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Abstract

An automated technique for the identification, tracking and analysis of biological cells is presented. It is based on the use of
nanoparticles, enclosed within intra-cellular vesicles, to produce clusters of discrete, point-like fluorescent, light sources
within the cells. Computational analysis of these light ensembles in successive time frames of a movie sequence, using k-
means clustering and particle tracking algorithms, provides robust and automated discrimination of live cells and their
motion and a quantitative measure of their proliferation. This approach is a cytometric version of the moving light display
technique which is widely used for analyzing the biological motion of humans and animals. We use the endocytosis of
CdTe/ZnS, core-shell quantum dots to produce the light displays within an A549, epithelial, lung cancer cell line, using time-
lapse imaging with frame acquisition every 5 minutes over a 40 hour time period. The nanoparticle moving light displays
provide simultaneous collection of cell motility data, resolution of mitotic traversal dynamics and identification of familial
relationships allowing construction of multi-parameter lineage trees.
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Introduction

Computerized identification, discrimination and tracking of

biological cells, in microscopy images, is vital to modern high

throughput platforms that deliver automated scanning and capture

of millions of images per day [1–3]. Rapid, machine-based image

analysis is now essential as the data generation rate far exceeds

human processing capacity and many of the key challenges in cell

biology demand knowledge of all individuals within large cell

populations, e.g. understanding the role of heterogeneity and

division asymmetry in cancer [4–7] or stem cell proliferation and

differentiation [8]. Through the use of ever-increasing processing

speed and capacity and evolving microscopy techniques, auto-

mated cell identification and spatio-temporal tracking is now

widely used [9–11]; however it is far from straightforward to

implement and requires computational algorithms and imaging

science beyond that common to standard microscopy. Threshold-

ing and segmentation routines used to identify cell outlines are

often complex, reflecting the intrinsic problem of poor optical

contrast within epi-illuminated or bright-field images, caused by

the minimal refractive index differences between cells and their

surrounding environment. Phase contrast or fluorescence imaging

modalities alleviate some of these problems [12–13] but have

varying applicability across cell-types due to changing optical

density in the case of phase-based techniques or necessitate

intervention in the cell biology to introduce fluorescence markers,

e.g. GFP transfection, antibody loading or DNA staining; this can

interfere with natural cell function and so application to live cells is

limited [14]. Even when successful cellular image analysis has been

implemented there often remains a fundamental imbalance

between data acquired and information processed: large data-set

images are taken at sub-cellular resolution and then processed to

produce much simpler, whole cell parameters such as cell identity,

type, position etc. This is in-efficient processing of information and

imposes an overhead on hardware performance, computational

power and data analysis time.

These computerized approaches mimic human visual percep-

tion of form and motion where dense and complex image

information is processed to obtain much simpler, abstract

representations of objects and their position. However, through

early studies by Wertheimer and others on the relationship

between perception and simplified abstractions, such as points or

lines, it is now known that human perception can operate directly

at the level of the abstract object and so does not require detailed

information – the human form of a ‘stick-person’ is recognizable

despite consisting only of straight lines and a circle. This is the

Gestalt (‘‘unified whole’’) theory of visual perception [15] and its

consequence to image analysis is that acquisition need not

incorporate the full spatial detail of the object. This realization

was put to practical use in the early 1970’s by Johansson who

utilized our ability to accurately discriminate and track objects

with minimized information by studying human motion using

moving light displays (MLD), created from video sequences of high

contrast optical sources attached to the joints of a moving person

or animal [16]. The technique has been widely adopted in the

computer image community and is now routinely used for optical

motion capture and animation through imaging of dark suited

actors with bright optical sources or reflectors, positioned at key
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points, which describe the mechanics of movement [17–19]. In the

context of imaging cytometry the MLD technique demonstrates

that accurate identification and quantification of cell motion does

not require high spatial resolution of cellular form and structure

and can be performed with a low number of binary optical

markers associated with the cell.

In this paper we report on the implementation of the moving-light-

display technique in cells by the use of lysosome-encapsulated

quantum dots (QDs) to create clustered points of light, through which

cells can be identified, tracked and analyzed. The creation of the

optical sources through endocytosis of fluorescent markers provides a

generic and innate encoding mechanism, applicable across multiple

cell types. The nanoparticles provide robust, bio-stable and photo-

stable fluorescence thatcanbe trackedovermultiplegenerations, and

at nanomolar concentrations do not perturb cellular function [20].

Under typical loading conditions there are between 10–50 vesicular

light sources; these are resolvable at low magnification and provide

good signal to noise discrimination due to particle concentration

within the vesicles. A typical panel of images of quantum dot labeled

cells is shownin figure1; thisdepicts theacquiredbright-field (1A)and

fluorescence (1B) images and a binary map created from the

fluorescence data (1C, see materials and methods for details of the

image processing). The fluorescently-labeled lysosomes are observed

as clusters of light sources, the cellular encapsulation of which

provides a localization of the cluster to the intra-cellular domain; this

is sufficient to discriminate between clusters and hence identify

individual cells. Cell movement is analyzed through identification of

the cluster centroid and tracking of its spatial translation in successive

time frames. The use of point tracking in biological image analysis is

well established [21–23];hereweareadapting theapproach toobtain

integrative information at the level of the cell rather than the

individual points. As in human MLD the light points allow

recognition of the form and motion of the gross object (the cell)

through a reduced information set of 10–50 binary-valued pixels (the

cluster centroids). The inter-relationship of light sources within a

cluster is determined by the relative motion of the labeled lysosomes

and hence it carries biological information relating to cellular state

and function. For example, the local-level metric of mean point

separation within a cluster provides a quantitative measure of a cell’s

traversal through mitosis with associated spatial arrangements of the

QD-loaded lysosomes providing specific, easily recognizable geo-

metrical motifs of cell division.

(details presented in section on analysis of cell division).

In the following sections a demonstration of the moving-light-

display concept within cells is presented; starting with details of the

microscopy and image analysis techniques used and then expanded

through reference to the biologist’s requirement for i. identification

and discrimination of cells, ii. spatio-temporal tracking of their

motionanddivision, iii.analysisofdivisioneventsandiv.visualization

of time dependent relationships in cell lineage maps. We conclude

with a discussion on the applicability of the technique and a general

summary of the nanoparticle MLD approach.

Materials and Methods

Cell Culture
A549 (ATCC CCL-185) cells were maintained under G418

selection in McCoy’s 5a medium supplemented with 10% fetal calf

serum (FCS), 1 mM glutamine, and antibiotics and incubated at

37uC in an atmosphere of 5% CO2 in air. For imaging

experiments, cells were grown at a density of 16106 cells ml21

as a monolayer in either coverglass bottomed chambers (Nunc, 2

Well Lab-Tek II, Fisher Scientific) or glass bottomed (24 multi-well

Sensoplate, Greiner Bio-one for 24 h prior to imaging. All cell

concentrations were determined using a Coulter Particle Counter

(Beckman Coulter, High Wycombe, UK).

Nanoparticle Loading
Cells were loaded with commercially available targeted nanocrys-

tals using the QtrackerH 705 (QTracker705) Cell Labeling Kit

(Invitrogen (Q25061MP) at 4 nM concentration. The reagents in the

QtrackerH 705 Cell Labeling Kit use a custom targeting peptide (9-

arginine peptide) to deliver near-infrared-fluorescent nanocrystals

into the cytoplasm of live cells via the endosomal pathway. Briefly,

Qtracker reagent A and B were premixed and then incubated for 5

minutes at room temperature. 1 ml of fresh full growth media was

added to the tube and vortexed for 30 seconds. This labeling solution

was then added to each well of the cells and incubated for 1 hour at

37uC after which they were washed twice with fresh media.

Subsequently 24 hours later, labeled cells were then analyzed by

time-lapse, confocal microscopy.

Image Acquisition
Confocal laser scanning microscopy (Radiance CLSM, BioRad

Ltd) was used to track quantum dot labeled A549 cells over a 48 hour

period. The Qtracker705 fluorescence was collected using 488 nm

Figure 1. Typical cell images. (A) Bright field image with binary element overlay; (B) fluorescence image of two neighboring A549 cells; (C) the
light point cluster map derived from the fluorescent signal. The binary elements within the light point map are displayed as blue points and represent
the locations of the centres of the quantum dot labeled vesicles; the centroids of the binary element clusters are displayed as red points. (see Movie
S1 for mitosis animation).
doi:10.1371/journal.pone.0040835.g001

Cell Tracking Using Nanoparticle Light Displays
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excitation and 680–20 nm emission filters; x,y,z,t optical sections

(using640, 0.75 NA air lens) were collected every 5 minutes.

Image Pre-processing
All image processing was done within the MATLAB program-

ming environment. The fluorescence image data was provided in

the format of multi-layer tiff stacks each containing 8 focal plane

images for every 5 minute interval across the 48 hour experimental

range. The capture of multiple focal planes allowed creation of a

composite image using the highest contrast regions of all available

images. This composite was created by segmenting the image

space into smaller regions and applying the standard absolute

gradient algorithm of the form:

Fgrad~
X

Height

X
Width

DI(xz1,y){I(x,y)D ð1Þ

where I(x,y) is the intensity of the pixel (x,y).

Conversion to a binary representation is a simple two step

process.

i. A step function of the form

Fs(x,y)~
1 if I(x,y)§ h

0 if I(x,y) v h

�
ð2Þ

where h is a pixel intensity threshold defined as

h~mimageintensityzsimageintensity ð3Þ

was applied to the composite fluorescence image to remove

background noise. Here m is the image intensity average and

s the standard deviation added to account for variability of

background.

ii. A simple peak finder algorithm locating the maximum pixel

intensity within a localized area by cross-referencing the linear

profiles of the pixel rows and columns was applied to locate

the maximum intensity points of the fluorescent signals

corresponding to nanoparticle loaded vesicles and their x

and y coordinates stored.

Cluster Analysis – the First Pass
A standard k-means clustering analysis algorithm was used to

identify groups of pixels in the binary image (binary elements)

corresponding to fluorescent vesicles within the same cell. For the

binary elements coordinates(b1,b2, ::: , bn) we iteratively used the

function:

arg min
C

Xk

i~1

X
bj[Ci

bj{mi

�� ��2 ð4Þ

to find the cluster centroid location. Here C~ C1,C2, ::: , Ckf g is

the set of clusters with total cluster number k, bj is the set of binary

elements associated with the cluster Ci and mi is the mean of the

binary points in Ci. The seeding of the centroid locations in the

initial timeframe was done manually and the k-means algorithm

then applied to refine their coordinates to the true cluster centers.

The in-built k-means algorithms within Matlab proved to be

accurate provided the initial seed centroid locations were

accurately assigned by the user.

In successive images the centroid locations from the previous

timeframe were used as a seeding set. To deal with the sporadic

occurrence of rogue binary elements (noise) and binary elements

Figure 2. Spatio-temporal cell tracking. (A) Bright field image of
A549 cells overlaid with binary elements (blue) and assigned centroids
(red); (B) full-field binary element representation of a 3366256 mm
fluorescence image taken at the initial time point of experiment and (C)
representation of the same field at the t = 40 hour time point. (see
Movie S2 for evolution animation).
doi:10.1371/journal.pone.0040835.g002
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representing cells entering the field of view, new centroids are

assigned to regions containing binary elements that are more than

120 pixels (30 mm or ,3 cell diameters) from their nearest

centroid. New seeds are assigned to deal with both these

occurrences as they are indistinguishable without time consuming

comparisons with previous frames and interpretation of boundary

events. It is temporally and computationally more efficient to

assign binary elements to new clusters generated according to

basic rules and interpret the nature of the groupings during later

processes. A proximity validation was applied by identifying

current seeds with no binary elements within a distance of 50

pixels (12.5 mm) and removing them. This primarily deals with the

event of a cluster moving out of the field of view therefore leaving a

centroid seed from the previous frame with no binary elements to

define it and secondarily with centroids previously defined to

account for rogue elements whose intensities have dropped back

below the noise filter. The k-means algorithm was then run using

the modified centroid set and a measure of the cluster fit taken by

implementing a native Matlab silhouetting algorithm to acquire a

cluster fit parameter. The Silhouette process provides a validation

of the clustering by determining how well each binary element fits

within its assigned cluster. For each binary element i, let ai be a

measure of dissimilarity with elements in the same cluster, in our

case the average distance from all other cluster members. Perform

the same operation comparing element i with all elements in all

other clusters successively and assign the lowest dissimilarity

measure as bi. Now define the silhouette of the binary element i as

si~
bi{ai

max ai,bif g ð5Þ

where {1ƒsiƒ1. A value close to 1 means the element fits well

with its assigned cluster and the average si of the all binary

elements is a measure of how well assigned clusters are. Following

optimal assignment of cluster centroids an average binary element

separation parameter was calculated for each cluster sequentially.

If this parameter was found to be greater than 15 mm, ,1.5

average cell diameters, it was likely that a division event had

occurred and so the k-means algorithm is run again with an

additional centroid seed placed 10 pixels from the centroids

associated with probable division events. The silhouette cluster fit

parameter was then re-calculated and if the value found to be

more favorable the additional centroid is accepted. The process

was reiterated until all clusters were validated.

Cluster Refinement – Centroid Linkage and the Mitotic
Signature

Refinement of the spatial tracking was accomplished by

temporal tracking of the centroids and by identification of cell

division events through further analysis of the separation of binary

elements within clusters.

The centroids in each time frame were linked to centroids in

surrounding time frames through application of a nearest neighbor

Figure 3. Analysis of mitosis. (main figure) An example of the characteristic curve of mean binary element separation as an individual cell
undergoes a mitotic event and divides into two daughters cells. (sub-panels) The corresponding stills below show the binary element distribution, in
a fixed frame position, at four time points spanning key stages of the process: (A) Cell prior to extracellular signs of mitotic committal; (B) localized
contraction of the light-point markers as the cell prepares to divide; (C) marker distribution indicating telophase stage; (D) two daughter cells
identified as independent clusters (frame scale is 40630 mm). (see Movie S3 for animation).
doi:10.1371/journal.pone.0040835.g003
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map. For two sequential frames with centroid sets Ci and Ci+1

where CiwCiz1we calculated the Euclidian distance between

each member of Ci and Ci+1 and then assigned nearest neighbors

in ascending order until each centroid of Ci+1 was linked to a

corresponding centroid in Ci. The remaining centroids in Ci were

then linked to their respective closest centroids in Ci+1 provided

they are within the average single cell diameter of 10 mm otherwise

they were deemed to be new progenitor groupings. The centroid

lineages were then stored as vectors of length |Ci| whose entries

are the indices of the corresponding closest centroid in Ci+1.

Division events revealed themselves at this point when a single

centroid in one frame had two nearest neighbors in the next. With

lineages initially defined the temporal placement of division events

was further refined by tracking each of the lineages individually

through all timeframes and compiling mean distance profiles to

search for the characteristic cluster contraction and expansion

dynamic that is a signature of cell mitosis.

(see analysis of cell division).

Results

Cell Identification
A typical example of the embedding of point light sources within

cells, through the use of QDs, is shown in figure 1. The

nanoparticle loaded vesicles form a perinuclear ring of punctate

fluorescence (fig. 1B). It is the location of the vesicles rather than

the overall light distribution that we require. The fluorescence

image is therefore filtered to identify points of peak intensity which

are then used to create a binary image, in which, discrete pixels

form a digital map of points (fig. 1C) representative of the

nanoparticle vesicles (see materials and methods section for full

detail). We refer to these point sources as ‘binary elements’. It is

the spatial relations and temporal motion of the binary elements

that provide identification of cells and analysis of their motion,

function and proliferation. The localization of nanoparticle loaded

vesicles within individual cells produces clustering of the binary

elements which can be recognized through a k-means clustering

analysis, and represented by, a centroid marker which corresponds

to the geometrical centre of the binary elements (fig. 1C). Thus the

complex graphical information of the bright field image (fig. 1A) is

reduced to a set of Cartesian co-ordinates (the centroid markers),

each of which represents a cell, and through which the spatio-

temporal behavior of the cell population is analyzed. Previous

studies have shown the QTracker705 QDs to be photo-stable over

many days and that the QD loaded lysosomes are conserved upon

cell division [24]. Identified cells can therefore be tracked across

the cell cycle and the proliferating population mapped through

detection of division events and the associated daughter cells.

Spatio-temporal Tracking of Cells
Once an initial field of cells has been identified and cluster

centroids assigned, a full spatio-temporal track can be obtained

through linkage of the centroids through successive time frames.

Centroid seeds for each successive frame are defined to optimize

the speed of the k-means process, account for the possibility of

losing and gaining clusters off the edge of the plane of view and

deal with rogue binary element points occurring sporadically

through time in otherwise empty regions. The general approach

taken can be summarized as follows: 1. generate a foundation set

using centroid locations from the previous time frame, 2. validate

proximity of all centroids to binary elements to identify centroids

whose binary element cluster has moved out of view and 3.

validate proximity of binary elements to centroids to account for

any noise elements that passed through the filter. Images were

taken with a 5 minute time interval; this minimizes the probability

Figure 4. Lineages. Graphical representation of a single cell’s lineage evolution through space alongside conventional lineage portrait as defined
by the automated centroid tracking. Diamonds mark the spatial and temporal location of mitosis events, red being the progenitor cell, green the
second generation cells and magenta the location of the cell centroids in the final frame of the time-lapse sequence. The cross marks the loss of a cell
behind an unidentified object in the image (non-cell). The arrows in the main diagram may be viewed as motility vectors reporting the mean velocity
of a cell between mitotic events.
doi:10.1371/journal.pone.0040835.g004
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of large changes in cell position and thus ensures accurate

correlation of centroid locations from frame to frame.

A movie sequence of this centroid motion and the ‘birth’ of new

centroids in daughter cells, taken over a 48 hr period, is shown in

Movie S2; single images, taken at the 0 and 40 hr time points, are

shown in figure 2. A composite, overlay image shows the relation

of the QD-encoded binary elements to the cluster centroid and to

the detailed topology of the cell, as seen in the bright field image

(figure 2A). The A549 cell-line has a mean inter-mitotic time of

,22 hours [25] and so there are 2–3 rounds of cellular division

during the time of the experiment. The images in figure 2B and

2C clearly show this proliferation, the centroid number increases

from 41 to 133 and the average number of binary elements per

cluster reduces from 34 to 12. These cluster statistics are consistent

with a cell doubling (QD vesicle number halving) time of ,23

hours.

Analysis of Cell Division
As cells go through mitosis they undergo distinct morphological

changes that can be tracked via the binary elements. The mean

distance of the binary elements from each cell centroid provides a

characteristic parameter, from which a ‘mitotic curve’ may be

constructed (figure 3). As cells enter the mitotic phase they detach

from the adherent surface and round-up to a spherical geometry,

this condenses the nanoparticle vesicle distribution and produces a

reduction in the mean binary element separation (fig. 3A–3B).

After chromosomal separation the nanoparticle vesicles disperse

during cell telophase and the mitotic curve begins to increase

(fig. 3B–3C). Upon the completion of mitosis the binary element

spacing continues to grow as two clusters separate in the daughter

cells (fig. 3C–3D); this latter increase arises from the computa-

tional assignment of elements to a single centroid whereas

physically there are clearly two separate groupings following

cellular division. We therefore make a transition from a single to a

pair of centroids and reassign the binary elements to daughter cells

when the average separation of a cluster after the contraction

phase surpasses a predefined level, defined as the stable separation

distance maintained prior to contraction (fig. 3C).

The mitotic curve provides not only a clear digital marker of cell

division events but also a quantitative, analogue track through the

mitotic phases which informs on the kinetics of the cell division

process (see supporting media for further examples). Here the

moving point display technique provides a tool with which the

shape and motion of cells can be analyzed. The linkage of cell

division events through spatio-temporal tracking provides a

functional lineage analysis capable of describing the clonal

relationships of a wide range of morphological and motility

measures. As an example, a motility lineage map is shown in

figure 4 in which the inter-generational relationships are mapped

by velocity vectors, displaying the mean speed and net direction of

inter-mitotic cellular motion.

Accuracy and Robustness
In order to numerically quantify the operational range of the

nanoparticle-encoded MLD we take a representative sample

image and investigate the effects on cluster identification and

assignment of centroid position due to variation in the noise filter

threshold (figure 5). This approach is chosen from a wide range of

alternatives as it directly relates the accuracy of the technique to

the number of encoding light points (nanoparticle loaded vesicles)

and corresponds to the experimental measurable of fluorescence

signal to noise (SNR). Increasing the intensity of the thresholding

step function reduces the number of binary elements identified, as

noisy, rogue pixels are filtered out (fig. 5A). From the conversion

Figure 5. Operational range. (A) Calibration curve of initial image
showing the relation between the intensity threshold filter cut-off and
the number of binary elements identified. (see Movie S4 for animation)
(B) Plot showing the operational range of the system through the
binary element dependence of the number of centroids (cells) identified

Cell Tracking Using Nanoparticle Light Displays
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plot in fig. 5A we calculate the number of cluster centroids

identified and the displacement of a selection of these, as a

function of the total number of binary elements within the image

frame (fig. 5B). There is an operational range between ,500–1500

elements over which the technique provides accurate identification

of cell identity and position independent of the QD signal SNR.

The accurate identification of cells is determined by the number of

binary elements available to define a cell cluster. Using the initial

timeframe for this operational range quantification, it was found

that 520 binary elements were needed for all 38, manually

identified, cluster centroids to have at least 1 binary element

assigned to them (the red dashed line in fig. 4B). This

corresponded to a noise intensity cut-off of 784 units

(SNR = 2.8) and is a ‘worst case’ in that sufficient binary elements

had to be defined to locate all centroids. Relaxing this criterion still

identifies the majority of centroids by a minimum of 5 binary

elements (30 centroids located from 200 binary pixels) using a

threshold cut-off of 1100 (SNR = 2). The minimum number of

elements necessary to identify a cell is an important criterion in

studying proliferating cells as the QD loaded vesicles will be

diluted upon division [24]. Over the 40 hour time series shown in

figure 2 the mean cluster number per cell reduces to 12, we would

anticipate therefore that 72 hours of tracking could be achieved

(3–4 cell divisions) before over-dilution makes cell identification

impossible.

If the noise threshold filter is reduced too far the binary element

number begins to relate to background noise rather than valid QD

encoding pixels. Whilst the presence of these noisy pixels does not

immediately invalidate the identification of cells (a random noise

source adds pixels to each cell cluster with equal probability) it

does affect the centroid co-ordinates and so leads to inaccurate

determination of cell position. As the threshold filter approaches

the noise floor (intensity , 400 units) and the total number of

binary elements increase beyond 1500 the centroid positions show

marked deviations in excess of average cell diameters (.10 mm).

However SNR values as low as 1.1 can be tolerated before this

noise weighting produces a cluster position offset of 10 mm.

To assess the accuracy of centroid seeding (cell identification)

and spatio-temporal tracking two image frames corresponding to

the 0 and 24 hour time points were chosen. An initial centroid set

was chosen at the intial timepoint by visual inspection of the bright

field image; the number of centroids in the timeframe captured 24

hours later was then automatically assessed using the MLD

algorithms and compared to direct visual identification. The 24

hour imageframe is shown in figure 5C with automatically

identified centroids overlaid on the bright field image; 81% of

manually identified cells are correctly mapped.

Discussion

Quantum dots are widely used for cellular labeling as they

provide both a photo and bio stable fluorescence marker that can

be spectrally tuned. Here we show that the processing of these

nanoparticles by the cell is as important as their innate photonic

properties; they are naturally taken up and concentrated into

vesicles that are dispersed throughout the cytoplasm and as such

provide bright, point like light sources across the majority of the

cell cytoplasm. This bio-processing thus enables image analysis by

these discrete points which are the fundamental elements of a

moving light display. Concentration on representative sub-

sampling of the image rather than full visualisation has two major

benefits: i. major data reduction and ii. access to rapid and efficient

image examination based on cluster analysis techniques. The

processing of a bright field image to produce a binary map of QD

light-points (fig. 1A–C) leads to a reduction in data size from

,2.5 MB to 20 kB per image. In high-throughput applications,

where standard acquisition may produce 1 TB of data per day,

there is a pressing need for such data reduction to avoid the ever

increasing penalty in cost and time of data analysis. Throughout

this work we have knowingly adopted simple algorithms to

demonstrate the robustness of the moving light display approach

and to highlight the advantage of undertaking cluster based

analysis. Further development of these algorithms can only

increase the accuracy of tracking and cellular event interpretation.

For example, cell definition in terms of marker clarity and

resolution significantly degraded towards the edge of the field of

view and the addition of pre-processing routines on the original

raw fluorescence image to account for the lens effects and

variability in background noise across the image would help in

enhancing these regions as would the application of more

sophisticated noise filtering. The critical limiting factor of the

MLD technique is cell identification as cells become increasingly

confluent and harder to resolve without knowledge of their

respective boundaries. One possible solution to increase the ability

to resolve individuals at high confluency is to apply a nuclear

marker at the end of the experiment. Using the final nuclear

stained cells as the starting point and running a time reversed

analysis would provide a well defined initial seeding of centroids

and makes identification of the bifurcation points within a lineage

far simpler due to the centroids of the daughter cells converging to

their progenitor thus removing the decision of when the binary

elements groups are best described as dual rather than singular

clusters.

To summarise, we have used quantum dot nano-particles as

point like markers within a cell to demonstrate the concept of

moving light display to resolve cellular mitosis events and lineages

without the need for complex interpretation of a complete visual

picture of the cellular field. In the study of cell movement and

proliferation the knowledge we seek can be resolved at the whole

cell level and so the reduction of the data set to a minimal set of

Cartesian co-ordinates provides a much greater efficiency of

information processing, distilling the experimental measurements

down to match just that needed to understand the biology. In

future applications this approach will allow real-time data

processing during image acquisition and the direct storage of

biological knowledge, i.e. cell position and familial relationships.

Supporting Information

Figure S1 Additional for Figure 5, Panel C. An enlarge-

ment of Panel C provided in higher resolution for clarity.

(TIF)

Movie S1 Multi-format mitosis event. An example of a

mitosis event displayed using bright field microcopy images,

fluorescence microscopy images and a moving light display (MLD)

representation of the binary elements and their respective

centroid.

(WMV)

(black curve), and the centroid displacement of a selection of cells
(colored curves). The vertical, red dashed line indicates the minimum
point number requirement for maximization of the number of cells
automatically identified. (C) Bright field images at t = 0 and t = 24 hours
with centroids overlaid. Red spots indicate automatically identified
centroids, blue spots correspond to incorrectly assigned centroids and
yellow spots represent manually identified cells which are unidentifi-
able by the automated analysis. (see Figure S1 for panel 3 in higher
resolution).
doi:10.1371/journal.pone.0040835.g005
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Movie S2 Binary element evolution. A sample movie

showing the cellular evolution displayed through bright field

microscopy and a visualization of the binary elements over a 40

hour period.

(WMV)

Movie S3 Characteristic curve of a mitosis event. A

mitosis event can be identified by tracking the average separation

of the binary elements associated with a designated group. As a cell

contracts to a low energy state it becomes circular which draws the

QDot markers towards the centre causing their average separation

to decrease (blue line). This reaches a minimum prior to the cell

dividing at which point the binary elements are best described as

two unique clusters corresponding to the daughter cells (magenta

and green lines). Mapping the separation of binary elements as a

single cluster throughout (blue line) shows an infeasible single cell

distance due to the daughter cells migrating apart.

(WMV)

Movie S4 Pseudo-noise filter. Investigation of the effects of

increased noise is possible by varying the cut-off of the noise filter

during the image cleaning process. The graphic demonstrates the

effects of this variation on a single time frame. The blue dots

correspond to binary elements, the red dots correspond to the

centroids identified through clustering of the binary elements and

the green dots mark the manually identified locations of the cells.

As the filter is lowered the binary element clusters increase to

sufficient numbers for each cell to allow accurate centroid

allocations. As the filter approaches the noise floor of the image

an increasing number of noise peaks are wrongly identified as

binary element markers and these randomly occurring features

result in the miss-allocation of centroids.

(WMV)
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