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Abstract

Biomarkers are needed to address overtreatment that occurs for the majority of prostate cancer patients that would not die
of the disease but receive radical treatment. A possible barrier to biomarker discovery may be the polyclonal/multifocal
nature of prostate tumors as well as cell-type heterogeneity between patient samples. Tumor-adjacent stroma (tumor
microenvironment) is less affected by genetic alteration and might therefore yield more consistent biomarkers in response
to tumor aggressiveness. To this end we compared Affymetrix gene expression profiles in stroma near tumor and identified
a set of 115 probe sets for which the expression levels were significantly correlated with time-to-relapse. We also compared
patients that chemically relapsed shortly after prostatectomy (,1 year), and patients that did not relapse in the first four
years after prostatectomy. We identified 131 differentially expressed microarray probe sets between these two categories.
19 probe sets (15 genes overlapped between the two gene lists with p,0.0001). We developed a PAM-based classifier by
training on samples containing stroma near tumor: 9 rapid relapse patient samples and 9 indolent patient samples. We then
tested the classifier on 47 different samples, containing 90% or more stroma. The classifier predicted the risk status of
patients with an average accuracy of 87%. This is the first general tumor microenvironment-based prognostic classifier.
These results indicate that the prostate cancer microenvironment exhibits reproducible changes useful for predicting
outcomes for patients.
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Introduction

Prostate cancer is the most frequently diagnosed male cancer

and the second leading cause of cancer death in men in the United

States [1]. Each year in the US, there are approximately 230,000

new cases of prostate cancer and approximately 195,000 radical

prostatectomies are performed [2]. However, few patients may be

saved by these treatments because only a minority of cases will die

of the disease if left untreated. The number needed to treat to save

one life estimated in two studies was 12–15 [3] and up to 48 [4].

Numerous nomograms and related prediction methods have been

created based on clinical variables at the time of diagnosis but, to

date, such tools have provided limited advice regarding which

patients harbor aggressive disease requiring radical treatment

possibly followed by adjuvant therapy and which patients may be

suitable for a more conservative active surveillance program [5–9].

Enormous efforts have been invested in the development of

biomarkers for prognosis of prostate cancer with an emphasis on

features of the tumor epithelial component in retrospective

samples. However, few accepted and clinically employed bio-

markers have been developed. One barrier to biomarker discovery

may be the cell-type heterogeneity and the polyclonal/multifocal

nature of the accumulated genetic alterations at the time of

diagnosis [10–13]. In contrast, the tumor microenvironment

exhibits much more limited mutations and loss of heterozygosity

(LOH) [14] but may respond to paracrine signals from nearby

tumor. It has been shown that the microenvironment of selected

cases exhibit distinct histological changes termed ‘‘reactive

stroma’’ with distinct expression profiles which correlate with

poor outcome [15,16]. Indeed, we have demonstrated that tumor-

associated stroma without regard to subtype possesses unique

expression profiles when compared to normal stroma. We used

these gene expression changes to develop a classifier that can

accurately diagnose the presence of tumor in prostate cancer cases

even if the samples used for analysis do not contain recognizable

tumor [13]. This approach has clinical potential for resolving

hundreds of thousands of ambiguous biopsies performed in the US

every year, which will greatly improve disease management and

save lives. Similarly, useful diagnostic information has been
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obtained from examining the methylation status of GSTP1 and

APC genes in negative initial prostate biopsies [17]. The

differential expression and epigenetic profiles in tumor-associated

stroma compared to the normal stroma may reflect stroma

responses to tumor paracrine factors as well as other influences. If

the quality and quantity of such responses correlate with clinical

outcome such as the indolent or aggressive phenotypes, then the

stroma response to nearby tumor might be useful for deriving

a general rule for prognosis. Other researchers have observed such

differences in breast cancer [18]. In this study, we tested this

hypothesis by comparing gene expression profiles between stroma

samples among patients with known different outcomes, regardless

of histology, and identifying 115 probe sets for which the

expression levels are significantly correlated with times-to-relapse.

We also compared expression profiles between a subset of stroma

samples from patients that relapsed quickly and stroma samples

from patients that had not relapsed after more than four years. We

identified 131 probe sets that had altered expressions. There were

19 probe sets (15 unique genes) in common between these two

gene lists. We then derived a 15-gene classifier. The overall

accuracy was 87% when the classifier was tested on 47

independent test samples. Pathway analysis and Gene Ontology

studies indicated these 15 genes are significantly enriched for genes

that are involved in apoptosis-related processes. These studies

supported the possibility that stroma is a practical basis of risk

assessment.

Materials and Methods

Prostate Cancer Patient Samples and Expression Analysis
Our data sets GSE8218 and GSE17951, which are publically

available in the Gene Expression Omnibus (GEO) database, are

based on post-prostatectomy frozen tissue samples obtained by

informed consent using IRB-approved and HIPPA-compliant

protocols. All tissues were collected at surgery and escorted to

pathology for expedited review, dissection, and snap freezing in

liquid nitrogen. Clinical follow-up data was assimilated by the UCI

SPECS program and maintained in a relational database. RNA

for expression analysis was made directly from frozen tissue

following dissection of OCT (optimum cutting temperature

compound) blocks prepared from the snap frozen samples with

the aid of a cryostat. Stroma from tumor-bearing samples was

prepared from the OCT-embedded tissue that was mounted in

a cryostat by etching a line between tumor and stroma with

a scalpel and then preparing frozen sections which appear as two

pieces one of which is tumor adjacent stroma as described in [13].

Before perfection of this method, some stroma was prepared by

hand dissection of frozen tissue with a scalpel. In order to avoid

contamination, the hand method required leaving a gap between

tumor and stroma of 0.5–1.0 mm and the resulting stroma is

termed ‘‘near’’ stroma.

For expression analysis 50 micrograms (10 micrograms for

biopsy tissue) of total RNA samples were processed for hybridiza-

tion to Affymetrix GeneChips (GSE17951: U133 Plus 2.0

platform; GSE8218: U133A platform). For these two data sets,

the distributions for the four principal cell types [tumor epithelial

cells, stroma cells, epithelial cells of benign prostatic hyperplasia

(BPH), and epithelial cells of dilated cystic glands] were estimated

by up to four pathologists, whose estimates were averaged as

described [19,20].

Data set GSE25136 (U133A platform), which consists of 79

tumor-bearing cases (.10% tumor cells), was independently

developed and used as a test set. The cell-type distribution of

this data set was estimated using CellPred, an in silico method to

determine the tumor percentage of samples based on the

expression values for the multi-gene signatures that are invariant

with tumor surgical pathology parameters of Gleason and stage

(available at http://www.webarraydb.org/webarray/index.html)

[20]. Note that the cell-type distribution of data sets GSE8218 and

GSE17951 were provided by up to 4 pathologists [19], whereas

the cell-type distribution of data set GSE25136 was estimated by in

silico method [20].

Statistical Methods
Normalization was carried out across multiple data sets using the

,22,000 probe sets in common to all Data sets. First, data set

GSE8218 was quantile-normalized using the function ‘normal-

izeQuantiles’ of the LIMMA routine [21]. Data sets GSE17951 and

GSE25136 were then quantile-normalized by referencing the

normalized data set GSE8218 using a modified function ‘REFnor-

malizeQuantiles’ which is available at the SPECS website (http://

www.pathology.uci.edu/faculty/mercola/UCISpecsHome.html)

[22]. The LIMMA package from Bioconductor was used to detect

differentially expressed genes. Prediction Analysis for Microarrays

(PAM [23]), implemented in R, was used to develop an expression-

based classifier from the training sets and then applied to the test sets

without further change.

Results

Gene Expression Associated with Risk
Two methods were employed to define genes differentially

expressed in stroma of high and low risk cases. Short disease-free

survival (DFS) time is a commonly used indicator of aggressiveness

[24–26]. First, we defined aggressive prostate cancer cases as those

patients who experienced disease relapse within 1 year after

prostatectomy, and indolent (or less aggressive) cases as those

patients who either relapsed later than 4 years after surgery or who

did not relapse and had at least 4 years’ follow-up data available.

Based on these criteria, we identified 40 rapid relapse patient

samples containing pure stroma that were near to tumor and 9

patient samples with indolent disease containing pure stroma that

were near to tumor from data set GSE8218. Of these arrays we

randomly selected 8 rapid relapse patient samples and 7 indolent

patient samples as the training sets and compared the expression

profiles of these two groups using LIMMA. Genes with p values

,0.05 and fold change .1.6 (either up-regulated or down-

regulated) were identified and used to develop a PAM classifier.

The resulting classifier was subsequently tested against the patient

samples that had not been used for training (32 rapid relapse

patient samples and 2 indolent patient samples). This process was

repeated 1,000 times and 3,625 probe sets were selected at least

once out of 1,000 times based on criterions of p values ,0.05 and

fold change .1.6. The average sensitivity and specificity of the

cross-validation process were 69% and 82%, respectively. A total

of 131 probe sets were selected by PAM no less than 500 times out

of the 1,000 iterations.

Second, in order to identify probe sets associated with a broader

class of risk values, the data set GSE8218 again was used to

identify probe sets that correlate with disease-free survival time,

including patients that relapsed between one and four years after

surgery. Data set GSE8218 included 49 pure stroma samples from

49 patients who underwent prostate cancer relapse after surgery.

Note that the 49 stroma samples used for correlation analysis are

not identical to the 49 stroma cases used for rapid relapse vs.

indolent comparison which consist of 44 relapsed cases (in

common with the cases used for correlation analysis) and 5 non-

relapsed cases. We analyzed the 49 stroma samples from relapse

Prognosis of Prostate Cancer from Stroma
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case by a correlation analysis and identified 115 DFS-associated

probe sets using Pearson’s correlation analysis with correlation

coefficients .0.46 and associated p values ,0.001). The Pearson’s

correlation coefficients for these 115 probe sets range from 20.46

to 20.61 or from 0.46 to 0.69. Different disease-progression

relevant genes, beyond those found in early and late relapse cases

(131 genes above) were assumed to be uncovered in this gene

identification step because median-risk cases (relapse time between

1 year and 4 years) were included.

There were 19 common probe sets between the 131 probe sets

identified by permutated PAM analysis and the 115 probe sets

identified from correlation analysis. A simulation study showed

that the chance of observing 19 overlap between randomly

selected 131 probe sets and 115 probe sets from a basis of 22,000

probe sets is ,0.0001. Thus these 19 overlapping probe sets (a

figure greater than random) represent significant agreement

between two non-identical sets of case using different methods of

analysis. The 19 common probe sets, which represent 15 unique

genes, are listed in Table 1. Example plots of expression of these

probe sets vs. the DFS time are shown in Figure S1.
Classifier development and testing with independent data sets.

The 19 overlapping probe sets were used to develop a classifier.

From 40 rapid relapse cancer samples from the first step

containing stroma near tumor, we selected 9 samples with the

shortest DFS times, which were combined with all 9 samples

containing stroma near indolent tumor to form a training set. We

used the 19 probe sets identified in the previous step as PAM [23]

input to develop a classifier based on these 18 training samples.

The observed status of the training cases as aggressive case or

indolent case was specified. All 19 probe sets were retained by the

PAM optimizing process with a final training accuracy of 88.9%

(Table 2).

A heat map (Figure S2) illustrates that the 194 genes (the

combination of the 131 probe sets identified by PAM analysis and

the 115 probe sets identified from correlation analysis) had distinct

profiles between rapid relapse cases and indolent cases in the 18

training stroma samples. A volcano plot (Figure S3) illustrates
that some of the probe sets have large fold changes and low p

values. The 115 probe sets have 19 probe sets (15 unique genes) in

common with the 131 probe sets identified from the permutated

PAM analysis. The volcano plot in Figure S3 illustrates that these

19 probe sets are among the most promising probe sets which have

the largest fold changes and lowest p values.

In order to provide an objective test of the prognostic classifier,

47 independent test samples including 36 samples from data set

GSE8218 and 11 samples from data set GSE17951 (not used in

training) were employed for testing. A sensitivity of 88.1% and

a specificity of 80% were observed yielding the average accuracy

was 87% (Table 2, Test). The overall positive predictive value

(PPV) and the negative predictive value (NPV) of the test based on

the 47 independent samples were 97.9% and 44.4%, respectively.

In order to test further whether the 15-gene prognostic classifier

generally applies to entire range of outcomes and is not limited to

the specific selected survivorship selected for training in the first

step, we tested 19 samples (not included in training) from patients

who either suffered relapse between year 1 and year 4 after surgery

or did not relapse but had less than 4 years’ follow-up data. These

19 samples included 9 stroma samples from near tumor and 10

tumor-bearing samples (tumor ,10%). The Kaplan-Meier anal-

ysis indicated that the 15-gene prognostic classifier dichotomized

these ambiguous samples into two groups with significantly distinct

risks (p=0.02). These observations indicated that the combination

of a training method based on selected survivorship in combina-

tion with a correlation method that utilized the full available range

Table 1. 19 probe sets that are consistently associated with relapse.

Probe Set ID Gene Title Gene Symbol Fold change

207574_s_at growth arrest and DNA-damage-inducible, beta GADD45B 4.86

209304_x_at growth arrest and DNA-damage-inducible, beta GADD45B 4.53

213757_at Transcribed locus, weakly similar to XP_001478155.1 PREDICTED:
hypothetical protein [Mus musculus]

–- 3.70

202284_s_at cyclin-dependent kinase inhibitor 1A (p21, Cip1) CDKN1A 2.65

218380_at NLR family, pyrin domain containing 1 NLRP1 1.57

202454_s_at v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian) ERBB3 0.55

205776_at flavin containing monooxygenase 5 FMO5 0.55

212314_at KIAA0746 protein///serine incorporator 2 KIAA0746///SERINC2 0.43

202203_s_at autocrine motility factor receptor AMFR 0.41

211478_s_at dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2) DPP4 0.40

203716_s_at dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2) DPP4 0.39

205261_at progastricsin (pepsinogen C) PGC 0.38

210317_s_at tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation
protein, epsilon polypeptide

YWHAE 0.34

219850_s_at ets homologous factor EHF 0.33

203400_s_at transferrin TF 0.33

202687_s_at tumor necrosis factor (ligand) superfamily, member 10 TNFSF10 0.31

201123_s_at eukaryotic translation initiation factor 5A EIF5A 0.15

217566_s_at transglutaminase 4 (prostate) TGM4 0.03

206260_at transglutaminase 4 (prostate) TGM4 0.01

The entries in boldface are genes associated with apoptosis while the italicized entries are genes associated with cell death.
doi:10.1371/journal.pone.0041371.t001
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of disease-free survival times yielded a classifier with accurate

results when applied to an independent test cohort. A Kaplan-

Meier representation of the test results for the 47 test samples in

combination with the test results for these 19 median-risk stroma

samples is summarized in Figure 1. These results yielded

a probability of chance separation of the predicted classifications

with a p=0.0018.

To measure the significance of the 19 probe sets classifier, we

did an experiment based on sets of genes selected at random. We

randomly selected 19 probe sets from among all 22,283 probe sets

and reran the training and test, as described above. This random

process was repeated 1,000 times. The averages of the operating

characteristics are given in Table 2. Only 7% of the 1000 random

classifiers had equal or better performance than the prognostic

classifier.

We also checked if including clinical information, such as

Gleason Scores, tumor stage and pre-operative PSA added

prognostic value to the classifier. We used these three variables

in combination with the 19 probe sets as PAM input and let PAM

select the best predictive features. None of these three variables

were picked by PAM. In addition, we analyzed 65 cases (18

training cases and 47 test cases in Table 2) using a multivariate

Cox proportional hazards regression, where age, Gleason sum,

TNM and pre-op PSA are compared to the prediction made by

our classifier. Only classifier prediction (p=0.0005) and TNM

(p=0.0383) were significantly associated with survival. The result

indicated that gene signature has better predictive value and adds

predictive value to known clinical and pathological variables.

Test on Stroma Samples Far from Tumor and Tumor
Samples with Low Amounts of Stroma
The 19 probe sets (15 genes) form a prognostic signature specific

to stroma near tumor. To examine whether the 15-gene classifier

extended to stroma that is far from primary tumor, we tested the

classifier on 9 indolent stroma samples 8 of which are far from the

primary tumor, taken from a zone contralateral to the tumor site.

The accuracy or specificity was only 11.1% (data not shown).

Thus, when stroma is tested from remote positions with a low

likelihood of being affected by tumor paracrine factors, a stroma

response represented by the expression changes of these 15 genes

was not detected in contrast to such changes detectable in stroma

near tumor. To check whether the 15-gene classifier was

insensitive to large amounts of contaminating tumor, we tested it

on 117 tumor-bearing samples (.10% tumor cells with average of

48.5% of tumor component) in three data sets (GSE8218,

GSE17951, and GSE25136) with an overall accuracy of 41%.

However, when the classifier was tested on 9 samples that contain

,10% tumor cells, the accuracy was 89% (Table 2). Thus for the
intended clinical use of the assay, it will be important to sample

stroma that is adjacent to but free of tumor cells.

Function Analysis for the Classifier Genes
We analyzed the 19 probe sets (15 genes) using the DAVID

bioinformatics tool [27]. The 15 genes are significantly enriched in

genes associated with apoptosis and with cell death (p,0.001 and

Benjamin score ,0.05) (Table 1, in boldface and/or italicized).

We further analyzed the 194 genes (the combination of the 131

probe sets identified by PAM analysis and the 115 probe sets

identified from correlation analysis) using a pathway analysis tool

from MetaCore (GeneGo Inc.). The filtering system of MetaCore

helped limit our search to those genes that have been reported in

specific tissue, for example, prostate tissue. The filtered genes were

used to build the signaling pathways. The statistically significant

pathways had to meet the FDR ,0.05 and multiple genes (.2)

significantly associated with the biological pathways. To analyze

the 194 genes, we used ‘smooth muscle + disease biomarker’ and

‘prostatic neoplasms transcription’ as filtering parameters. The

results of MetaCore pathway analysis are listed in Table S1.

Table 2. Performance of the 15-gene classifier versus random classifiers.

Accu. (%) Sens. (%) Spec. (%)

Training

9 HRs stroma samples vs 9 LRs stroma samples1 88.9/70.3 88.9/68.7 88.9/71.9

Test

31 HRs stroma1 87.1/50.9 87.1/50.9 –

2 HRs with ,10% tumor1 100/45.4 100/45.4 –

3 LRs with ,10% tumor1 100/44.1 – 100/44.1

7 HRs stroma2 85.7/23.3 85.7/23.3 –

2 HRs with ,10% tumor2 100/45.4 100/45.4 –

2 LRs with ,10% tumor2 50/74.4 – 50/74.4

1GSE8218, Affymetrix U133A
2GSE17951, Affymetrix U133Plus 2. 2. The first/second value in each cell represents the result from 15-gene classifier/the average of 1000 random classifiers.
doi:10.1371/journal.pone.0041371.t002

Figure 1. Kaplan-Meier analysis of 66 test samples based on
the prediction made by the 15-gene prognostic classifier.
doi:10.1371/journal.pone.0041371.g001

Prognosis of Prostate Cancer from Stroma

PLoS ONE | www.plosone.org 4 August 2012 | Volume 7 | Issue 8 | e41371



Discussion

We previously showed that there are hundreds of significant

gene expression changes between tumor-adjacent stroma and

normal stroma that were used to develop a stroma-specific high

accuracy Diagnostic Classifier for detecting the presence-of-tumor

based on the RNA expression of stroma alone [13]. These stroma-

specific expression changes are likely to be due to the reaction of

stroma to the tumor-derived paracrine mediators as well as

a possible ‘‘field effect’’. Here we further hypothesized that there

may be expression differences between the stroma of indolent and

aggressive tumors, which could be utilized for clinical prognosis. In

order to test this hypothesis, we compared gene expression profiles

between tumor-adjacent stroma samples from patients that

experienced rapid relapse and tumor-adjacent stroma samples

from patients that did not experience relapse or for which relapse

took many years. 40 stroma samples from rapid relapse and 9

stroma samples from indolent cases were subjected to a permuta-

tion process to identify differentially expressed genes. In each of

1,000 iterations/resample, we used 31% of the stroma samples (8

out 40 rapid relapse stroma samples and 7 out of 9 indolent stroma

samples) for training and used the remaining stroma samples for

testing. Owing to the fact that we had small number of samples for

training, we selected small but similar numbers (8 and 7) for each

iteration in order to give room for resampling (permuted analysis).

The advantages for this scheme are three fold. First, it was

a balanced analysis in each resample. Second, such scheme is

robust to potential ‘bad’ samples since bad samples may be

excluded in many resample combinations. Third, such scheme can

dramatically increase the detection base (a total of 3625 probes

were identified by 1,000 resamples). However, we only selected

131 probe sets that were identified more than 500 times in the

1,000 iterations to reduce the chance of false identifications. We

also identified 115 probe sets of which the expression levels in

tumor-adjacent stroma are significantly correlated with the

disease-free survival times of the patients who underwent disease

relapse. The 19 common probe sets (15 unique genes) of these two

significant gene lists were used to develop a PAM-based classifier,

which had an average accuracy of 87% when it was tested on 47

independent tumor-adjacent stroma samples.

Recently, it has been reported that in breast cancer any set of

100 genes or more selected at random has a 90% chance to be

significantly associated with outcome, and most published

signatures are not significantly more associated with outcome

than random predictors [28]. In order to address this problem, we

generated random classifiers based on the same training samples

and the 1,000 sets of 19 probe sets selected at random and tested

these random classifiers with the same test samples as used for

testing the 19-probe set Prognostic Stroma Classifier. The average

number of probe sets selected by PAM in the 1,000 random sets is

3.7 which are assumed to be a noise. That is for any randomly

picked set of 19 probe sets, a small number of probe sets would be

correlating with the high/low risk status by coincidence, which

explains why the average training accuracy of random classifiers

was ,70%. However, these random classifiers would not work for

independent test sets. On the contrary, the 19 probe sets were

identified through both rigorous approaches; therefore, they are

potentially general prognostic markers that apply to other test sets.

The comparison favored our 15-gene (19 probe set) classifier over

those classifiers generated through random processes (Table 2).

A number of genes identified here for classifier development

have been observed in other studies of RNA expression in the

stroma of prostate tissue. We compared the total of 227 probe sets

or 194 unique genes identified here with stroma-specific probe sets

previously identified in three studies as useful for diagnosis. There

are 2 genes in common (PROM1, GPM6B) with the 339 probe

sets used to develop our diagnostic classifier [13]; 3 genes

(SEL1L3, KRT19, and KRT7) in common with the 119 genes

differentially expressed gene of Joesting et al. [29], and 3 genes

(NKX3-1, TPD52, and GALNT3) in common with the 44 genes

that were differentially expressed between tumor-associated

stroma and nontumor stroma from 5 patients [30]. These

observations indicate that the prognostic signatures in stroma

are largely different from the diagnostic signatures in stroma.

In a recent study, a genome-wide LOH/allelic imbalance (AI)

scan of DNA was conducted to identify LOH/AI hot/cold spots in

prostate epithelium, or in prostate stroma, or in both which

identified 156 gene associated with clinicopathologic phenotypes

including relapse [14]. Four genes (C7, SLPI, HOXB13,

PDCD10) are shared with our 194 stroma prognostic genes with

a p value of 0.08. Thus, gene expression of a few genes we

identified as of potential prognostic value might be altered due to

genotypic changes, and are of particular future interest, but most

genes we identified do not yet show such an association.

A subset of the more aggressive samples in our study will have

reactive stroma, which has been shown to correlate with poor

outcome [15]. Thus, we compared the 194 stroma-expressed

genes that we found to correlate with outcome to the 1150 genes

that were differentially expressed between the ‘‘reactive stroma’’

subgroup of prostate cancer samples and distant stroma from the

same 17 patients [15]. Ten genes (RABEP1, ZNF263, MCCC2,

SLC4A4, TP53, KPNA6, PTPRF, CDH1, SCNN1A, and CD24)

were in common between the studies (p value = 0.1312, by

a simulation-based test). Another recent study identified 36

prognostic markers also specifically drawn from reactive stroma

[16]. In addition, the test samples had substantial tumor present,

leaving open the possibility that some genes were differentially

expressed between the tumor epithelium of high- and low-risk

tumor. Despite these differences in experimental design, four genes

(NKX3-1, FOLH1, AGR2, HOXB13) are in common with our

194 stroma prognostic genes with a p value of 0.0001, indicating

substantial agreement. Moreover, all four gene products are well

documented diagnostic or prognostic biomarkers for prostate

cancer [31–35]. These genes will be of particular interest in future

studies.

We analyzed the biological functions for the prognostic 19

probe sets (15 genes) (Table 1) using DAVID and MetaCore

software. The results indicated that 7 known genes (GADD45B,

CDKN1A, NLRP1, ERBB3, YWHAE, TNFSF10 and EIF5A) are

related to apoptosis and 6 known genes (CDKN1A, NLRP1,

ERBB3, YWHAE, TNFSF10 and EIF5A) are related to cell death,

with 6 in common. This is intriguing based on our speculation of

tumor-stroma dialog that favors tumor progression. Perhaps,

aggressive tumors paracrine signals provide a mechanism to

compel the surrounding stroma to undergo remodeling and/or

apoptotic processes to facilitate tumor growth and invasion [36]

followed by Epithelial-mesenchymal transition [37,38]. Evidence

from independent experiments at the molecular level is needed to

support this hypothesis.

We further analyzed the 194 genes (the combination of the 131

probe sets identified by PAM analysis and the 115 probe sets

identified from correlation analysis) using a pathway software

MetaCore. The result of pathway analysis by using ‘smooth

muscle + disease biomarker’ as a filtering parameter indicated that

this set of 194 genes are significantly enriched in genes associated

with ‘prostatic neoplasms transcription’. The seven genes associ-

ated with this description were NCOA3 (TRAM-1), c/EBP

(CEBP), NR77 (NR4A1), NK31 (NKX3-1), P53 (TP53), KL5
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(KL5), CEBPD. Moreover, 3 genes STAT1, ERBB3, P21

(CDKN1A) were found to be associated with ‘prostatic neoplasms

regulation of progression through cell cycle’ and 1 gene STAT1 is

associated with ‘prostatic neoplasms inflammatory response’.

Pathway analysis using ‘smooth muscle + disease’ as a filtering

parameter indicated that 67 of the 194 genes are known to be

significantly associated with prostatic diseases and 66 of these 194

genes are known to be significantly associated with prostatic

neoplasms (Table S1) of which 59 are in common among the two

lists. Furthermore, most of these 194 genes are also associated with

other cancers such as colorectal neoplasms, breast neoplasms and

lung neoplasms, indicating these genes may be commonly involved

in cancer related pathways. The pathway analysis also showed that

a significant fraction of these 194 genes interact with transcrip-

tional factors, such as P53, SP1, FOXO3A, AR, BCL6, STAT5A,

STAT5B, C-Jun, NRF2, MYOD and STAT1, which play crucial

roles in cancer development and progression. For example,

transcriptional factor SP1 is functionally associated with 94 genes

from the 194 gene list (Figure S4). SP1 is a transcriptional factor

that is over expressed in a variety of cancers and regulates gene

expression by interacting with GC rich SP1 binding sites [39]. We

also analyzed the 14 common genes (RABEP1, ZNF263,

MCCC2, SLC4A4, TP53, KPNA6, PTPRF, CDH1, SCNN1A,

CD24, NKX3-1, FOLH1, AGR2, and HOXB13) between the

194 genes and the genes reported in the other two reactive stroma

studies [15,16] using MetaCore, which identified the cell adhesion

(cadherin mediated cell adhesion) as the top ranked pathway

associated with these overlapped genes. Dysfunction of the

cadherin pathways have been reported in various cancers

including prostate cancer [40]. The association of prostate cancer

and other neoplasms with many genes identified as predominately

stroma expressed supports the thesis that the prognostic genes

identified here may play functional roles in stroma significantly

influence the outcome of prostate cancer.

In summary we conclude that tumor-adjacent prostate cancer

stroma contains numerous changes in gene expression at the time

of diagnosis that correlate with the chance of relapse following

prostatectomy. Moreover, these changes can be harnessed to

provide an objective prediction of outcome on an individual basis.

It is likely that the differences in RNA expression are often

reflected in differences in chromatin modification, DNA methyl-

ation, and protein levels, which could also serve as stromal markers

for progression.

Supporting Information

Figure S1 The plot of expression level vs. the DFS time for the

19 probe sets from stroma, associated with tumor recurrence. The

y axis is the log transformed Affymetrix expression values, x axis is

the time to relapse, rho is the Pearson’s correlation coefficient, and

the p is the p value for the correlation test.

(PDF)

Figure S2 Heat map of the 227 probe sets (the combination of

the 131 differentially expressed probe sets and the 115 DFS

associated probe sets) in the 18 training cases. The cases labeled

with red are high-risk stroma samples and the cases labeled with

green are low-risk stroma samples.

(PDF)

Figure S3 Volcano plot of probe set ratios and probabilities

based on 18 training samples.

(PDF)

Figure S4 Among the 194 stroma genes correlated with tumor

prognosis there are 94 genes that are functionally associated with

transcriptional factor SP1 (p value ,1e-6).

(PDF)

Table S1 MetaCore pathway analysis of the 194 genes (the

combination of the 131 probe sets identified by PAM analysis and

the 115 probe sets identified from correlation analysis) using

‘smooth muscle + disease biomarker’ and ‘prostatic neoplasms

transcription’ as filtering parameters.

(XLS)
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