
Systems Biological Approach of Molecular Descriptors
Connectivity: Optimal Descriptors for Oral Bioavailability
Prediction
Shiek S. S. J. Ahmed1*, V. Ramakrishnan2

1 Department of Computational Biology, Chettinad University, Kelambakkam, Tamil Nadu, India, 2 Department of Genetics, Chettinad University, Kelambakkam, Tamil

Nadu, India

Abstract

Background: Poor oral bioavailability is an important parameter accounting for the failure of the drug candidates.
Approximately, 50% of developing drugs fail because of unfavorable oral bioavailability. In silico prediction of oral
bioavailability (%F) based on physiochemical properties are highly needed. Although many computational models have
been developed to predict oral bioavailability, their accuracy remains low with a significant number of false positives. In this
study, we present an oral bioavailability model based on systems biological approach, using a machine learning algorithm
coupled with an optimal discriminative set of physiochemical properties.

Results: The models were developed based on computationally derived 247 physicochemical descriptors from 2279
molecules, among which 969, 605 and 705 molecules were corresponds to oral bioavailability, intestinal absorption (HIA)
and caco-2 permeability data set, respectively. The partial least squares discriminate analysis showed 49 descriptors of HIA
and 50 descriptors of caco-2 are the major contributing descriptors in classifying into groups. Of these descriptors, 47
descriptors were commonly associated to HIA and caco-2, which suggests to play a vital role in classifying oral
bioavailability. To determine the best machine learning algorithm, 21 classifiers were compared using a bioavailability data
set of 969 molecules with 47 descriptors. Each molecule in the data set was represented by a set of 47 physiochemical
properties with the functional relevance labeled as (+bioavailability/2bioavailability) to indicate good-bioavailability/poor-
bioavailability molecules. The best-performing algorithm was the logistic algorithm. The correlation based feature selection
(CFS) algorithm was implemented, which confirms that these 47 descriptors are the fundamental descriptors for oral
bioavailability prediction.

Conclusion: The logistic algorithm with 47 selected descriptors correctly predicted the oral bioavailability, with a predictive
accuracy of more than 71%. Overall, the method captures the fundamental molecular descriptors, that can be used as an
entity to facilitate prediction of oral bioavailability.
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Introduction

Systems biology is an emerging field that uses molecular

connectivity approach to understand the biological phenomena on

a wide scale. This approach of network reconstruction has proven

successful in determining the disease mechanisms, drug targets and

biomarkers for various diseases [1–3]. Similar approach is adopted

in this study to integrate the physicochemical properties of the

molecules, to determine the major contributing factors associated

with oral bioavailability prediction. This ultimately provides

optimal descriptors for predicting a potent pharmaceutical agent

with improved absorption, distribution, metabolism, and excretion

(ADME) properties.

ADME plays a crucial role in determining the pharmacokinetics

of a drug candidate and thus its therapeutic efficacy [4]. Structural

optimization of drug candidates with ADME properties has

become an essential part of the drug discovery process [5]. Every

successful drug candidate should ensure to achieve an optimal

degree of potency with required concentration against specific the

target. However, inadequate properties of the drug candidates will

be failed while advanced development. It is believed that 50% of

the drug candidates failed due to ADME deficiencies during

development [6,7]. Among the ADME properties, poor oral

bioavailability is indeed the main reason for stopping further

development of the drug candidates [8]. To overcome the failure,

a set of in vivo screening has been carried out, to select the best oral

bioavailability compounds at an early stage of the drug discovery

process [9]. However, in vivo validations are expensive and time-

consuming. Hence, developing an efficient in silco model for oral

bioavailability screening will be more valuable [10].

In recent years, research efforts have resulted in the prediction

of oral bioavailability of molecules [8,11–17]. Most of these models
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were conceptually based on quantitative-structure activity rela-

tionship approach (QSAR) to study the physicochemical proper-

ties of molecules on oral bioavailability prediction. The first

correlation model was reported based on a data set of 608

compounds [11]. This model is not satisfactory because of the high

rate of false positives. Subsequently, Yoshida et al proposed a

classification model based on 232 compounds with 18 descriptors

that showed 60% accuracy [12]. Similarly, Turner et al built a

stepwise regression model with 167 compounds using eight

molecular descriptors [13]. Together, the models reported by

Yoshida and Turner used smaller data sets. Hence, the reliability

of these models is questionable in larger data set. In 2002, Veber

et al demonstrated a QSAR model using 1100 drug candidates

[14]. Further, Wang et al proposed a correlation model for 577

compounds using 50 descriptors [15]. Both these models utilized

the drug data obtained from drug companies, hence it is access

protected. In 2008, Ma et al developed a classification model using

simple vector machine, which achieved 80% success rate [16].

However, this model could not give reliable accuracy for the low-

bioavailability class. Considering the unbalanced nature of the

data set, a prediction accuracy of 80% is meaningless since the

model cannot provide better predictions for the low-bioavailability

class. Hence developing a model with the balanced data set and

including the parameters that influence the oral bioavailability

such as HIA and caco-2 may provide reasonable prediction. On

the other hand, these models were focused to obtain better

accuracy with the simple molecular descriptors for oral bioavail-

ability. However, recent studies of Hou et al and Tian et al

disproved this concept of oral bioavailability prediction [8,17].

Overall, no model gives reliable predictions for oral bioavailability.

Moreover, the prediction of oral bioavailability is challenging due

to the fact that oral bioavailability of the drug is influenced by

many biological and physiochemical factors such as intestinal

absorption, permeability, solubility, metabolism, and so forth

[10,18,19]. Among the various factors intestinal absorption and

permeability are the most contributing factors that influence oral

bioavailability. Hence, we hypothesized that, the molecular

properties associated intestinal absorption and permeability may

have a high contribution in predicting the oral bioavailability.

In this study, we propose a computational framework to develop

a molecular descriptors connectivity to uncover the most

contributing descriptors for oral bioavailability by relating the

intestinal absorption and permeability of the molecules in the

physiochemical context. Overall, the potential application of our

approach is to identify the optimal descriptors for oral bioavail-

ability prediction with increased accuracy.

Figure 1. Systems biological framework for developing molecular descriptors connectivity maps. The framework consists of five major
components: (i) compilation and curation of data sets, (ii) generation of descriptors (iii) multivariate analysis (iv) machine learning and (v) statistical
analysis. The first component takes the inputs from literature and outputs the curated data sets. The second component takes the input from the
curated data sets and generates molecular descriptors using E-dragon software. In the third component, HIA and caco-2 permeability data sets were
subjected to multivariate analysis to obtain the most contributing descriptors involved in classification of groups against each data set. In the fourth
component, the contributing descriptors were subjected to machine learning approach to determine the predictive accuracy of the models. The final
statistical component was generated for the descriptors associated between data sets showing the interdependence between the descriptors.
doi:10.1371/journal.pone.0040654.g001
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Figure 2. Analyzed descriptors. Four major descriptors (red) and their respective descriptor sub-classes were analyzed in this study.
doi:10.1371/journal.pone.0040654.g002

Figure 3. Multivariate analysis. PLS-DA plots: HIA (panel A) and caco-2 permeability (panel B) showing a significant differentiation (p#0.01 by
permutation test) between the groups. The observations were coded according to class membership: black = positive; gray = negative. The
descriptors which have a VIP score $1 were selected (colored blue) as the most contributing descriptors for HIA (panel C) and caco-2 (panel D). Heat
map analysis of descriptors between positive and negative instance of HIA (panel E) and caco-2 (panel F) which depicts high (red) and low (yellow)
relative levels of descriptor variations.
doi:10.1371/journal.pone.0040654.g003
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Results and Discussion

We have developed systems biological framework (Figure 1) of

molecular descriptor connectivity between HIA and caco-2

permeability of diverse molecules obtained from the literature

[8,14,20–28]. Each curated data set containing 605 molecules of

HIA and 705 molecules of caco-2 was used as original data sets (see

Table S1) for further analyses. E-dragon software was used to

generate the connectivity indices, constitutional, topological, and

walk and path counts descriptors against each data set based on

the previous studies [29–32]. For instance, Gayathri et al

developed a QSAR model on HIV-1 protease inhibitors using

molecular connectivity index [29]. Gupta et al showed the

efficiency of topological descriptors in predicting the anti-malarial

activity [30]. In our previous study, we have shown the efficiency

of molecular connectivity index and topological descriptor in

determining the anti-Parkinson’s disease activity [31]. Further,

Zhou et al showed the effect of constitutional, topological, and walk

and path counts descriptors towards the antitumor activity [32].

Of 247 generated descriptors, 49 were shown to have no changes

in descriptors values across the molecules in both the data sets,

suggesting that these descriptors have no influence in classifying

the groups as ‘‘+HIA versus –HIA’’ and ‘‘+caco-2 versus –caco-20,

respectively. Hence, these 49 descriptors were eliminated from the

original data sets, and the analyses were carried out against 198

descriptors (Figure 2). In addition, the balanced data sets were

created from HIA and caco-2 original data sets, containing an equal

number of positive and negative labeled instances (1:1) for

multivariate analysis.

Multivariate Analysis
Partial least square discriminant analysis (PLS-DA) of HIA and

caco-2 balanced data sets resulted in significant separation into two

groups for each data set (p#0.01 by permutation test; Figure 3A,

Figure 4. Machine learning algorithm. The performance of 21 machine learning algorithms for the prediction of HIA (panel A) and caco-2 (panel
B) data sets were measured as averaged accuracy of 10-fold cross-validation analysis (the algorithm showing highest predictive accuracy indicated in
blue). The predictive accuracy of the logistic algorithm was based on individual descriptors compared with the combined descriptors of HIA (panel C)
and caco-2 data sets (panel D).
doi:10.1371/journal.pone.0040654.g004
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B). The variable influence on the projection (VIP) parameter was

used to select descriptors that showed significant contribution in

discriminating the groups in PLS-DA models. Using the VIP cut-

off value (VIP$1), the number of descriptors discriminating

against the HIA and caco-2 data sets were reduced to 49 and 50

descriptors, respectively (Figure 3C, D). The statistical analysis of

these selected descriptors showed a significant differentiation

(p,0.05) between their groups (Figure 3E, F). The results

demonstrate that the selected descriptors are attributed as the

most contributing descriptors in classifying each data set into

groups. Furthermore, these descriptors were used to reconstruct

the original data sets to determine the performance using machine

learning algorithms (while other descriptors were eliminated from

the original data sets).

Selection of the Best Machine Learning Algorithm
The 21 machine learning classifiers have been trained and

tested using the selected descriptors of original data sets (HIA and

caco-2). The detailed performance of different classifiers on the

original data set is shown in Figure 4A, B. Though the analysis

involved two categories of data sets (HIA and caco-2), the logistic

algorithm performs better in both the data sets compared with

other classifiers. The logistic classifier showed an accuracy of 85.09

and 78.30% for HIA and caco-2 data set. The next two closest

contending algorithms for HIA model are multilayer perceptron

and random forest. Similarly, IB1 and IBK are the next two closest

contending algorithms for caco-2 predictions. Overall, the

performance of the logistic algorithm is extremely fast and more

accurate compared to other analyzed classifiers.

To determine the efficiency of each descriptor in the logistic

algorithm, we analyzed the individual descriptors that contributed

to predictive accuracy on both the models. In HIA model, the

combined accuracy of all 49 descriptors reached 85.09% whereas,

the contribution of individual descriptors was significantly lower

between 77–81% (Figure 4C). Similar trend was noticed in caco-2

model. The accuracy of each descriptor was lower, ranging

between 59–70% (Figure 4D). Although, the individual contribu-

tion of each descriptor was significantly lower, the combined

performance of descriptors enriched the accuracy in both the

models. To estimate the optimal combination of these descriptors,

a correlation based feature selection (CFS) [33,34] algorithm was

executed using weka software. Of PLS–DA optimized descriptors,

nine from HIA and eight from caco-2 model were selected as an

optimal subset using CFS analysis (Figure 5). However, the

combined performance of these newly extracted descriptors

decreases the accuracy of the logistic model in both the data sets

Figure 5. Correlation-based feature selection (CFS). The network representing the descriptors obtained using CFS algorithm showing common
(pink) and unique (blue) descriptors between the data sets.
doi:10.1371/journal.pone.0040654.g005
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(Figure 6A). Hence, further reduction of PLS-DA extracted

descriptors will decrease the accuracy of the models with the

newly extracted descriptors. Thus, PLS-DA based descriptors

selections were confirmed to be an optimal set for the prediction of

HIA and caco-2 permeability.

Efficiency of Models against Smaller Data Sets
To ensure that the accuracy of the logistic algorithm is not only

attributed to the larger data sets, the performance of the algorithm

on smaller data set was calculated using the scoring algorithm. For

instance, out of 1000 smaller HIA data sets, 680 data sets showed

optimal accuracy compared to the accuracy of original HIA data

set (Figure 6B). Therefore, the HIA score was calculated as 6.80.

Similarly, the score for caco-2 smaller data sets were calculated as

7.10 (Figure 6C). This confirms that the selected descriptors of

both the models are optimal and efficient in prediction of smaller

data set.

Integrative Analysis of Descriptors
Integrating the descriptors showed 47 are commonly associated

to both the models (Figure 7). These 47 descriptors may be

efficient in predicting the oral bioavailability data set (see Table

S2, for the significance of the descriptors). In addition, the

descriptors RBN and TI2 were identified as unique to HIA model,

whose predictive potentials were 77.6 and 78.2%, respectively.

Similarly, Jhete, Qindex and MAXDN were specific to caco-2 data set

and their predictive potentials were 62.2, 68.6 and 69.7%,

respectively. Overall, these unique descriptors showed better

accuracy in contributing to HIA and caco-2 prediction.

Efficiency of Descriptors in Oral Bioavailability Prediction
To determine the best machine learning algorithm for the oral

bioavailability prediction, the success rate of 21 classifiers using

these 47 descriptors on bioavailability data set was compared. The

best-performing algorithm was the logistic classifier, which is a

regression model with a ridge estimator. The logistic classifier was

able to classify the oral bioavailability data set with 71.19%

accuracy (Figure 8A). The analysis of the descriptors showed a

significant difference (p,0.05) between their groups (Figure 8B).

Further, the performance of individual descriptors was analyzed

from the set of 47 descriptors that contributed to predictive

accuracy. Though, the combination of all 47 descriptors reached

71.19%, the predictive potential of most individual descriptors was

significantly lower, between 50–60% (Figure 8A). Of these 47

descriptors, GMTI, GMTIV, HyDp, QW, SMTI, SMTIV, TIE, TI1,

Figure 6. Comparative performance of the logistic model. Bar diagram (panel A) representing the comparative performance of the logistic
model for the descriptors selected using PLS-DA and CFS algorithms. The histogram (panel B, C and D) shows the accuracy distribution of smaller
data sets of HIA (m = 681), caco-2 (m = 710) and oral bioavailability (m = 741).
doi:10.1371/journal.pone.0040654.g006
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RAM and ZM1V are the most contributing descriptors with the

accuracies approaching 70%.

To estimate the optimum combination of these 47 descriptors,

we employed the CFS algorithm, using Weka software which

extracts nine descriptors as an optimal subset (Figure 5). However,

the combined performance of these nine descriptors decreases the

accuracy of the model (Figure 6A). Hence, no further reduction of

the descriptor set was possible, as the performance of logistic

classifier dropped if any one of these 47 descriptors was eliminated.

Since the bioavailability data set had 969 molecules, one may

argue that the high performance of the logistic algorithm is a result

of larger data set, rather than a generalization of the classifier. To

confirm that the accuracy is not only attributed to the larger data

sets, the scoring algorithm was executed for the small size of the

data sets, as mentioned in methodology. The model showed to be

fit with a score of 7.41 on smaller data sets (Figure 6D). Overall,

the results suggest that these 47 descriptors are the fundamental

for oral bioavailability predication, irrespective of the size of the

data set. Interestingly, among these 47 descriptors, 39 were

topological descriptors and remaining were associated to consti-

tutional descriptors (Figure 2) suggesting that both these descrip-

tors play a vital role in predicting oral bioavailability.

In conclusion, the systems biological approach was used on HIA

and caco-2 data set to determine the major contributing

descriptors for oral bioavailability prediction. Overall, 47 descrip-

tors were identified as common between HIA and caco-2

permeability, and it is validated to be crucial in predicting oral

bioavailability. Further, the predictions on small data sets

demonstrate that this model holds good in estimating the oral

bioavailability irrespective of data set size. Moreover, the logistic

algorithm and the 47 selected attributes seem to capture the

fundamental features of oral bioavailability and can predict oral

bioavailability with an accuracy .71% for molecules with diverse

structure. However, the accuracy of the model is limited, which

suggest that the molecules have to meet a set of physicochemical

requirements in addition to the analyzed descriptors. Hence,

generating more valuable descriptors from other resources such as

CDK, PEDAL, Power-MV may significantly improve the

prediction limits. Overall, this study shows that the choices of

both machine learning algorithm and optimal descriptor sets are

critical for the prediction tasks. Conceivably, a similar approach

can be used for the prediction of most contributing descriptors

involved in drug toxicity.

Materials and Methods

Computational Framework
The systems biological framework (Figure 1) shows an overview

of our method, which involves (i) compilation and curation of data

sets, (ii) generating descriptors, (iii) multivariate analysis, (iv)

selection of best-performing machine learning algorithm, (v)

efficiency of the model in smaller data sets, and (vi) statistical

analyses.

Compilation and Curation of Dataset
The molecules associated with HIA, caco-2 permeability and

oral bioavailability were derived from several literatures [8,14,20–

28]. These structurally heterogeneous molecules were reported by

different laboratories, which employed different experimental

conditions and procedures to obtain biological property. Further,

it was curated based on two-fold. First, if the molecules were

reported in multiple articles, the average activity value was

calculated. Second, the molecules were excluded, if there is a large

discrepancy in activity value between the articles. Overall, 705,

605 and 969 molecules of intestinal absorption, caco-2 perme-

Figure 7. Descriptors interaction analysis. Descriptors interaction map showing the unique (pink) and common (blue) descriptors between HIA
and caco-2 data sets. The commonly associated 47 descriptors (blue) were considered as the most contributing descriptors for the oral bioavailability
prediction.
doi:10.1371/journal.pone.0040654.g007
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ability and oral bioavailability (Table S1) were obtained,

respectively.

Generation Descriptors and Classification
The molecular descriptors representing the physicochemical

properties of the molecules were derived using the E-dragon 1.0

version software [35]. The most frequently used descriptors [29–

32] were analyzed, which include constitutional, connectivity

indices, topological, and walk and path counts. To develop a

reliable model, the descriptor space should be reduced by

extracting most significant descriptors. Before the descriptors were

reduced, the molecules in each data set were manually classified as

positive and negative instance. For example, in oral bioavailability

data set, the molecules with bioavailability (%F) values $80%

were considered as ‘‘+bioavailability’’, while the molecules with

,80% were considered as ‘‘–bioavailability’’ [20]. Similar trends

were followed for the molecules in HIA and caco-2 data set. The

molecules with HIA (%FA) values $70% were considered as

‘‘+HIA’’ and the molecules with caco-2 permeability (logPapp)

values #–4 were considered as ‘‘+caco-20, while remaining

molecules were considered as ‘‘–HIA’’ and ‘‘–caco-20, respectively

[22]. Further, the balanced data sets were created from HIA and

caco-2 data set by random selection to have an equal number of

molecules with positive and negative instance for multivariate

analysis.

Multivariate Statistical Analysis
Partial least squares discriminant analysis (PLS-DA) was

performed using SIMCA-P 12 (Umetrics AB, Umeå, Sweden)

on the balanced data sets to extract the underlying descriptors, that

discriminate between distinct classes (‘‘+HIA versus –HIA’’ and

‘‘+caco-2 versus –caco-20). The importance of each descriptor in

the PLS-DA was evaluated by variable importance in the

projection (VIP) scores. The VIP score positively reflects the

descriptor’s influence on the classification, and descriptors with a

score greater than one were considered important in this study.

Machine Learning
The classification learning algorithms used in this study were

taken from the Weka software (Waikato Environment for

Knowledge Analysis). The evaluation parameters were calculated

with a ten times, ten-fold cross-evaluation. The method uses four-

fifths of the data for training the model while the remaining fifth

was used as a test set for estimating the performance based on the

average value of accuracy and precision of ten-times validation.

Accuracy~
TPzTN

TPzTNzFPzFN

Figure 8. Oral bioavailability models. The performance of machine learning algorithms for the prediction of oral bioavailability (panel A) was
measured as the average accuracy of 10-fold cross-validation (the algorithm showing highest predictive accuracy indicated in blue). Heat map
analysis of descriptors between positive and negative instance of oral bioavailability (panel B) showing significant difference in descriptors depicts
the high (red) and low (yellow) relative levels of descriptor variations. The predictive accuracy of the logistic algorithm was based on individual
descriptors compared to the 47 combined descriptors of oral bioavailability data set (panel C).
doi:10.1371/journal.pone.0040654.g008

Systems Biology on Oral Bioavailability

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e40654



Precision~
TP

TPzFP

TP = True positive; TN = True negative; FP = False positive;

FN = False negative.

Efficiency of Model against Smaller Data Sets
To validate the efficiency of the models in smaller data sets, the

scoring algorithm was evaluated as mentioned below,

1. Randomly split (with replacement) the molecules into 1000

smaller data sets, considering 100 molecules in each data set.

2. Compute the logistic algorithm with 10-fold cross-validation

for each small data set.

3. Calculate the number of times, the accuracy of small data sets

reach the equal and maximum accuracy of larger data set (m).

4. Finally, compute the score.

Score~
m

n
� 10

m: number of times the small data sets showed equal and

maximum accuracy as the accuracy of larger data set (e.g.:

bioavailability = 71.19%; HIA = 85.09%; caco-2 = 78.30%).

n: Total number of small data sets (1000).

Significance level: score $5.

Statistical Analysis
The significance of descriptors was estimated by the analysis of

variance (ANOVA), using GeneSpring GX7.3 microarray soft-

ware (Agilent Technologies Inc., Santa Clara, California) to make

comparisons between positive and negative instances. A total of

three comparisons were made: +HIA versus the –HIA, +caco-2

versus –caco-2, and the +bioavailability versus – bioavailability. The p-

value #0.05 were regarded as significance.

Supporting Information

Table S1 Curated Data sets.

(XLS)

Table S2 Significance of the analyzed descriptors.

(XLS)
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