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Abstract

Investigating local-scale interactions within a network makes it possible to test hypotheses about the mechanisms of global
network connectivity and to ask whether there are general rules underlying network function across systems. Here we use
motif analysis to determine whether the interactions within social insect colonies resemble the patterns exhibited by other
animal associations or if they exhibit characteristics of biological regulatory systems. Colonies exhibit a predominance of
feed-forward interaction motifs, in contrast to the densely interconnected clique patterns that characterize human
interaction and animal social networks. The regulatory motif signature supports the hypothesis that social insect colonies
are shaped by selection for network patterns that integrate colony functionality at the group rather than individual level,
and demonstrates the utility of this approach for analysis of selection effects on complex systems across biological levels of
organization.
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Introduction

Capturing the essence of biological networks is among the most

important challenges facing modern science. Gene regulation,

motor control, developmental specialization, and metabolic

allometry all emerge as the result of integrated networks. These

networks operate at different biological levels but all distribute and

transform localized information into larger scale processes [1–4].

However, not all biological networks develop or evolve around

higher order function. Social networks, the broad class of networks

characterizing human and animal social groups, are typically

thought to exhibit global-structure consistent with the predictions

of generative network models such as preferential attachment

[5,6]. In these systems, interactions benefit and reinforce an

individual’s own role within the network [7], but at a potential cost

to higher-level properties such as efficiency or resilience [8].

Although generally clustered into one category, social networks

can describe many different types of complex systems from

aggregations to cohesive social units. Network analyses show

global similarities across social systems; they are generally

decentralized and scale-free, with network structure emerging

from local interactions in the absence of an external controller.

However, the function of interactions within social groups should

vary with the evolutionary and ecological contexts in which the

group evolves. The social interactions within, for example, a pod

of dolphins [9,10] or extended family groups of ground squirrels

[11], should serve very different functions than the communication

networks among workers within a eusocial insect colony [12–15].

Social insect colonies are the hallmark of integrated social units,

exhibiting some of the most awe-inspiring examples of complexity

in the biological world. Nest architecture that promotes environ-

mental stability [16], division of labor that scales with colony size

[17], and collective decision making [18] all take place in the

absence of hierarchical control [19]. Social insect communication

systems, which include such diverse modalities as direct individual

contact, trophallaxis, and broadcast pheromonal signaling, show

they are highly regulated units with coordinated individual

behaviors that generate emergent effects which are beneficial to

the group as a whole [20]. If network structure reflects biological

function, then the structure of a social insect colony should vary

distinctly from that of social networks generated from associations

based on individual success.

We investigate network motif profiles of seed harvester ant

colony interaction networks to determine whether their antenna-

tion patterns are predominantly random, regulatory, or social in

nature. Since the purpose of antennation by ants is to obtain

information, the structure of their communication networks is

critical to how colonies function [12]. Motif analysis determines

the predominant local interaction patterns (3-node directed

subgraph motifs) making up a network [21] and has the potential

to identify fundamental interaction signatures within networks of

different size or context that may correspond to differences in

functionality [22]. Previous work by Milo and his colleagues

[21,22] has shown that biological regulatory networks have

predominant interaction patterns that move information direc-

tionally, while social networks develop bidirectionally-connected

cliques as individuals mutually strengthen associations with their

neighbors. We ask whether these different types of subgraph

representation allow us to differentiate between networks selected

for at the individual-level and networks that emerge as a result of

group-level selection [8].

Methods

Ant Colonies
Whole colonies of Pogonomyrmex californicus were reared in the

laboratory [17,23] in artificial nest enclosures (242 cm2) containing

separate nest and foraging arenas, water tubes, and foraging
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material including fruit flies, grass seeds, and finch seeds. All adult

workers and queens within each of two colonies were uniquely

marked. Color codes were applied to the dorsal surface of the ant

head, mesosoma, and gaster with fine-tip oil-based paint markers.

Ants did not exhibit adverse reactions to the paint or increased

mortality following paint marking.

After having been paint-marked, colonies were given two weeks

to acclimate to their new markings and the experimental arena, a

well-lit lab bench in an observation room maintained at 30 degrees

C. A foam pad beneath the nest enclosures dampened vibrations

and a sheet of transparent plastic was placed over the nest

enclosures to prevent disturbance induced by experimenter

exhalation. Fifteen minutes before video-recording, colonies were

gently stimulated to engage in work (division of labor) with the

addition of foraging items and debris through small openings in

the nest enclosure lids. Following these methods, nearly all

individuals within the colonies were visible from above and

workers within the colonies were observed engaging in normal

behaviors including foraging, brood care, food processing, refuse

removal, policing, and allogrooming.

Video Recording
We recorded digital video of colonies within nest enclosures to

carefully observe the behaviors and patterns of interactions among

individual ants (Movie S1). Video data were recorded using a

CCD camera (Flea 2, Point Grey Research, Richmond, BC,

Canada) and a 16 mm fixed focal length lens (Edmund Optics,

Barrington, NJ, USA) positioned on a copy stand above colony

nest enclosures. Uncompressed AVI video (16246800 pixels, 15

frames per second) was recorded using FlyCapture SDK (Point

Grey Research, Richmond, BC, Canada). The arrangement of

these components resulted in a resolution of 73.8 pixels per

centimeter, more than sufficient to observe the fine-scale

antennation patterns between interacting ants. We recorded each

colony for a duration of two hours (approximately 550 GB for

each recording).

Networks
To establish networks of directed contacts from the video

recordings, each individual ant was tracked throughout the entire

recording and her contacts with other ants manually recorded.

Contact occurred if the ant stopped and placed both antennae

onto another ant, orienting the head towards the contacted ant.

Antennation was chosen as the focal behavior because it is a direct

Figure 1. Ant colony interaction networks. (A) The development of a directed network of interactions between workers in a single P. californicus
colony over a period of 60 s. Nodes represent individual workers or queens within a colony and arrows represent interactions between individuals.
(B) Example P. californicus interaction network based on 26 s of colony behavior. (C) Photograph of queens and workers within a seed harvester
colony; individuals have been painted with unique color combinations to track their interactions.
doi:10.1371/journal.pone.0040337.g001

Table 1. Summary statistics for P. californicus interaction
networks.

Network Statistic Mean (N = 12) Standard Deviation

Nodes 89.167 13.730

Edges 191.5 62.372

Average Node Degree 4.213 0.824

Maximum Node Degree 13.333 2.964

Average Path Length 5.256 0.986

Diameter 14.75 2.261

Density 0.024 0.003

This table summarizes global-scale network statistics for the twelve observed P.
californicus interaction networks.
doi:10.1371/journal.pone.0040337.t001
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form of information exchange and can be clearly characterized

ethologically. Networks of colony interactions were constructed as

adjacency lists, each individual ant treated as a node, with their

directional interactions supplying the network edges. A total of 12

networks were constructed, 5 for colony pcp07-40 and 7 for colony

pcp07-35.

All social network data are snapshots of a system in time. For

the data to be meaningful, they should be based on a time interval

long enough to capture the behavior of the system at a point in

time without being so long that behavioral variation over time

averages and dampens away relevant interaction patterns. Data to

populate the interaction networks in this study were based on the

behaviors observed during 26-second subsets of the video

recordings for each colony. Analyzing less time than this would

have meant that the networks were highly fragmented (i.e., not

connected). Preliminary data suggested that reviewing 13–26

seconds of behavior would be sufficient to capture interactions for

greater than 90% of the active individuals within the colonies. Of

the 12 networks we analyzed, there was an average of 3.17

connected components per network and the largest connected

cluster contained on average 92.96% of the nodes in each

network. The effects of analysis and observation time on social

network structure were investigated by cumulatively pooling

networks. For each of the two colonies, we analyzed the network

motif representation of networks based on 26, 52, 78, 104, and 130

seconds by combining observations to build sequentially larger

networks.

Motif Analysis
To test hypotheses about the mechanisms responsible for

generating colony-level functionality, we analyzed the local-scale

structure of interaction networks using triad motif analysis [21,22].

The primary question addressed by motif analysis is whether

particular subgraphs appear more often in an observed network

than would be expected in similarly sized networks generated

based on the assumptions of specific null models.

Using the implementation of motif analysis executed by Fast

Network Motif Detection (FANMOD) [24] we tested the structure

of our networks against a network model that randomized the

interactions between individuals. The null-model random graphs

were generated with the same degree distribution as observed in

the colonies to preserve global network structure. Nodes in the

random networks also maintained the same number and

directionality of edges as in the respective observed networks.

The frequencies of each of the 13 directed three-node subgraphs

(Text S1) were calculated both for each observed network (N = 12)

and the simulated random graphs (N = 10,000 per observed

network).

The statistical significance of each subgraph representation

within an observed network was calculated by comparing

subgraph densities (the ratio of the number of occurrences of a

specific subgraph to the total number of subgraphs within a

network) between observed and random networks. We estimated

bootstrapped p-values calculated as ratio of the number of

randomized networks in which the subgraph density was higher

than observed to the total number of randomized networks for

each subgraph in each observed network. Significantly over-

represented subgraphs (p,0.05 and density .0.01) are referred to

as network motifs [21]. It is possible that specific subgraphs are not

generated within the randomized networks, resulting in cases for

which the p-values are undefined. The only subgraph for which

this occurred was ID = 13, a subgraph identified in 5/12 networks,

but with a instance count greater than one in only two networks

and never with a subgraph density greater than 0.01.

Network visualizations and additional descriptive network

statistics were generated in R using the igraph package [25,26].

Degree distributions for the nodes within a network can be

modeled as power laws, p(k) / k-alpha, where p(k) is the fraction of

vertices having degree k and alpha is the scaling exponent. We

estimated the exponent associated with in-, out-, and total-degree

distributions using the methods of both ordinary least squares on

log-transformed data and discrete maximum-likelihood estimation

of the power-law distribution [27,28]. Unless described otherwise,

data in the results section are presented as means 6 standard

errors.

Table 2. Summary of out-degree scaling analysis.

Colony Slope1 SE R squared P-value

1 22.302233 0.2453528 0.9362024 0.0001

2 21.495037 0.4009239 0.7766024 0.0203

3 21.993387 0.397453 0.80741 0.0024

4 22.076154 0.1107807 0.9859641 0

5 21.718984 0.3488862 0.8585369 0.0079

6 22.129866 0.2474018 0.9251065 0.0001

7 21.93115 0.2274315 0.9231746 0.0001

8 22.371344 0.3693494 0.8918231 0.0014

9 22.230362 0.3129172 0.8788996 0.0002

10 22.343456 0.3201249 0.9146595 0.0007

11 21.773185 0.4323595 0.7061254 0.0046

12 22.045588 0.2359468 0.8930656 0

(1) This is the OLS-estimated slope for the relationship describing how the
number of nodes with a given number of out-degree edges scales with out-
degree. The data (x) were transformed prior to regression according to
log10(x+1). The absolute value of the slope is an estimate for the degree
distribution power law exponent (alpha).
doi:10.1371/journal.pone.0040337.t002

Table 3. Summary out in-degree scaling analysis.

Colony Slope1 SE R squared P-value

1 21.589522 0.95259 0.258183 0.1337

2 22.390163 0.4221644 0.8423322 0.0013

3 21.27468 0.9519083 0.1831009 0.2173

4 22.434398 0.335663 0.8976089 0.0003

5 21.105925 1.0091694 0.1305242 0.305

6 22.685515 0.3487973 0.936789 0.0015

7 21.742611 0.3006386 0.8936109 0.0044

8 21.849658 0.3015067 0.8827247 0.0017

9 21.957485 0.2508555 0.9383577 0.0015

10 21.838498 0.2517909 0.8555716 0

11 22.018978 0.4390072 0.7790092 0.0037

12 22.344854 0.4034605 0.8491615 0.0011

(2) This is the OLS-estimated slope for the relationship describing how the
number of nodes with a given number of in-degree edges scales with in-
degree. The data (x) were transformed prior to regression according to
log10(x+1). The absolute value of the slope is an estimate for the degree
distribution power law exponent (alpha).
doi:10.1371/journal.pone.0040337.t003
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Results

Seed harvester colony interaction networks (Figure 1) developed

at a rate of 4.8660.08 interactions per ant per minute (Table 1).

Networks were composed of an average of 89.1763.96 nodes and

191.5618 edges. While differences in colony size affected the

number of nodes (F1,10 = 19.38) and edges (F1,10 = 23.29), there

were not significant differences in network topology. Across the 12

networks, the average in-degree power-law exponent was

1.9360.13 (Table 2) and the average out-degree power-law

exponent was 2.0360.08 (Table 3). There was no significant effect

of source colony on in-degree (F1,10 = 0.152, p = 0.71) or out-

degree (F1,10 = 1.77, p = 0.21) exponents and there was also not a

significant difference between these exponents (F1,22 = 0.387,

p = 0.54). The exponents estimated by OLS were less than those

estimated by maximum likelihood (in-degree: 3.1860.08, out-

degree: 3.1260.09), but both sets of estimates are qualitatively

consistent with right-skewed degree distributions characteristic of

scale-free networks (Text S2).

We used motif analysis to identify the relative significance of the

thirteen possible directed subgraphs among every connected triad

of ants within our recorded networks (Figure 2). Subgraphs were

classified as significant motifs when the frequency of a given

subgraph was higher than expected compared to a null model of

degree-preserved randomized interaction and its subgraph density

was at least 0.01 (Table 4). Eight subgraphs (IDs: 1, 3, 6, 7, 9–12)

Figure 2. Distribution of network motifs. Network motif analysis deconstructs a network into its constituent subgraphs and determines whether
any of these local-scale interaction patterns are represented more frequently than expected for a randomized network of the same size. The
subgraphs that were identified as significant motifs in our analysis of social insect colony networks are plotted above in a summary histogram with
relative frequencies on the left axis. The interaction efficiencies of each subgraph are plotted as a line with units along the right axis. One of the two
subgraphs with the highest efficiencies, the feed-forward loop (motif 7), was also the most dominant motif observed across the P. californicus
interaction networks. Gray subgraphs were not classified as network motifs, black indicates a subgraph identified as a motif within at least one
network, and red indicates the only motif that was identified across the majority of networks.
doi:10.1371/journal.pone.0040337.g002

Table 4. Network motif analysis results.

Subgraph ID Average Observed Density Observed Networks1 Motifs (count .1)2 Motifs (density .1%)3

1 2.33E-01 12 3 3

2 1.25E-01 12 0 0

3 2.55E-01 12 2 2

4 1.17E-01 12 0 0

5 1.74E-01 12 0 0

6 4.07E-02 12 0 0

7 2.33E-02 11 11 11

8 4.43E-03 9 4 0

9 5.53E-03 11 4 1

10 9.62E-03 11 10 4

11 7.71E-03 11 7 2

12 8.21E-03 12 7 4

13 4.76E-03 5 2 0

This table summarizes the classification of subgraphs as network motifs. (1) The number of observed networks containing each respective subgraph. (2) The number of
networks in which the observed density for a subgraph is significantly greater than its density in the random networks and in which the subgraph appears more than
once in the observed network. (3) The number of networks in which the average observed density for a subgraph is significantly greater than its density in the random
networks and in which the subgraph density is at least one percent in the observed network.
doi:10.1371/journal.pone.0040337.t004
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were classified as motifs in at least one of the 12 observed

networks, and one motif, the feed-forward loop (ID: 7), was

present in 11/12 networks. The high frequency on significance for

the feed-forward loop (i.e. significantly higher expected frequency

in each network) indicates it to be a consistent network signature

within the colonies we measured.

To evaluate the similarity of motif patterns across different

networks and over time, we calculated the standardized Z-score

for each subgraph [21] and constructed a triad significance profile

(TSP) for each network (Figure 3). The TSP was consistent across

all colony networks (Pearson’s r = 0.5860.03, N = 66 comparisons,

median p = 0.03). The motif distributions were also not signifi-

cantly affected by the amount of time (26–130 s) used to populate

interaction networks (Text S3).

When compared to the major network superfamilies [22], the

combined motif signatures of our observed networks were

somewhat more correlated with social networks (r = 0.68,

p = 0.009) than the gene transcription (r = 0.48, p = 0.09) or the

signal transduction (r = 0.60, p = 0.03) regulatory network super-

families (Figure 3). Nevertheless, the correlation between colony

and social networks was not significantly stronger than the

correlation between colony and transcription networks

(Dr = 0.20, n = 13, p = 0.49). The fully connected triad (motif 13:

the social-clique motif), which is a defining characteristic of the

human social network superfamily [22], was conspicuously

uncommon in the P. californicus networks.

Discussion

We compared the network motif profiles within social insect

colony networks to the motif signatures for a range of technolog-

ical and biological networks, including social networks. While the

P. californicus networks exhibited scale-free structure and similarity

with the general triad significance profile for the social network

superfamily, the predominant motif within our colonies was the

feed-forward loop. This interaction pattern is not typically

identified with human social networks, but is involved in

modulating information transmission in a range of regulatory

Figure 3. Social regulatory networks. Triad significance profiles compare the characteristic network motifs across a diverse range of network
types and sizes by plotting standardized Z-scores which quantify the extent to which each subgraph is observed more or less frequently than
expected in networks of a similar size and global structure but with randomized edge connections. The observed P. californicus social insect networks
exhibit a distinct pattern of social regulatory structure combining elements found in previously identified major network superfamilies [22].
doi:10.1371/journal.pone.0040337.g003
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networks across biological levels, including transcriptional regula-

tion in E. coli, signal transduction between mammalian cells, and

C. elegans synaptic wiring [29–31]. In contrast, the social-clique

motif, characteristic of social attachment networks [21,22], was

absent in our P. californicus colony networks. The motif represen-

tation in P. californicus network structure supports the hypothesis

that social network structure within these cohesive social groups

has been selected to maximize colony-level function and/or

efficiency rather than individual success. In other words, they are

social regulatory networks, with key subgraph structures in

common with regulatory networks across biological scales.

We suggest the motif signatures within social insect colonies

may reflect selection for efficiency of directional information flow.

Although all 13 subgraphs connect the same number of

individuals, they vary in the costs of establishing and maintaining

those connections. One way to compare efficiencies of interaction

patterns is to evaluate the extent to which a particular subgraph

maximizes the number of connected nodes (N) while minimizing

costs of connectivity, in particular the number of edges as

determined by interactions (I) and the resulting diameter (D) of

the graph. In this way, subgraph efficiency (E) can be defined as

E = N/(I*D). Applying this definition to the thirteen directed

three-node subgraphs, calculated efficiencies range from 0.38 in

motif 6, the motif of two mutual interactions, to 1.0 in motifs 7 and

8, the feed-forward loop and the three-cycle (Figure 2). The

observation that the feed-forward loop is the characteristic motif

signature among our colony networks suggests that efficiency of

information transfer may be relevant to the patterns of connection

among workers.

While this study has identified a number of intriguing features of

communication patterns within social insect colonies, it also raises

many new questions. One question to consider is how nest

architectures may affect interaction dynamics. While the interac-

tion patterns of individual ants may correlate with their spatial

location within a nest [32], it is not clear whether location passively

determines which type of interaction pattern individuals may be

subjected to or engage in. Since ants tend to homeostatically

regulate their densities [17] and exhibit spatial fidelity [33], we do

not expect spatial position to be a causal factor influencing

interaction patterns. However, given the substantial variation in

labor-related specialization among workers within a colony, one

factor that may be important is the extent to which individuals

exhibit behavioral specialization for specific information-process-

ing roles. An example of this kind of information-processing

specialization has been identified in colonies of leaf-cutting ants, in

which workers at the start of foraging may return to the nest

unladen to increase the rate of information transmission to other

workers within the nest [34]. By directly manipulating colony

composition, we can empirically test hypotheses about the effects

of spatial segregation and worker specialization. Additionally, by

using different random models or generative network algorithms

[5], the motif analysis method can be extended to test theoretical

hypotheses about the temporal development and evolution of

complex systems.

Animal groups exhibit an extreme range of social integration,

from primarily solitary species that lack social cohesion to the

complex interactions that shape superorganism species. To date

there has been no network-based approach to separate out the

very different mechanisms for network evolution across the

diversity of social groups. Network motif analyses provide a new

way to differentiate the interaction regimes under selection in

social evolution. The markedly different subgraph characteristics

of social insect and human societies open the field of network

analysis for further exploration into the forces shaping social

structure, function and evolution.
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