-macrophage differ-

entiation [18]. The focus of this study was to determine whether

elevation of IKKa alters the proliferation and/or the differenti-

ation of an embryonic human mesecephalic NPC line

(MESC2.10). Unlimited proliferation of MESC2.10 cells is

regulated by a tetracycline-regulated (tet-off) v-myc and the

addition of mitogenic factor, basic fibroblast growth factor-2

(bFGF-2). Upon shutting down the expression of v-myc by

doxycycline and removal of FGF-2, MESC2.10 NPCs can
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differentiate into neurons expressing dopaminergic markers [20].

Expressing an extra copy of IKKa in MESC2.10 cells (IKKa+)

(Fig. S1) has no visible effect on proliferation when v-myc is

expressed (data not shown). Employing a neurosphere assay,

which is used to study the self-renewal of neuronal stem cells

(NSCs) [21], we find that MESC2.10 cells proliferate for several

generations in the absence of v-myc. While IKKa+ cells also form

neurospheres, they are smaller in size and the numbers are

significantly reduced (Fig. 1A top panels and B). To extend these

findings, primary neurospheres were dissociated into single cell

suspensions and cultured in a second round in the presence of

FGF-2 and doxycycline. Although control NPCs form secondary

neurospheres, this property is completely lost in IKKa+ NPCs

(Fig. 1A. bottom panels). Thus, elevated IKKa interferes with the

self-renewal of MESC2.10 NPCs.

To examine whether the reduced proliferation of IKKa+
progenitors is due to precocious differentiation, we cultivated cells

on a laminin substrate in proliferating medium (+bFGF-2) with the

addition of doxycycline to repress v-myc expression, which blocks

neurosphere formation of the IKKa+ but not of the control NPCs

(Fig. 1A). Staining cells for the neuronal differentiation marker b-

tubulin III (Tuj-1), we do not find any Tuj-1-positive cells in either

control or IKKa+ NPCs when cells express v-myc (Fig. 1C top

panels). However, the majority of IKKa+ NPCs express Tuj-1 by

the 2nd day after the addition of doxycycline. This is in contrast to

control NPCs, which continue to proliferate under these condi-

tions and ,5% of the cells stain positively for Tuj-1 by the 2nd and

,45% by the 4th days (Fig. 1C, D). By the 4th day, IKKa+ NPCs

develop extensive neurite outgrowth (Fig. 1C lower right panel),

which is a hallmark of neuronal differentiation in vitro [22]. We also

plated day 6 dissociated neurospheres (Fig. 1A) on laminin and

examined for Tuj-1 after 24 h of further cultivation in the

presence of bFGF-2 and doxycycline. More than 95% of the

IKKa+ NPCs express Tuj-1 and develop prominent neurite

outgrowth. Under these conditions, ,50% of the control cells also

stain positively for Tuj-1 but have no detectable neurite outgrowth

(Fig. 1E, F). Control and IKKa+ NPCs express Nestin, which is a

marker of proliferating NPCs (Fig. S2A). However, growth

conditions that promote the differentiation of IKKa+ NPCs

(Fig. 1C, E), do not significantly affect the level of Nestin. Nestin

accumulates in the neurites of dissociated day 6 IKKa+ neuro-

spheres whereas it is predominantly in the cytoplasm of control

cells (Fig. S2B). It is possible that the turnover and/or reduction of

Nestin expression requires a longer cultivation of IKKa+ NPCs.

To gain more insights in the role of elevated IKKa on NPCs

differentiation, control and IKKa+ cells were cultured on laminin-

coated dishes and induced to differentiate under conditions that

promote the generation of dopaminergic neurons [20]. The

majority of cells in differentiating control and IKKa+ are positive

for the neuronal markers Tuj-1 and MAP2 by the 4th day.

However, ,50% of the control cells are weakly stained for the

expression of Tuj-1 and MAP2 (Fig. 2A, B). Using Western blot

analysis, we find that the level of Tuj-1 protein is ,2.2 fold higher

in differentiating IKKa+ NPCs by the 2nd and 4th days compared

to controls (Fig. 2C). Moreover, IKKa+ cells display elaborate

neurite outgrowth, which is minimal in control MESC2.10 NPCs

(Fig. 2A, B). The ability of IKKa to enhance neurite outgrowth

was further examined in a scratch lesion assay, which involves

removing cells manually and following growth into the open space

over time [23]. Differentiating IKKa+ NPCs generate extensive

neurite outgrowth two days after the lesion is formed whereas

outgrowth is much less in control NPCs (Fig. 2D, arrows).

Conditioned medium from differentiating IKKa+ NPCs has no

visible effect on the differentiation of the control cells (data not

shown), indicating that the affects of IKKa are likely cell

autonomous. However, we cannot rule out the possibility of a

low level of growth factors or labile molecules secreted by IKKa+
cells that may affect neurite outgrowth. Transient transfection of

embryonic rat cortical progenitor cells with IKKa also promotes

extensive neurite outgrowth, indicating that the pro-differentiating

properties of elevated IKKa are not limited to MESC2.10 human

NPCs (Supplementary Fig. 3).

While IKKa+ NPCs rapidly cease proliferation upon the

induction of differentiation, control cells undergo further divisions

as monitored microscopically (data not shown). To examine this

phenomenon in detail, we performed BrdU labeling, which is a

marker of DNA synthesis and cell proliferation [24]. We find that

,50% of control NPCs incorporate BrdU at 4 days post-

differentiation. However, BrdU incorporation is minimal in

differentiating IKKa+ progenitors and ,90% are post-mitotic

(Fig. 3A). Moreover, ,40% of the 4th day differentiating control

NPCs express Ki-67, another marker of cell proliferation [25],

whereas less than 1% of IKKa+ cells stain positively for Ki-67 at

this time point (Fig. 3B). The majority of BrdU-positive cells stain

weakly for Tuj-1, indicating that are not fully committed to

differentiation (Figs. 3A, C). However, BrdU incorporation is

reduced dramatically upon further incubation and the majority of

control NPCs become Tuj-1 positive after 8th day in culture

(Fig. 3C). These findings are consistent with those in Figs, 1 and 2,

where elevated IKKa blocks the self-renewal of NPCs and

promotes the differentiation of MESC2.10 NPCs.

IKKa affects the REST/NRSF and miR-124 regulatory loop
We examined whether the levels or the cellular distribution of

endogenous IKKa is altered during the differentiation of control

NPCs. While the levels of IKKa do not change significantly, its

accumulation in the nuclear fraction increases in the 4th and 8th

day cultures (Fig. 4A). It is relevant that levels of nuclear IKKa
increase by the 2nd day in differentiating IKKa+ NPCs (Fig. 4B,

middle panel). Thus, the rate of nuclear accumulation of IKKa
may contribute to the onset of neuronal differentiation.

KKa is a chromatin modifying kinase and is known to influence

gene expression by various means [4,10,11]. Since nuclear

accumulation of IKKa coincides with neuronal differentiation,

we hypothesized that IKKa may directly affect the expression of

key regulators of neurogenesis. One prominent modulator of

neuronal differentiation is REST/NRSF [26]. REST binds to a

consensus cis-element in the promoter of several hundred neuron-

specific genes and prevents their expression. The inhibitory

functions of REST are essential for the self-renewal of embryonic

as well as adult NSCs [27–29]. REST levels are dramatically

reduced during neuronal differentiation allowing the expression of

neurogenic proteins and non-coding RNAs [27,29]. Using reverse

transcription and real-time PCR (qRT-PCR), we find that, while

the levels of REST mRNA gradually decrease during the

differentiation of control NPCs, it is still detectable by 4 days. In

contrast, REST expression is rapidly reduced in differentiating

IKKa+ NPCs and is not detectable by the 2nd day post-

differentiation (Fig. 4C). Western blot analysis of nuclear lysates

is consistent with the mRNA results in differentiating control and

IKKa+ NPCs (Fig. 4B, top panel). Thus, compared to control

NPCs, the levels of REST mRNA and protein drop more rapidly

in differentiating IKKa+ NPCs. REST promoters contain several

NF-kB binding sites [30]. Since IKKa regulates NF-kB [4], we

hypothesized that it may influence the binding of NF-kB to REST

promoter and affect REST expression directly. However, in gene

reporter assays with the REST promoter fused to luciferase [30],

elevated IKKa does not reduce REST promoter activity (data not
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shown). Therefore, the effect of IKKa on reduced expression of

REST in differentiating IKKa+ NPCs appears to be indirect.

In NPCs REST represses miR-124 expression, which is pro-

neurogenic and has several REST binding sites in its promoter

[27]. MiR-124 is abundant in neurons and is a major determinant

of neuronal differentiation [27,31]. We hypothesized that IKKa

may enhance the expression of miR-124, which may be the

underlying cause of REST reduction in differentiating IKKa+
NPCs. MiR-124 has several isoforms and miR-124a is well

characterized in the context of neuronal differentiation [27,31].

We find that miR-124a expression is induced in both control and

IKKa+ NPCs during differentiation. However, compared to

Figure 1. Effects of IKKa on the proliferation of MESC2.10 NPCs. (A) Elevated IKKa impairs neurosphere formation of MESC2.10 NPCs. The
neurosphere assay was carried out as described in Methods. Representative micrographs of primary (1u) (top panels) and secondary (2u) neurospheres
(bottom panels) formed by control (C) and IKKa+ NPCs are shown. Assays were done in triplicate. (B) Quantification of neurospheres reveals a
significant deficit in the IKKa+ NPCs compared to controls. Six culture wells were counted in each condition and averaged. P value was obtained
using student’s t-test. (C) Elevated IKKa induces the differentiation of MESC2.10 cells when v-myc expression is repressed. Control and IKKa+ NPCs
were cultivated on laminin in the absence (time 0) or the presence of doxycycline for 2 or 4 days. Cells were stained for Tuj-1 expression.
Representative micrographs obtained with a confocal microscope are shown. The DNA stain TOTO-3 was used to identify nuclei. (D) The % of Tuj-1
positive cells in day 2 and day 4 cultures is shown. (E) IKKa+ neurospheres undergo spontaneous neuronal differentiation. Day 6 dissociated
neurospheres were plated on laminin and stained for Tuj-1 after 24 h. Representative micrographs obtained with a confocal microscope are shown.
(F) The % of Tuj-1 positive in day 2 and day 4 cells is shown. For D and F, total and Tuj-1 positive cells were counted in 6 different confocal images
and the % positive was calculated. P values were obtained using student’s t-test.
doi:10.1371/journal.pone.0041794.g001
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control, primary as well as the mature miR-124a transcripts are

several fold higher in the IKKa+ cells (Fig. 4D, E, respectively).

miR-124a levels are inversely related to those of REST in control

and IKKa+ NPCs (Fig. 4B, C). Using a gene reporter assay with

the miR124a promoter fused to luciferase [27], elevated IKKa
does not induce miR-124a promoter activity (data not shown).

Taken together, these findings indicate that the levels of REST

and miR-124a, which are critical determinants of neuronal

differentiation, are significantly altered in IKKa+ NPCs compared

to controls. However, our studies do not support a direct link

between elevated IKKa and the expression of REST and miR-

124.

We further examined differentiating NPCs for expression of

other neuron-enriched miRNAs. Interestingly, miR-7, which

promotes neurite outgrowth and is co-expressed with miR-124

in other cell models [32], is selectively induced in differentiating

IKKa+ NPCs (Fig. S4). The induction of miR-7 may contribute to

the extensive neurite outgrowth observed in differentiating IKKa+
NPCs (Figs. 2A, B; Fig. S3). Expression of other miRNAs such as

miR-132 and -133a, and -155 is not significantly altered in either

differentiating control or IKKa+ NPCs (data not shown).

Elevated IKKa promotes neuronal maturation
The positive effects of IKKa on neuronal differentiation raised

the question of whether it also influences neuronal maturation.

One hallmark of maturing neurons is the accumulation of MeCP2,

which regulates many aspects of neurodevelopment, and loss of

MeCP2 function is implicated in the brain disorder, Rett

Figure 2. Elevated IKKa promotes the differentiation of MESC2.10 cells. (A, B) IKKa promotes neurite outgrowth in differentiating NPCs.
Control (C) and IKKa+NPCs were differentiated on coverslips for 4 days, fixed and stained with neuronal differentiation markers Tuj-1 (A) and MAP-2
(B). Representative micrographs obtained with a confocal microscope are shown. The DNA stain TOTO-3 was used to identify nuclei. (C) Tuj-1 levels
are elevated in differentiating IKKa+ NPCs. Representative western blot results are shown for cytoplasmic lysates staining for Tuj-1 levels at different
time points during the differentiation of control and IKKa+ NPCs [diff.(days)]. IKKc was used as a loading control. Fold-change was obtained by
dividing the intensity of Tuj-1 to the corresponding IKKc, obtained by a Fluorchem 8900 (Alpha Innotech, San Leandro, CA). (D) The scratch assay
shows extensive neurite outgrowth in differentiating IKKa+ NPCs. Cultures on the 2nd day of differentiation were wounded by a micropipette tip and
further incubated for additional two days. Cells were fixed and stained as above. Arrows point to the areas of neurite extension.
doi:10.1371/journal.pone.0041794.g002
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syndrome [33]. We find that MeCP2 is expressed at a low level in

control NPCs, however it is more abundant (,6 fold higher) in

IKKa+ NPCs differentiated for 8 days (Figs. 5A and 6B, top

panels). MeCP2 transcription is not altered during the differen-

tiation of control and IKKa+ NPCs, indicating that other post-

transcriptional regulatory pathways affect MeCP2 levels (data not

shown). Expression of SCG10/Stathmin-2, a neuron-specific

microtubule destabilizing protein that promotes neurite outgrowth

and neuronal migration [34], and pre-and post-synaptic markers

such as syntaxin1 and PSD95 [35,36] is also induced in IKKa+
cells (Fig. 5A, panels 2–4, lanes 5–8).

Since MeCP2 is important in neurodevelopment [33], we asked

whether MeCP2 induction contributes to the differentiation of

IKKa+ NPCs. Towards this end, we reduced the expression of

MeCP2 in IKKa+ cells using a lentivirus encoding an shRNA

targeting MeCP2 (Fig. 5A, top panel, lanes 9–12). This cell line is

labeled as MeCP2 knockdown (MeCP2KD). The levels of MeCP2

in the MeCP2KD line are comparable to those detected in

differentiating control NPCs (Fig. 5A, top panel; compare lanes 1–

4 with 9–12). Knockdown of MeCP2 does not affect neuronal

differentiation since the levels of REST and miR-124a are similar

to those expressed in IKKa+ cells (data not shown). Moreover,

reduction of MeCP2 has no visible effect on IKKa-induced

neurite outgrowth, as observed by Tuj-1 staining (Fig. 5B).

However, IKKa-induced accumulation of PSD95 in 8th day

cultures is significantly reduced (2.4-fold) when MeCP2 expression

is silenced (Fig. 5A, panel 4, compare lanes 8 and 12). This is

consistent with previous findings in animal models where the

absence of functional MeCP2 negatively affects PSD95 levels [37].

IKKa induces MeCP2-dependent BDNF expression
MeCP2 binds to methylated CpG dinucleotides, which are

abundant in the promoters of many genes [38]. MeCP2 is also

implicated in the expression of many neuronal genes, including

BDNF, whose expression is influenced by the level as well as post-

translational modifications of MeCP2 [39,40]. We asked if

elevated MeCP2 in IKKa+ neurons could also affect BDNF

levels. BDNF expression can be initiated from 9 different

promoters [41] and the exon-IV promoter of human BDNF (rat

promoter III) is a well-known target of MeCP2 [39,40]. Using

Figure 3. IKKa inhibits the proliferation of early differentiating NPCs. (A) Elevated IKKa accelerates NPCs commitment to differentiation.
BrdU was added on the 4th day of differentiation. 24 h later cells were fixed and stained with a rat anti-BrdU antibody (green) and the neuron-specific
marker Tuj-1. Pictures were taken with a confocal microscope. (B) As a further test of proliferation, 4th day cultures were stained with the Ki-67
antibody, which identifies proliferating cells. (C) A time-course (days) of BrdU incorporation reveals the difference in rate of decline in proliferation
between the control and the IKKa+ NPCs. Each time point represents 24 h of BrdU incorporation. Samples were processed as in A.
doi:10.1371/journal.pone.0041794.g003
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qRT-PCR, we find that differentiating control NPCs do not

express high levels of BDNF (Fig. 5C). However, BDNF

transcription from exon-IV is significantly induced in IKKa+
differentiating NPCs and is further elevated by KCl-mediated

depolarization of 8th day IKKa+ neurons (Figs. 5C, D).

Knockdown of MeCP2 levels reduces both basal as well as KCl-

induced BDNF expression by ,50% (Fig. 5C, D). Thus, IKKa

promotes BDNF transcription, which is in part MeCP2-depen-

dent.

IKKa is recruited to several different promoters including NF-

kB and estrogen-regulated genes [4,11]. Since BDNF levels are

elevated in IKKa+ neurons, we asked whether IKKa associates

with regulatory regions of the exon-IV BDNF promoter. Using

chromatin immunoprecipitation (ChIP), we find that IKKa is

Figure 4. IKKa regulates REST and miR-124a expression. (A) IKKa accumulates in the nuclei of differentiating MESC2.10 NPCs. Representative
Western blot results for levels of endogenous IKKa in the cytoplasm (C) and nuclear (N) fractions of differentiating NPCs (top panel) are shown. IKKa
was detected with a mouse anti-IKKa antibody. Nuclear LaminB1 and cytoplasmic tubulin were used as loading controls (middle and bottom panels,
respectively). (B) REST protein levels also decline faster in differentiating IKKa+ NPCs compared to differentiating controls. Representative western
blot results are shown from nuclear lysates for REST (top panel), IKKa (middle panel) and laminB1 (bottom panel). REST was detected with a mouse
anti-REST antibody and Anti-Flag antibody was used to detect IKKa. LaminB1 was used a as loading control. (C) After initiating differentiation, REST
mRNA levels decline faster in IKKa+ NPCs than in control cells. Taqman probes were used to quantify the mRNA levels at the days shown. The data are
shown relative to the level in proliferating control NPCs. GAPDH mRNA was used for normalization. Triplicate samples were averaged for each point,
and the SEMs indicated. N.D., not detected. (D, E) The accumulation of primary (pri-miRNA) and mature miRNA-124a are shown in D and E,
respectively. Taqman probes were used for the qPCR. Pri-miRNA was normalized to GAPDH mRNA and mature miRNA was normalized to the small
RNA, RNU6. The data are shown relative to the levels in proliferating control NPCs. P values were obtained using student’s t-test.
doi:10.1371/journal.pone.0041794.g004
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enriched at the BDNF promoter (Fig. 6A). Moreover, CREB and

MeCP2, which bind to this element [42,43], are also abundant

(Fig. S5A, B, left panels). As expected, MeCP2 binding to the

exon-IV BDNF promoter is reduced in MeCP2KD neurons (Fig.

S5B, right panel), which coincides with the reduction of BDNF

expression (Fig. 5C, D) and suggests that the concentration of

MeCP2 may be important for the regulation of the exon-IV

BDNF promoter. Interestingly, the association of IKKa and

CREB with the BDNF promoter is not altered by knockdown of

MeCP2 levels, indicating that they may bind independently of

MeCP2 (Figs. 6A and S5A, right panels). However, we cannot rule

out the possibility that residual MeCP2, which is bound to the

exon-IV promoter in MeCP2KD neurons, may be sufficient to

recruit IKKa and CREB (Fig. S5B, right panel). Overall, these

findings support a role for IKKa in the regulation of MeCP2-

dependent BDNF expression.

Phosphorylation of MeCP2 at Ser421 has previously been

implicated in the induction of BDNF expression [39]. Using an

antibody recognizing phospho-Ser 421, we find that phosphory-

lated MeCP2 accumulates in 8th day differentiated IKKa+ but not

control neurons (Fig. 6B, middle panel). This time course coincides

with the elevated levels of BDNF in IKKa+ neurons (Fig. 5C, D).

The fact that IKKa is a kinase raised the question of whether

IKKa associates with and phosphorylates MeCP2. IKKa co-

localizes with MeCP2 in the nuclei of IKKa+ neurons (Fig. 6C).

Moreover, complexes containing both IKKa and MeCP2 can be

immunoprecipitated from the nuclear fraction of 8th day post-

differentiation IKKa+ neurons (Fig. 6B, D). Therefore, we

performed in vitro kinase assays using recombinant IKKa and

MeCP2 proteins. We find that IKKa phosphorylates MeCP2

(Fig. 6E). However, mass spectrometric analysis identifies phos-

phorylated Ser residues other than Ser421 (A. Khoshnan, et al.,

unpublished data). Previous studies have identified CAMK-II and

CAMK-IV as potential kinases phosphorylating Ser421 of MeCP2

[39,44]. Thus, phosphorylation of Ser421 in IKKa+ neurons may

be an indirect effect of IKKa. The characterization of IKKa-

Figure 5. IKKa promotes expression of markers of mature neurons and BDNF. (A) Elevated IKKa+ enhances neuronal maturation. Cell
lysates from various time points (days after inducing differentiation) were examined by western blotting for the levels MeCP2, SCG10, syntaxin, and
PSD-95. A lentivirus encoding an shRNA targeting MeCP2 was used to knockdown the expression of MeCP2 in IKKa+ NPCs (labeled as MeCP2KD)
(lanes 9–12). IKKc was used as a loading control. A non-specific band (N.S., below the authentic band) is recognized by the anti-PSD95 antibody. (B)
Knockdown of MeCP2 expression does not influence IKKa-induced neuronal differentiation. NPCs were differentiated and examined as described in
Fig. 2A. Representative confocal micrographs of 4th day differentiating cultures are shown. (C) IKKa promotes MeCP2-dependent BDNF expression. A
time course (days) for BDNF expression during the differentiation of NPCs is shown. Taqman probes were used to quantify mRNA generated from the
exon-IV of the BDNF promoter. GAPDH was used for normalization. The data are shown relative to the level in proliferating control (day 0) NPCs. (D)
IKKa also promotes MeCP2-dependent BDNF expression following depolarization. Data are shown for cultures after 8th days of differentiation and
depolarization with 50 mM KCl for 6 hr immediately preceding harvest. The data are shown relative to the level in non-depolarized control cells.
Assays were done in triplicate and P values were obtained using student’s t-test.
doi:10.1371/journal.pone.0041794.g005
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mediated phosphorylation of MeCP2 at Ser421 and other residues

and their effects on the activity of MeCP2 is a topic of current

work in our laboratory.

Discussion

We have identified novel functions for IKKa in enhancing the

differentiation of human NPCs. Elevated IKKa indirectly lowers

the level of REST/NRSF repressor, which is a global inhibitor of

neurogenesis [26–29]. The ability of IKKa to enhance neuronal

differentiation is further exemplified by the induction of neuron-

enriched miRNAs such as miR-124a and -7, and proteins

including MeCP2, PSD95, and BDNF, which are involved in

neurite outgrowth, neuronal maturation, and synaptic plasticity.

Thus, increasing the level and/or the activity of IKKa may be a

useful strategy to promote neuronal differentiation in vitro and

potentially in vivo. Our results also highlight a direct link between

IKKa and MeCP2, which could be instrumental in regulating

MeCP2-dependent gene expression and neurodevelopment.

Elevation of IKKa inhibits self-renewal and accelerates the

differentiation of MESC2.10 NPCs, and reduction of REST

expression may play a role. As a repressor of neuronal genes,

REST promotes the proliferation of NSCs as well as neuroblas-

toma cell lines, whereas reduction of REST induces neuronal

differentiation [26–29,45]. We propose that the effect of IKKa on

REST expression is indirect, since elevated IKKa does not lower

the REST promoter activity. However, REST promoters have

several NF-kB binding sites [30] and the regulation of NF-kB

activity by IKKa may influence REST levels under certain

physiological conditions. We have not been successful in estab-

lishing a link between IKKa/NF-kB and REST transcription,

however.

A critical step in the initiation of NSC differentiation is the

induction of miR-124, which is repressed by REST [27]. miR-124

is enriched in the brain and is recognized as the ‘‘micromanager of

neurogenesis’’ in vivo [46,47]. Indeed, miR-124 promotes the direct

conversion of human fibroblasts into functional neurons, where it

instructs chromatin remodeling and promotes brain-specific

alternative splicing of mRNAs essential for neuronal differentia-

tion [48–50]. Thus, the reduced levels of REST and reciprocal

elevation of miR-124 in IKKa+ cells will likely cause global

changes in gene expression that inhibit proliferation and engage

the differentiation programming (Fig. 4). In addition, miR-124

plays an important role in synaptic plasticity and memory

formation in post-mitotic neurons in Aplysia [51]. In vivo studies

indicate that IKKa is involved in hippocampal-dependent

memory reconsolidation [10]. It will be interesting to examine

Figure 6. IKKa associates with MeCP2 and is recruited to the exon-IV BDNF promoter. (A) Flag-tagged IKKa is recruited to the exon-IV
BDNF promoter. ChIP assays were used to immunoprecipitate IKKa/DNA complexes (using anti-Flag antibody) from differentiated IKKa+ and
MeCP2KD neurons (day 8). The left panel is ChIP from IKKa+ and the right panel is from MeCP2KD neurons. Non-reactive IgGs were used controls.
DNA was amplified by PCR. Products were visualized by agarose gel-electrophoresis and ethidium bromide staining. (B) Western blots were used to
assay nuclear lysates for phosphorylation of MeCP2 at Ser421 in 8th day differentiated IKKa+ neurons (middle panel). The top panel shows the total
levels of MeCP2 during differentiation (0–8 days). LaminB1 was used as a loading control. (C) IKKa and MeCP2 co-localize in the nuclei of IKKa+
neurons. IKKa+ NPCs were differentiated for 6 days and stained with MeCP2 antibody (green) and an anti-Flag antibody detecting IKKa (red).
Representative micrographs obtained with a confocal microscope are shown. (D) MeCP2 co-immunoprecipitates with IKKa. Nuclear lysates from 8th

day differentiated IKKa+ neurons were immunoprecipitated with anti-Flag beads (for IKKa) and examined for the presence of MeCP2 with an anti-
MeCP2 antibody. A non-immune mouse antibody (C-Ab) was used as a negative control for immunoprecipitation. A strong band for anti-IgG staining
is also seen. (E) IKKa phosphorylates MeCP2. Active recombinant IKKa was tested for the ability to phosphorylate MeCP2. The kinase assay was
performed as described in Methods with recombinant MeCP2 or GST as substrates. Products were visualized by SDS-PAGE followed by
autoradiography.
doi:10.1371/journal.pone.0041794.g006
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whether elevated expression of IKKa induces miR-124 and

enhances memory formation and learning, possibly by affecting

neurogenesis in the adult hippocampus.

IKKa accumulates in the nuclei of differentiating NPCs

(Figs. 4A, B, and 6C), and nuclear transfer of IKKa is implicated

in the phosphorylation of histone-3 (Ser10), which leads to

enhanced expression of various genes [4,10]. Our transcriptome

analysis (mRNA–seq) of differentiating control and IKKa+ NPCs

reveals significant changes in the expression of several hundred

mRNAs in IKKa+ cells; some of these encode proteins involved in

neurodevelopment and the splicing of neuron-specific mRNAs (A.

Khoshnan et al., unpublished data). Characterization of some of

these genes may shed further light on the mechanism of how

IKKa accelerates neuronal differentiation and regulates complex

epigenetic changes such as neurite outgrowth. It is intriguing that

miR-7, which is implicated in neuronal homeostasis and neurite

outgrowth [32], is selectively induced in differentiating IKKa+
NPCs. miR-7 also protects dopaminergic neurons against oxida-

tive stress, where it reduces the expression of a-synuclein and leads

to enhanced survival [52]. We have previously shown that IKKa
protects MESC2.10 neurons against oxidative stress-induced

neuronal death and preserves the integrity of neuron-enriched

huntingtin protein, which has neuroprotective properties [13].

Thus, in addition to promoting neurite outgrowth, IKKa-induced

miR-7 may also contribute to the resiliency of neurons under

adverse environmental conditions.

The ability of IKKa to regulate MeCP2 levels and activity is

another novel aspect of this study. These interactions were

characterized in the context of BDNF expression, which is induced

by elevated IKKa and suppressed when MeCP2 levels are

knocked down (Fig. 5). BDNF plays a critical role in neuronal

differentiation and survival, miRNA processing, and synaptic

plasticity [53,54]. The MeCP2-dependent induction of BDNF

may therefore be important in these processes, which has

implications for neurological and psychiatric disorders. While

earlier studies supported an inhibitory role for MeCP2, recent

findings are consistent with a positive effect of MeCP2 on BDNF

expression [39,40,42,43]. Moreover, in animal models where

MeCP2 is inactive or deleted, BDNF levels are significantly

reduced [55,56]. Our data are also consistent with a positive effect

of elevated MeCP2 on BDNF and highlight the involvement of

IKKa.

Recent studies propose that MeCP2 may function both as a

repressor and activator of the same target genes, depending on its

association with other proteins. For example, MeCP2-dependent

recruitment of HDAC2 or CREB to the glial-derived neurotrophic

factor promoter can inhibit or promote gene expression,

respectively [57]. We find that IKKa associates with MeCP2

and both are recruited to the BDNF exon-IV promoter, which

may be crucial for the induction of BDNF. Thus, similar to CREB,

binding of IKKa to MeCP2 may enhance MeCP2-dependent

gene expression. Moreover, maximal BDNF expression in IKKa+
neurons coincides with elevated levels of MeCP2 (Fig. 5). We posit

that changes in the homeostasis of MeCP2 may dictate whether it

acts as repressor or activator of gene expression. At steady state,

MeCP2 may simply function as a chromatin organizer and control

the noise in global gene expression [38]. On the other hand, when

MeCP2 levels are elevated, it may facilitate selective gene

expression by associating by other regulatory proteins such as

IKKa and CREB. It is relevant that elevation of MeCP2 in

transgenic mice induces the expression of ,2200 genes including

CREB [14]. Moreover, the levels of MeCP2 and its phosphory-

lation at Ser421 are increased by exogenous factors such as

amphetamine, cocaine, and the anti-depressant fluoxetine [58,59].

These findings support the dynamic nature of MeCP2 expression

in neurons and how fluctuations in its levels and/or its

phosphorylation may dictate various functions. Exogenous stimuli

including growth factors and cytokines also regulate IKKa activity

[1–4]. The elevation of MeCP2 in IKKa+ neurons and the

phosphorylation of MeCP2 by IKKa raise the possibility that

environmental activation of IKKa may affect MeCP2 homeostasis

and activity. Further characterization of IKKa-MeCP2 interac-

tions may shed light on the complex nature of MeCP2 activities in

neurons.

Materials and Methods

Antibodies and reagents
Anti-Tuj-1 antibody was obtained from Covance (Berkeley,

CA). Anti-Nestin antibody was purchased from R&D systems

(Minneapolis, MN). Anti-syntaxin and anti-Flag antibodies were

obtained from Sigma (St Luis, MO). Anti-NRSF/REST and anti-

PSD95 antibodies were provided by David Anderson and Mary

Kennedy at the California Institute of Technology, respectively.

Anti-IKKa was purchased from BD Biosciences (San Diego, CA).

Anti-MeCP2 antibody and recombinant active IKKa were

purchased from Millipore (Temecula, CA). Anti-phospho MeCP2

(Ser421) antibody was provided by Dr. Michael Greenberg at

Harvard medical school. Anti- IKKc and anti-MAP2 antibodies

were obtained from Cell Signaling Technology (Danvers, MA).

Anti-SCG10 antibody was produced in house. Rat anti-BrdU and

ki67 rabbit antibodies were purchased from abcam (Cambridge,

MA). Anti-laminB1 antibody, DMEM/F12, bFGF-2, N-2 and B-

27 media supplements were obtained from Invitrogen (Carlsbad,

CA). Anti-CREB antibody was purchased from Santa Cruz

Biotechnology (Santa Cruz, CA). Cell fractionation and ECL

detection kits including HRP-conjugated secondary antibodies

were from PIERCE Biotechnology (Rockford, IL). Recombinant

MeCP2 protein was purchased from Panomic (Santa Clara, CA).

Generation of MESC2.10 human neurons
The generation of MESC2.10 human NPCs has previously

been reported [20]. Briefly, NPCs were obtained from an 8 week-

old human embryo and transduced with a retrovirus encoding a

tetracycline-regulated (tet-off) v-myc to promote proliferation [20].

Propagation is in serum-free medium containing bFGF-2 [13,20].

In our studies, NPCs were propagated in dishes coated with poly-

lysine and laminin in DMEM/F12 in the presence N2 and B-27

neuronal supplements and 20 ng/ml bFGF-2 (Invitrogen). When

indicated, doxycycline (2 mg/ml) was added to proliferating

medium to block the expression of v-myc. To differentiate

MESC2.10 NPCs, proliferation medium was replaced DMEM/

F12 containing N2 supplement, 2 mg/ml of doxycycline and

20 mM cAMP.

Neurosphere assays
Single-cell suspensions of MESC2.10 and IKKa+ NPCs (5,000

cells/ml) were cultured in DMEM/F12, containing bFGF (40 ng/

ml) and B27 supplements in the presence of 2 mg/ml of

doxycycline for 6 days. For secondary neurosphere assays, primary

neurospheres were dissociated using trypL (Invitrogen) and

cultured as above. Fresh medium containing FGF-2 and

doxycycline was added every two days. Cultures were examined

using a phase contrast microscope. The number of spheres in 6

wells were counted and averaged for each condition. To stain

neurospheres for markers of differentiation, 6 days old cultures

(after the first round) were dissociated and plated on laminin

substrates for 24 h as above.
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Production of rat cortical NPCs
Procedures for animal work were approved by the California

Institute of Technology Institutional Animal Care and Use

Committee (protocol #1200). Embryonic day 10 cortical progen-

itor cells were generated by mincing the brain into small pieces

followed by papain dissociation (Worthington Biomedical Corpo-

ration, NJ). Cells were cultivated as neurospheres in stem cell

medium (DMEM/F12 plus B-27 and N-2 supplement, Invitrogen)

in the presence of FGF and EGF (20 ng/ml).

Immunohistochemisty
Differentiating NPCs were cultured on cover slips and fixed in

4% paraformaldehyde followed by permeabilization in 70%

methanol and stained with the antibodies indicated. Secondary

antibodies conjugated to FITC or Alexa 568 were used to detect

the respective primary antibodies. Pictures were taken with a

confocal microscope.

BrdU Labeling
Differentiating NPCs grown on coverslips were treated with

BrdU (1 mM) for 24 hrs. Cells were fixed in 4% paraformalde-

hyde followed by permeabilization in 70% methanol in PBS at

220uC overnight. To denature chromatin, coverslips were

immersed in 2 N HCl for 30 min at 37uC and neutralized in

0.1 M borate buffer pH 8.5 by washing 2 times for 5 min each. To

detect BrdU incorporation, coverslips were incubated with Rat-

anti-BrdU (1:200). Anti-Tuj-1 (1:1000) was used to stain neurons.

Goat anti-rat antibody conjugated to Alexa 568 and goat anti-

mouse antibody conjugated to FITC (1:500) were used as

secondary antibodies. Pictures were taken with a confocal

microscope.

RNA and miRNA extraction and quantifications
Total RNA was extracted by TriZol and was further purified by

RNA purification columns (Qiagen, Valencia, CA). For cDNA

synthesis, 250 ng of RNA was reverse transcribed with superscript

VILO cDNA synthesis kit (Invitrogen). To quantify REST,

primary miR-124a, and BNDF mRNAs, Taqman probes synthe-

sized by Applied Biosystems (Foster City, CA), were used for real-

time PCR using a 7300 real-time PCR system (Applied

Biosystems). miRNAs were enriched by the mirVana kit (Ambion).

Taqman probes from Applied Biosystems were also used to

quantify different miRNAs according to provided instructions.

Data were analyzed comparatively by the formula 2(2DDct).

GAPDH was used for the normalization of different mRNAs,

and U6 small nuclear RNA (RNU6) was used for the normali-

zation of miRNAs. Each sample was compared to the mRNA or

miRNA levels of proliferating control cells (day 0). Results are

shown as fold-changes. Student’s t-test was used to calculate the P

values.

Lentiviral production and Western blot analysis
These procedures were performed as described previously [13].

ShRNAs targeting MeCP2 were obtained from Thermo Scientific

(Lafayette, CO).

ChIP assays
For chromatin immunoprecipitations, we used the Magna kit

from Millipore (Bedford, MA) and followed the manufacturer’s

instructions with minor modifications. To fragment the DNA, the

following settings on a Misonix 3000 (Misonex, Farmingdale, NY)

were used; 12 cycles of 30 sec sonication, 60 sec rest, at a power

level of 6 watts followed by 12 cycles of 30 sec sonication/60 sec

rest at a power level of 9 watts. Samples were held in ethanol-ice

bath to prevent overheating. DNA protein complexes were

immunoprecipitated with the indicated antibodies and DNA was

cleaned according the procedures provided in the Magna kit.

Standard PCR procedures were used to amplify the exon-IV

BDNF promoter using the following primers (Forward 59-

ATATGACAGCGCACGTCAAG-39 and reverse 59-

TCACGTTCCCTTCGCTTAAT-39). Primers were designed

according to the sequence published by Fang et al., [60]. PCR

products were examined by agarose gel-electrophoresis and

ethidium bromide staining.

Kinase assay
0.25 mg of active recombinant IKKa was incubated with

0.25 mg of full-length MeCP2 in a kinase buffer in the presence

of 32P-c-ATP for 30 min at 30uC [61]. GST protein was used as a

negative control. Kinase products were examined by SDS-PAGE

and autoradiography.

Supporting Information

Figure S1 Western blot analysis of IKKa levels in the
control and IKKa expressing (IKKa+) line. MESC2.10

NPCs were transduced with a recombinant lentivirus encoding a

Flag-tagged IKKa as described previously [13]. Quantification

reveals that the levels of IKKa in the transduced cells are , three

folds higher than that in the control cells.

(TIF)

Figure S2 Nestin is expressed in proliferating and
dissociated day 6 neurospheres. (A) Control and IKKa+
NPCs express Nestin. Cells were plated on laminin and cultivated

in proliferating medium for 24 hr. Cells were fixed and stained for

Nestin. (B) Day 6 neurospheres were dissociated and plated on

laminin and cultivated in proliferating medium in the presence of

doxycycline for an additional 24 hr. Cells were fixed and stained

as in A. Nestin accumulates in the neurites of IKKa+ cells.

(TIF)

Figure S3 IKKa promotes neurite outgrowth in rat
cortical progenitor cells. Embryonic day 10 cortical progen-

itor cells were dissociated by mincing the brain into small pieces

followed by papain dissociation (Worthington Biomedical Corpo-

ration, NJ). Cells were cultivated as neurospheres in stem cell

medium (DMEM/F12 plus B-27 and N-2 supplement, Invitrogen)

in the presence of FGF and EGF (20 ng/ml). Neurospheres were

dissociated with trypsin and cultured on laminin-coated dishes.

Using lipofectamine, cells were transfected with empty vector (C/

EGFP) or IKKa+EGFP. On the following day, medium without

FGF or EGF, containing cAMP (50 nM/ml) was added to

promote neuronal differentiation. Cells were examined and

pictures taken 4 days post-differentiation. Representative micro-

graphs showing extensive neurite outgrowth in differentiating

neurons expressing IKKa are shown. More than 80% of EGFP

positive cells in the IKKa expressing cells displayed extensive

neurite outgrowth.

(TIF)

Figure S4 Mature miR-7 accumulates in IKKa+ NPCs.
Small RNAs from differentiating NPCs were obtained as described

in Methods. Taqman probes were used for qRT-PCR of mature

miR-7. Samples were normalized to the small RNA, RNU6. Each

sample was compared to time zero (day 0) of the control (C)

proliferating NPCs. Results are shown as fold-change. P values

were obtained using the student’s t-test.

(TIF)
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Figure S5 CREB and MeCP2 are recruited to the exon-
IV BDNF promoter. ChIP assays using the indicated antibodies

were used to immunoprecipitate protein/DNA complexes. The

left part of each panel is ChIP from IKKa+ NPCs and the right

part of each panel is from MeCP2KD cells. CREB recruitment is

shown in (A), MeCP2 recruitment is shown in (B). Non-reactive

IgGs were used a controls. DNA was amplified by PCR. Products

were visualized by agarose gel- electrophoresis and ethidium

bromide staining.

(TIF)
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