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Abstract

Although tuberculosis (TB) causes more deaths than any other pathogen, most infected individuals harbor the pathogen
without signs of disease. We explored the metabolome of .400 small molecules in serum of uninfected individuals, latently
infected healthy individuals and patients with active TB. We identified changes in amino acid, lipid and nucleotide
metabolism pathways, providing evidence for anti-inflammatory metabolomic changes in TB. Metabolic profiles indicate
increased activity of indoleamine 2,3 dioxygenase 1 (IDO1), decreased phospholipase activity, increased abundance of
adenosine metabolism products, as well as indicators of fibrotic lesions in active disease as compared to latent infection.
Consistent with our predictions, we experimentally demonstrate TB-induced IDO1 activity. Furthermore, we demonstrate a
link between metabolic profiles and cytokine signaling. Finally, we show that 20 metabolites are sufficient for robust
discrimination of TB patients from healthy individuals. Our results provide specific insights into the biology of TB and pave
the way for the rational development of metabolic biomarkers for TB.
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Introduction

Metabolomics provides unprecedented insights into the biology

of an organism in the state of disease. In particular, metabolites

can be viewed as a close recapitulation of the disease phenotype,

closer to ongoing pathogenesis in an organism than changes in

gene expression [1]. Consequently, metabolomics has deepened

our understanding of biological mechanisms involved in several

noninfectious diseases and provided a platform for the identifica-

tion of new biomarkers [2]. Metabolic signatures have proven

their value in several diseases, such as Alzheimer’s disease [3],

Parkinson’s disease [4], myocardial ischemia [5], hypertension [6],

cancer [7] and diabetes [8–11]. In contrast, fewer studies have

specifically addressed the metabolomic alterations that occur in

infectious diseases [12–16].

Tuberculosis (TB) is caused by the intracellular bacterial

pathogen Mycobacterium tuberculosis [17,18]. It is characterized by

chronic latency without clinical symptoms in the vast majority of

infected individuals. Of the more than 2 billion people infected

with M. tuberculosis globally, less than one-tenth is likely to develop

active TB during their lifetime and in the majority of cases

infection remains in an asymptomatic stage of latency. Even

though TB can be cured, drug treatment is long-lasting and

complex, and requires at least three drugs given over a minimum

of 6 months. In many regions, notably in developing countries

with high TB incidences, diagnosis is neither sensitive nor specific,

and an estimated 40% of TB patients fail to be correctly diagnosed

[19]. The tuberculin skin test (TST) diagnoses immunologic

sensitization to mycobacteria, indicating exposure, and hence

cannot be used to distinguish infected healthy individuals from

patients with active TB. More recently, gene expression profiling

has shown promise in differentiating between infection states in

TB [20–22].

We investigated the feasibility of identifying small molecule

biochemical profiles in serum for gaining novel biological insights

into the mechanisms underlying TB. The aim of this study is to use

metabolites as biomarkers of TB infection and disease status, and

to elucidate their role in protection and pathogenesis in TB. We
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acquired information on 428 distinct small molecules, including

amino acids, short peptides, carbohydrates, fatty acids, nucleotides

and cofactors, and compared the characteristic metabolomic

profiles of three groups: (i) healthy M. tuberculosis-uninfected

controls (TST–), (ii) latently M. tuberculosis-infected healthy

individuals (TST+), and (iii) patients with active TB (TBactive; see

Table S1).

We defined several remarkable differences between the meta-

bolic profiles of healthy subjects and TB patients, including lower

relative abundances of amino acids, medium-chain fatty acids and

lysophosphatidylcholines (LPCs), higher relative abundances of

fibrinopeptides and adenosine degradation products inosine,

hypoxanthine and ribose, as well other compounds, such as bile

acids and uremic toxins. The observed differences and correlations

between compound abundances allowed us to construct functional

clusters and infer their biological significance in TB disease

progression. In addition, we could identify a serum metabolomic

biomarker set that distinguishes active TB from the two groups of

healthy subjects, which is a necessary first step towards the use of

metabolic biomarkers in TB diagnosis. We also found that distinct

cytokine abundances in several instances correlated with the

relative abundances of metabolites, indicating a functional link

between these systems. Finally, we studied the role of tryptophan

degradation by indoleamine 2,3 dioxygenase 1 (IDO1), a well-

known immunosuppressive mechanism. We revealed that IDO1

expression was upregulated in pulmonary lesions from mice

suffering from experimental TB. Moreover, in vitro infection of

macrophages and dendritic cells (DCs) with M. tuberculosis mirrored

findings observed in serum.

Results

Test Groups Differ in the Relative Abundance of Several
Metabolites

Differences in the abundance of small molecules in serum

between the three study groups were determined by applying a t-

test for each of the three possible comparisons (TST– vs. TST+,

TST– vs. TBactive and TST+ vs. TBactive), corrected for multiple

testing at a significance threshold of 0.05. Results revealed

significant differences for 176 compounds between the TBactive

group and the two healthy groups (TST– and TST+; see Table S2

and Figure 1).

Among various other compounds, we found that several amino

acids, such as histidine, cysteine, glutamine, tryptophan, citrulline

and creatine, were at lower levels in the TBactive group compared

to the two control groups, and only some amino acids were

increased in abundance (including kynurenine, phenylalanine and

pyroglutamine) in the TBactive group. Other identified compounds

with markedly differentiated abundance between TST+ and

TBactive groups were sialic acid (N-acetylneuraminate), 3-car-

boxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), inosine,

xanthine, hypoxanthine, fibrinopeptide A, glucose, and mannose

(Figure 2 and Table S2). Intriguingly, we also identified six

metabolites that differed significantly between the two healthy

control groups, TST– and TST+ (inosine, hypoxanthine, glycylva-

line, 5-oxoproline and two unidentified compounds; see Table S2,

A and Discussion).

Differences in Small Metabolites can be Used as Specific
and Sensitive Biosignatures

To determine whether differences in metabolite abundance

between any two of the three study groups could be efficiently

exploited for building a sensitive biosignature of TB status, we

applied random forests (RF) classification, a supervised machine

learning algorithm [23]. The TBactive group could be sensitively

and specifically distinguished from the other two groups, TST–

and TST+ with a cross-validation error rate of 3.3%. Similar

results were obtained for classification between the TBactive group

and each of the healthy groups separately. Classification between

TST– and TST+ groups was error prone (i.e., overall cross-

validation error rate of 41.3% and 32.6% for the two groups,

respectively), due to highly similar metabolite profiles in these two

groups of healthy individuals. Additional analyses revealed that

less than 20 compounds sufficed for robust classification of TBactive

with a cross-validation error rate of approximately 3% (Figures S1

and S2; Tables 1, 2 and S3). For illustration purposes, 10 samples

from the TST+ and TBactive groups were randomly assigned to a

test set, and the remaining training set was used to repeat all

calculations. As expected from error rates calculated by an

external cross-validation procedure, no misclassifications occurred

in the resulting data set (Figure S2).

Metabolomic signatures that correctly classified TBactive patients

comprised distinct clusters, which provided deeper insights into

pathogenic mechanisms of TB. We applied hierarchical clustering

with correlations between profiles as a distance measure, and

bootstrapping for statistical assessment of the quality of clustering.

This method created a tree of metabolites, and at each tree node a

p-value was obtained by bootstrapping. Consequently, statistical

significance could be evaluated for each potential cluster. Using a

p-value threshold of 0.05, we found 18 clusters with at least five

compounds. Among these, 12 clusters were of biological interest as

they contained at least one compound showing significant

differences between the three study groups (Table S2).

Similar results were obtained using a substantially different

method, sparse PLS discriminant analysis (SPLS-DA) [24].

Biological Significance of Discriminative Clusters
To understand the relationships between and within clusters, as

well as to visually explore the underlying biological mechanisms,

we constructed a network based on partial correlations between

compounds. Group effects were removed such that compounds

showing similar differences between groups, but no within-group

correlation that would indicate a functional relationship, were not

clustered together. For each compound, we fitted a linear model

using the three study groups as a predictor variable and then used

the residuals from this model to calculate the correlations between

compounds. Based on these correlations, we constructed a network

graph that can be explored visually (Figures 3 and S3).

In a first step, we validated our approach to identify functionally

related compounds. We predicted that tightly coregulated

compounds (e.g., a class of fatty acids) would form significant

clusters. Consistent with this prediction, numerous groups of

related compounds were reliably identified and grouped in tight

clusters. For example, all medium-chain fatty acids (MCFAs)

formed a uniform group of correlated biochemical 

compound profiles. Moreover, correct identification of function-

ally related compounds should allow close correlation of xenobi-

otics with their metabolites. Consistent with this prediction,

degradation products of xenobiotics, including caffeine, stachy-

drine, salicylate and acetaminophen (Tylenol), were tightly

correlated (Figures 3 and S3).

We labeled the clusters by the predominant pathway or type of

metabolic compound found within the particular cluster (Table S4).

Several of the clusters we identified included metabolic compounds

that significantly differed between the study groups. Notably, we

determined alterations in clusters of the following: amino acids,

medium-chain fatty acids, carnitines, LPCs and fibrinopeptides. We

Metabolic Profiling of TB
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did not find significant differences in the clusters of hormones,

xenobiotics or long chain fatty acids.

Abundance of Metabolites is Linked to Immune
Response

To determine whether there is a direct functional connection

between serum abundance of metabolites and of immune

mediators, we analyzed 35 cytokines/chemokines in 99 out of

the 136 serum samples (note: sample number was reduced due to

limited availability of aliquots). Significantly elevated serum

concentrations of granulocyte colony-stimulating factor (G-CSF),

interferon-gamma (IFN-c), interleukin 6 (IL-6), C-X-C motif

chemokine 10 (CXCL-10), soluble alpha chain of the IL-2

receptor alpha (sIL2ra) and vascular endothelial growth factor

(VEGF), as well as lower concentrations of macrophage-derived

cytokine (MDC) were detected in TBactive patients as compared to

the two healthy groups (Figure 4). Notably, several of the

differentially abundant cytokines in the study anticorrelated

significantly with serum metabolites. For example, IL-6, IP-10

and sIL2ra were significantly correlated with the amino acids

Figure 1. Examples of metabolite patterns in tuberculosis patients (TBactive), healthy uninfected (TST–) and latently infected (TST+)
individuals. (A) Changes in relative abundance of three exemplary small metabolites: fibrinopeptide A, inosine and kynurenine. Red line indicates
sample mean, blue line indicates sample median. Stars indicate significant differences between profiles (result from t-test corrected for multiple
testing; *, p,0.05; **, p,0.01; ***, p,0.001) (B) Correlation between abundance of inosine and abundance of hypoxanthine and choline. Colors and
symbols denote study groups: grey squares, TST–; green circles, TST+; red triangles, TBactive. Spearman correlation coefficients (rho) and corresponding
p-values are given.
doi:10.1371/journal.pone.0040221.g001
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tryptophan and glutamine (p,1025, r , –0.3). In total, out of

15,408 correlations between cytokines/chemokines and metabolic

compounds tested, 211 significant correlations (p,0.05) remained

after correction for multiple testing. We wanted to determine

categories of metabolic compounds that frequently correlated with

the abundances of cytokines and chemokines. To this end, we

performed an enrichment analysis, which revealed significant

enrichment of amino acids (p,10–6) and carbohydrates

(p = 0.004). Therefore, this establishes a link between changes in

the metabolic profile and the cytokine response in TB.

Increased IDO1 Activity and Kynurenine Production
Sera of TB patients were characterized by a significant increase

in the abundance of kynurenine, a product of tryptophan

metabolism. The enzyme IDO1 catalyzes the degradation of

tryptophan to kynurenine, with well-established immunosuppres-

sive effects in mammalian pregnancy [25,26], tumor resistance

[27,28], chronic infection [29–33] and autoimmune diseases [34].

Furthermore, IDO1 is critically involved in CD4 and CD8 effector

T cell suppression, as well as in generation and activation of

regulatory T cells [35,36]. Therefore, we decided to investigate the

role of IDO and its metabolites in immunity against TB.

Consistent with elevated tryptophan degradation to kynurenine

in TB, IDO1 protein was highly expressed in pulmonary lesions in

mice suffering from experimental TB (Figure 5A). Human

monocyte-derived DCs and macrophages strongly upregulated

the expression of IDO1 after infection with M. tuberculosis; live

bacteria induced stronger expression compared to heat-killed or

irradiated bacteria (Figure 5B and C). In agreement with this

finding, the enzymatic activity of IDO1, measured by the

conversion of tryptophan to kynurenines by high-performance

liquid chromatography (HPLC), was increased in infected host

cells (Figure 5D and E). T cells stimulated with DCs pulsed with

purified protein derivative (PPD) plus mycobacterial lipid

Figure 2. Heat map showing fold changes of small metabolic compounds in the three study groups, TB patients, healthy uninfected
and latently infected individuals. Fold changes are relative to the average abundance in the TST– group. Red indicates relative abundance higher
than average in the TST– group; blue indicates relative abundance lower than average in the TST– group. Horizontal axis: samples belonging to the
three study groups; vertical axis: top 50 compounds selected by variable importance in RF analysis, including compounds that could not be
identified, but were strong predictors of sample status. Color bars above the heat map denote study groups: grey, TST–; green, TST+; red, TBactive. See
also Figure S2.
doi:10.1371/journal.pone.0040221.g002
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(mannosylated lipoarabinomannan, ManLAM) and treated with

the specific IDO1 inhibitor 1-methyl-DL-tryptophan (1-MT-DL)

showed elevated proliferation compared to cells treated only with

PPD and ManLAM. However, addition of kynurenine reversed

this effect (Figure 5F), emphasizing the regulation of T cells by

kynurenines.

Discussion

Our analysis of several hundred serum small molecules has

provided intriguing insights into the metabolomic status of three

groups in M. tuberculosis infection: no M. tuberculosis infection

(TST–); M. tuberculosis latent infection (TST+); and active TB

disease (TSTactive). These metabolomic characteristics could be

translated into a custom-made biosignature capable of discrimi-

nating healthy individuals with and without M. tuberculosis infection

from TB patients.

In two recent studies, tissues from mice infected with M.

tuberculosis [16] and lung granulomas from M. tuberculosis-infected

guinea pigs [15] were profiled for metabolites using nuclear

magnetic resonance (NMR). Although the number of metabolites

profiled in these studies was significantly lower, several findings of

these studies are congruent with our findings.

We applied a clustering procedure for groups of compounds

that were functionally related. In each group, the compounds were

significantly correlated, indicating their codependence on a

specific metabolic process or systemic response. Consistent with

this notion, several compounds expected to be present in a given

group were significantly correlated. This procedure allowed us to

Table 1. Confusion matrices showing the results of external
cross-validation for random forests models of the
discrimination procedure among the tuberculosis patients
(TBactive) and healthy uninfected (TST–) and latently infected
(TST+) individuals using the full set of metabolites.

Comparison
Factual
class Model prediction % Error

TST– vs TBactive TST– TBactive

TST– 45 1 2.20

TBactive 2 42 4.50

TST+ vs TBactive TST+ TBactive

TST+ 45 1 2.20

TBactive 1 43 2.30

TST–, TST+ and TBactive TST– TST+ TBactive

TST– 28 16 2 39.00

TST+ 13 32 1 30.00

TBactive 1 2 41 7.00

Each of the three matrices shows the error rates in one classification model: A,
TST– versus TBactive; B, TST+ versus TBactive; C, classification model for all three
study groups. The values in each row indicate how many of the samples from a
given factual group were correctly classified by the model in an external cross-
validation bootstrapping procedure, and the respective error rates (%). See also
Figures S1 and S2.
doi:10.1371/journal.pone.0040221.t001

Table 2. The top 20 named metabolites identified in the random forests (RF) analysis as most important for discrimination
between the TST+ and TBactive groups.

Biochemical name Pathway TST– TST+ TBactive

Histidine Histidine metabolism 1.11 1.14 0.79

Cysteine Cysteine, methionine, SAM and taurine metabolism 1.16 1.18 0.62

Threonine Glycine, serine and threonine metabolism 1.14 1.24 0.85

Citrulline Urea cycle; arginine and proline metabolism 1.14 1.14 0.70

Cysteine-glutathione disulfide Glutathione metabolism 1.19 1.64 0.49

N-acetylneuraminate Aminosugars metabolism 1.16 0.84 1.81

Glycocholenate sulfate* Bile acid metabolism 0.94 0.94 1.99

Inosine Purine metabolism, (hypo)xanthine/inosine containing 4.98 0.75 4.01

Tryptophan Tryptophan metabolism 1.07 1.06 0.78

Mannose Fructose, mannose, galactose, starch, and sucrose metabolism 0.85 0.93 1.53

3-carboxy-4-methyl-5-propyl-2-furanpropanoate
(CMPF)

Fatty acid, dicarboxylate 1.58 1.68 0.77

Phenylalanine Phenylalanine and tyrosine metabolism 1.00 0.92 1.31

Pyroglutamine* Glutamate metabolism 1.07 1.06 2.13

Taurocholenate sulfate* Bile acid metabolism 0.93 1.04 2.63

Glutamine Glutamate metabolism 1.05 1.11 0.86

Octadecanedioate Fatty acid, dicarboxylate 0.58 0.59 1.26

Urea Urea cycle; arginine and proline, metabolism 1.14 1.22 0.88

Gamma-glutamylglutamine g-glutamyl 0.93 1.25 0.63

Glycylvaline Dipeptide 1.97 0.67 2.40

Aspartate Alanine and aspartate metabolism 1.34 0.89 1.69

RF analysis indicates that 20 variables are sufficient for a robust classification. For a complete list including the compounds that could not be uniquely identified, see
Table S2. Numbers correspond to the relative abundance of a given metabolite in the respective group. The significance of differences in abundances is shown in
Table S1.
doi:10.1371/journal.pone.0040221.t002
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link additional compounds that were not predicted to form a

cluster. Notably, in many cases, differential abundance of serum

metabolites between the different study groups could not be

directly attributed to specific metabolic pathways. The presence of

metabolic compounds in serum is rarely a simple consequence of

metabolic processes within cells, but rather the result of a complex

interplay between different parameters, such as unique metabolic

and secretory features of cells in different organs. In the following,

we discuss the most prominent metabolite clusters in the context of

their biological relevance and their potential as custom-tailored

biosignatures for TB.

Tryptophan and Kynurenine
In the TBactive group, but not in the TST2/+ groups,

kynurenine and its derivative, 3-hydroxykynurenine were elevated.

The activity of IDO1, an enzyme that converts tryptophan to

kynurenine, is increased under various inflammatory conditions

resulting in heightened abundance of kynurenines [37]. Therefore,

increased serum concentrations of kynurenines suggest upregula-

tion or increased IDO1 activity in the TBactive group.

We tested the hypothesis that increased IDO1 activity is a direct

consequence of stimulation of immune cells by M. tuberculosis and

that this increased enzymatic activity leads to an increased level of

kynurenines. We identified IDO1 in situ in granulomatous lesions

obtained from the lungs of mice suffering from experimental TB.

Furthermore, we observed elevated levels of IDO gene expression

and enzymatic activity in human DCs and macrophages upon

infection with M. tuberculosis (Figure 5B–E). Finally, we demon-

strate human T cell regulation by kynurenines in TB (Figure 5F).

These findings support the immune regulatory function of the

active catabolites generated by the increased degradation of

tryptophan during TB, suggesting that the tryptophan degradation

pathway controlled by IDO1 is involved in the pathogenesis of this

disease.

Increased abundance of kynurenine in serum from the TBactive

group was significantly correlated with similarly increased

abundance of the immunosuppressive stress hormone cortisol

(p,10–5, r = 0.38). Glucocorticoids can activate IDO1 via

glucocorticoid-induced tumor necrosis factor receptor (GITR)

and protect against allergic bronchopulmonary aspergillosis [38].

Hence, the tryptophan catabolism pathway could be a mechanism

by which corticoids exert immunosuppression [38]. Independent-

ly, in a recent publication, Suzuki et al. [39] found that serum

IDO activity and kynurenine abundance is higher in TB patients.

Fibrinopeptide A
Three forms of fibrinopeptide A were significantly correlated

and elevated in both TST+ and TBactive groups with highest

abundance in TB patients. Tuberculous granulomas are walled off

from the surrounding tissue by a fibrinous wall. Fibrin deposition

in granulomas resulting in release of fibrinopeptides could explain

the high serum abundance of fibrinopeptides in TB patients and

latently infected individuals. Interestingly, in female members of

the study groups, another short peptide corresponding to a

Figure 3. Network showing functional relationships between the small metabolic compounds in TB patients, healthy uninfected
and latently infected individuals. Nodes correspond to metabolites; edges correspond to statistically significant correlation between residual
small metabolite profiles corrected for study classes. Colors correspond to differences between the TST+ and classes (see Figure S3 for additional
comparisons). Color intensity indicates significance of difference with darker colors corresponding to more significant differences. Metabolites with
adjusted p value .0.05 are not colored. Line thickness corresponds to the absolute Spearman correlation coefficients corrected for groups (see
Methods). See also Figure S3.
doi:10.1371/journal.pone.0040221.g003
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Figure 4. Abundance of cytokines and their correlation with selected metabolites in TB patients, healthy uninfected and latently
infected individuals. (A) Strip charts showing abundances of eight cytokines that differed significantly between the study groups. Significance
thresholds for a two-tailed t-test corrected for multiple testing: *, p,0.05; **, p,0.01; ***, p,0.001. Blue line indicates group median, red line
indicates group mean. (B) Correlations between metabolic compounds and cytokines. Grey squares, healthy controls (TST–); green circles, latently
infected individuals (TST+); brown triangles, active TB patients (TBactive). Spearman correlation coefficient (rho) and p-values are given.
doi:10.1371/journal.pone.0040221.g004
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fragment of the C3 complement component was correlated with

fibrinopeptide A and found at significantly higher serum

concentrations in TBactive than in TST– and TST+ groups.

LPCs
One of the most prominent clusters in our analysis consisted of

different LPCs, which were found at lower levels in the TBactive

group but did not significantly differ between TST– and TST+

groups. A major source of LPCs is the proinflammatory

phospholipase A2, as plasma concentrations of LPCs significantly

correlate with the activity of this enzyme [40]. Lower levels of

LPCs have been observed in some types of cancer [41,42], as well

as in sepsis patients in whom lower LPC concentrations correlate

with mortality [43]. Lower abundance of LPCs in TB patients

could be mechanistically related to the finding that M. tuberculosis

can induce macrophage apoptosis by inhibition of phospholipase

A2 [44]. In contrast, Somashekar et al. [15] found a signature for

lipolysis in the lung granulomas from M. tuberculosis-infected guinea

pigs.

Hypoxia Cluster
Inosine, hypoxanthine, ribose and xanthine formed one cluster,

in which the compounds were present in high abundance in

several individuals belonging to the TST– and TBactive groups, and

uniformly low in abundance in the TST+ group (Figure 1B). These

compounds are part of the inosine breakdown pathway in which

inosine is processed to hypoxanthine and ribose by the 59

nucleosidase, and hypoxanthine is subsequently oxidized to

xanthine by xanthine oxidase. Inosine, hypoxanthine and ribose

have been defined as biomarkers of hypoxia, hypoxemia and

ischemic brain injury [45,46]. Inosine is a natural analog of

Figure 5. Demonstration of IDO1 expression and kynurenine production in response to M. tuberculosis infection and regulation of
M. tuberculosis-specific T-cell responses by kynurenines. (A) Immunohistochemistry staining of formalin-fixed, paraffin-embedded tissue of a
murine pulmonary TB lesion stained with anti-IDO polyclonal antibody; staining representative of lesions from five animals. Bar is equal to 200 nm.
Human monocyte-derived dendritic cells (DCs) (B) and macrophages (C) were infected with M. tuberculosis H37Rv or stimulated with irradiated and
heat-killed M. tuberculosis H37Rv for 24 h and indoleamine 2,3 dioxygenase 1 (IDO1) gene expression was measured by qPCR. Mean and standard
deviation (SD) of fold-change IDO1 gene expression of one donor representative of four. Line indicates minimal significant fold change threshold
equal to 1.5. DCs (D) and macrophages (E) were infected with M. tuberculosis H37Rv and cell culture supernatants were collected at indicated times
for measurement of kynurenines by HPLC; kynurenine levels from uninfected controls were subtracted. Means and SD of four donors are depicted (C
and D). Star indicates significance (p,0.05) in Friedman test.(F) Human monocyte-derived DCs were pulsed with purified protein derivative (PPD) and
mannosylated lipoarabinomannan (ManLAM) and co-cultured for 4 days with autologous CFSE-labeled purified T cells (DC:T cell ratio 1:20) in the
presence or absence of 1-methyl-DL-tryptophan (1-MT-DL) and 3-OH-kynurenine (Kyn). Cell proliferation was assessed by CFSE dilution using
flowcytometry. Figure representative of three independent experiments (ANOVA F = 4.1 for CD+CD4+ cells and F = 3.3 for CD3+CD8+ cells, p,0.05).
doi:10.1371/journal.pone.0040221.g005
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adenosine and binds adenosine receptors A2A and A3 [47,48],

thus decelerating inflammation.

In tuberculous granulomas, hypoxia prevails and is thought to

contribute to the containment of M. tuberculosis. An abundance of

inosine catabolites in serum from the TBactive group is consistent

with this notion. Reasons for higher abundance of hypoxia

biomarkers in serum of the TST– group as compared to the TST+

group remain to be clarified. A high prevalence of current and

previous smoking was previously reported in the study community

[49]. Uniformly low serum concentrations of breakdown products

of inosine in the TST+ group argues against a major role of

hypoxia in latent infection. Rather, since individuals with higher

abundance of inosine are absent from the TST+ group, but present

in the TST– group, it is tempting to speculate that the occurrence

of hypoxia is coincident with progression from latent infection to

active TB disease. Notably, elevated serum levels of hypoxanthine

have been also reported in severe childhood pneumonia [12].

Also, a hypoxia signature has been identified in lung granulomas

of guinea pigs infected with M. tuberculosis [15] as well as in the

organs of M. tuberculosis-infected mice [16].

Several other metabolites were correlated within the inosine

pathway cluster. Methionine was present in serum at low

abundance in the TBactive group. The biochemical derivative of

methionine, N-acetyl-L-methionine (NAM), was detected in more

than one-third of both of the TBactive and TST– groups, but was

undetectable in the TST+ group. The levels of methionine and

NAM were inversely correlated. Although the physiological role of

NAM during infection remains unclear [50], a relevant enzyme,

methionine adenosyltransferase, is known to be regulated by

hypoxia [51]. Choline abundance correlates significantly with

abundance of inosine and xanthine, and is known to be a reliable

biomarker in ischemia and acute coronary syndrome, released in

the course of ischemic membrane damage and the activity of

phopholipase D [37]. Lactate was found at higher levels in the

TBactive group, coinciding with a previous finding in mice and

possibly related to increased glycolysis in granulomatous inflam-

mation [16].

MCFAs
Eight to twelve carbon-containing MCFAs are absorbed into

the bloodstream and primarily metabolized in the liver. MCFA

serum concentrations were significantly reduced in the TBactive

group. Medium-chain triglycerides inhibit free radical formation

and tumor necrosis factor-alpha (TNF-a) production [52]. Hence,

our findings point to a role of MCFAs in protection against

collateral damage caused by free radicals and TNF, which are

essential elements of protective immunity against M. tuberculosis.

Complement System Peptide
The peptide C3f is a breakdown product of the C3 component

of the complement system, which is generated by the combined

actions of factors I and H [53]. C3, a central molecule of the

complement cascade, triggers a variety of important immunologic

sequellae [54]. Elevated levels of C3f have been correlated with

coronary disease and vascular events in women [55]. In our study,

the peptide C3f was elevated in female members of the TBactive

group.

Uremic Toxins
Significantly reduced serum concentrations in the TBactive group

of CMPF, 3-indoxyl sulfate (IS), hippurate and indole acetate,

suggest uremic cytotoxic activity. Although these compounds have

not been analyzed in the context of TB, uremic toxins have been

related to vitamin D metabolism [56]. Vitamin D is involved in

macrophage activation and has been described as critical for host

defense against TB [57]. Reduced serum concentrations in TB

patients could be explained by accumulation of respective

metabolites in granulomas or by the assumption that vitamin D

deficiency is directly related to elevated susceptibility in TB

[58,59]. Moreover, uremic toxins can modulate apoptosis and

promote neutrophil clearance [60].

Stachydrine
Stachydrine and putative demethylated stachydrine (X-11513)

were correlated in serum abundance. Their average abundance

was only insignificantly elevated in the TBactive group. In-depth

analysis of the data revealed marked differences amongst

participants in this group with eight outliers showing highly

elevated serum concentrations of these compounds, compared

with only three outliers in the TST+ group and four outliers in the

TST– group.

Stachydrine and homostachydrine are plant alkaloids found, for

example, in alfalfa (lucern, Medicago sativa). Stachydrine is also

found in Capparis tomentosa (Woolly caper-bush), which is used as a

traditional remedy in South Africa [61] for treatment of cough and

chest pain. These findings emphasize the broad scope of

metabolome analyses, which not only encompasses pathogen,

host and microbiome metabolism, but also environmental factors

such as drug intake.

Cytokines Linked to Metabolic Changes
The serum levels of several cytokines that were significantly

upregulated in samples from TB patients were significantly

anticorrelated with the relative serum concentrations of a number

of amino acids (see Figure4). The relative abundance of these

amino acids was significantly reduced in the TBactive group

compared with TST+ and TST– groups, whereas cytokines were

found at elevated concentrations. However, also within the

TBactive group these two classes of molecules were negatively

correlated. This indicates that in patients with the strongest

inflammation, amino acid abundance was diminished and IL-6

and other proinflammatory cytokines were elevated (see Figure 4).

Strongest negative correlations between amino acids and

cytokines were observed for the amino acid glutamine. Glutamine

is the most abundant amino acid in the body, but can become

limiting under stress conditions [62], and consequently impair

immune functions [63]. It is tempting to speculate that the

observed increase in cytokine serum concentrations accompanied

by decreased serum abundance of amino acids are indicators for

disease progression in which the organism is gradually depleted of

resources, resulting in cachexia. Indeed, the ratio glutamine/

glutamate indicates a risk for loss of mass [64]. We found that the

glutamine/glutamate ratio in serum of TBactive was significantly

lower than in TST– and TST+ groups (p,2610–5).

The concentrations of G-CSF were significantly anticorrelated

with the relative abundances of gamma-glutamyl glutamine and

gamma-glutamyl leucine (p,10–3, r , –0.55 in the TBactive

group). This could indicate an effect on gamma-glutamyl

transpeptidase, known to be elevated in patients treated with G-

CSF [65,66].

Specificity of the Biosignature
Since the experimental groups tested did not include patients

with diseases other than TB, we cannot ascertain the specificity of

the resulting biosignature. It can be expected that several of the

observed changes are the result of a general inflammatory process

rather than a specific response to TB. Nonetheless, it is tempting to

speculate that three clusters of compounds included a specific
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profile. Both the inosine cluster and fibrinopeptide cluster revealed

significant differences between the two healthy groups (TST– and

TST+), indicating that these effects are specific. Furthermore, we

demonstrated that M. tuberculosis directly stimulates kynurenine

production at the site of infection. We assume that this effect

includes a specific pattern because it represents a direct response to

the pathogen, although it has been described in other diseases, as

well. In addition, TB is linked to general wasting (cachexia), which

has been generally observed in TB and AIDS and less so in other

infectious diseases. Therefore, there is reason to speculate that

definition of a specific metabolite biosignature of TB is feasible.

Concluding Remarks
TB is a chronic disease known to cause profound metabolic

changes [67] as indicated by its various designations as wasting

disease, consumption or phthisis in pre-antibiotic times. Metabo-

lomics not only allows robust differentiation of patients with active

TB from healthy individuals (be they M. tuberculosis-infected or

not), it also reveals remarkable differences in the metabolite profile

between individual TB cases (see Figure 1A). In contrast, healthy

individuals from both TST– and TST+ groups were more

homogeneous for the most discriminative metabolites.

Our study aimed at a better understanding of the biological

processes operative during infection and disease in TB, and we

identified several biological mechanisms that apparently play a

major role. In addition, our study provides a first step towards the

development of metabolomic-based diagnosis of TB. Moreover,

understanding host metabolic processes during TB could ulti-

mately inform individualized adjunctive therapy in combination

with chemotherapy, notably, during prolonged treatment of

patients with multidrug-resistant or extensively drug-resistant

TB. Clearly, further development of a tailored biosignature

suitable for TB diagnosis will require verification in independent

cohorts and comparison with other pulmonary infectious diseases.

Yet, our current analyses of several hundred metabolites has led to

the definition of a signature comprising fewer than 20 metabolites

for reliable discrimination between active TB and latently infected

or uninfected healthy individuals, emphasizing the power of

metabolomic profiling in TB. It is tempting to speculate that one

day, metabolic signatures may be harnessed for the development

of a simple and robust dipstick test for point-of-care diagnosis of

TB.

Methods

Ethics Statement
Human serum samples: the study was approved by the ethical

committee of the University of Stellenbosch (Stellenbosch, South

Africa) and written informed consent was obtained from all study

participants. Human cell samples were obtained in accordance

with the local ethical committee (Charite Ethikkommission, Berlin,

Germany, EA1/200/08). Animal experiments were performed at

the Max Planck Institute for Infection Biology in Berlin, Germany,

and experimental protocols were approved by the State Office of

Health and Social Affairs (Landesamt für Gesundheit und

Soziales), Berlin, Germany.

Specimens
Serum samples collected at the University of Stellenbosch, in

Stellenbosch, South Africa comprised three groups: 46 healthy

controls with no clinical signs of TB infection (TST–), 46 latently

infected subjects with no clinical signs of TB, confirmed by TST

(TST+) and 44 patients with clinical signs of pulmonary TB

(TBactive; see Table S1). TB patients had the following symptoms:

cough for more than 2 weeks and at least two additional symptoms 
from the following: hemoptysis (coughing up blood), breathing 
difficulty, fever, night sweats, weight loss, chest pain, fatigue. All 
patients had two positive ($1+) sputum smear stains for acid-fast 
bacilli (Auramine stain or Ziehl-Neelsen). In 24 out of the 34 
patients a Mycobacteria Growth Indicator Tube (MGIT) culture 
was performed, was positive and was speciated for M. tuberculosis. 
All subjects were HIV– and bacille Calmette–Guérin (BCG)-
vaccinated as infants, in accordance with the national vaccination 
program. Subjects were balanced between the groups with respect 
to age and gender. Clinically relevant information on patients is 
available  Samples were stored at –80uC. At the 
time of sample collection, none of the TB patients was a 
recipient of TB treatment.

Sample Preparation
Samples were stored at –70uC until processed. Sample

preparation was carried out as described previously [68] at

Metabolon, Inc. Briefly, recovery standards were added prior to

the first step in the extraction process for quality control purposes.

To remove protein, dissociate small molecules bound to protein or

trapped in the precipitated protein matrix, and to recover

chemically diverse metabolites, proteins were precipitated with

methanol under vigorous shaking for 2 min (Glen Mills Geno-

grinder 2000) followed by centrifugation. The resulting extract was

divided into four fractions: one for analysis by ultra high

performance liquid chromatography-tandem mass spectrometry

(UPLC-MS/MS; positive mode), one for analysis by UPLC-MS/

MS (negative mode), one for analysis by gas chromatography–

mass spectrometry (GC-MS), and one sample was reserved for

backup.

Three types of controls were analyzed in concert with the

experimental samples: samples generated from a pool of human

plasma (extensively characterized by Metabolon, Inc.) served as

technical replicate throughout the data set; extracted water

samples served as process blanks; and a cocktail of standards

spiked into every analyzed sample allowed instrument perfor-

mance monitoring. Instrument variability was determined by

calculating the median relative standard deviation (RSD) for the

standards that were added to each sample prior to injection into

the mass spectrometers (median RSD = 10%; n = 30 standards).

Overall process variability was determined by calculating the

median RSD for all endogenous metabolites (i.e., non-instrument

standards) present in 100% of the pooled human plasma samples

(median RSD = 15%; n = 239 metabolites). Experimental samples

and controls were randomized across the platform run.

Mass Spectrometry Analysis
Non-targeted MS analysis was performed at Metabolon, Inc.

Extracts were subjected to either GC-MS [68] or UPLC-MS/MS

[69]. The chromatography was standardized and once the method

was validated, no further changes were made. As part of

Metabolon’s general practice, all columns were purchased from

a single manufacturer’s lot at the outset of experiments. All

solvents were similarly purchased in bulk from a single manufac-

turer’s lot in sufficient quantity to complete all related experi-

ments. For each sample, vacuum-dried samples were dissolved in

injection solvent containing eight or more injection standards at

fixed concentrations, depending on the platform. The internal

standards were used both to assure injection and chromatographic

consistency. Instruments were tuned and calibrated for mass

resolution and mass accuracy daily.

The UPLC-MS/MS platform utilized a Waters Acquity UPLC

and a ThermoFisher LTQ mass spectrometer, which included an
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electrospray ionization source and a linear ion-trap mass analyzer.

The instrumentation was set to monitor for positive ions in acidic

extracts or negative ions in basic extracts through independent

injections. The instrument was set to scan 99–1000 m/z and

alternated between MS and MS/MS scans. The scan speed was

approximately six scans per s (three MS and three MS/MS scans).

MS/MS scans were collected using dynamic exclusion, a process

in which after an MS/MS scan of a specific m/z has been

obtained, then that m/z is placed on a temporary MS/MS exclude

list for a user-set period of time to allow greater MS/MS coverage

of ions present in the MS scan because the instrument will not

trigger an MS/MS scan of the same ion repeatedly. Extracts were

loaded onto columns (Waters UPLC BEH C18-2.16100 mm,

1.7 mm) and gradient-eluted with water and 95% methanol

containing 0.1% formic acid (acidic extracts) or 6.5 mM

ammonium bicarbonate (basic extracts). Columns were washed

and reconditioned after every injection.

The samples destined for analysis by GC-MS were dried under

vacuum desiccation for a minimum of 18 h prior to being

derivatized under dried nitrogen using bistrimethyl-silyltrifluor-

oacetamide. Derivatized samples were separated on a 5%

phenyldimethyl silicone column with helium as carrier gas and a

temperature ramp from 60u to 340uC within a 17-min period. All

samples were analyzed on a Thermo-Finnigan Trace DSQ MS

operated at unit mass resolving power with electron impact

ionization and a 50–750 atomic mass unit scan range.

Compound Identification, Quantification, and Data
Curation

Metabolites were identified by automated comparison of the ion

features in the experimental samples to a reference library of

chemical standard entries that included retention time, molecular

weight (m/z), preferred adducts, and in-source fragments as well as

associated MS spectra and curated by visual inspection for quality

control using software developed at Metabolon [70]. Identification

of known chemical entities is based on comparison to metabolomic

library entries of purified standards. Over 2,400 commercially

available purified standard compounds have been acquired and

registered into LIMS for distribution to both the LC/MS and

GC/MS platforms for determination of their detectable charac-

teristics. An additional 5,300 mass spectral entries have been

created for structurally unnamed biochemicals, which have been

identified by virtue of their recurrent nature (both chromato-

graphic and mass spectral). These compounds have the potential

to be identified by future acquisition of a matching purified

standard or by classical structural analysis. Peaks were quantified

using area under the curve.

Multiplex Cytokine/chemokine Analysis
Cytokine and chemokine levels in serum were measured using a

premixed 42-plex MILLIPLEX MAP Human Cytokine/Chemo-

kine kit (Millipore GmbH, Germany) according to manufacturer’s

instructions. A total of 25 ml of serum was analyzed for the

presence of the following analytes: epidermal growth factor (EGF),

eotaxin, fibroblast growth factor (FGF)-2, Flt3-L, fractalkine, G-

CSF, granulocyte macrophage colony-stimulating factor (GM-

CSF), GRO, IFN-a2, IFN-c, IL-1a, IL-1b, IL-1ra, IL-2, IL-3, IL-

4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p40, IL-12p70, IL-13,

IL-15, IL-17, interferon-inducible protein (IP)10, monocyte

chemotactic protein (MCP)-1, MCP-3, MDC, macrophage

inflammatory protein 1-(MIP1)a, MIP1b, platelet-derived growth

factor (PDGF)-AA, PDGF-AB/BB, RANTES, sCD40L, sIL2ra,

transforming growth factor-alpha (TGF)-a, TNF-a, TNF-b and

VEGF. Cytokine and chemokine levels were measured on a

LuminexH 100/200TM system (Luminex Corporation, Austin,

TX, USA).

Experimental TB Infection and Histology
Animals (C57BL/6 mice, 8–12 weeks of age) were infected

using a Glas-Col inhalation exposure system with M. tuberculosis

H37Rv (,250 colony forming units per mouse). The initial

challenge dose was verified 24 h p.i. by plating complete lung

homogenates onto Middlebrook 7H11 agar plates. For immuno-

histochemistry, fixed lung sections (2 mm) were de-waxed,

rehydrated and subjected to antigen retrieval, blocking and

exposed to goat polyclonal IDO antibody (LifeSpan Biosciences),

followed by rabbit anti-goat alkaline phosphatase-conjugated

secondary antibody. Alkaline phosphatase activity was visualized

using new fuchsin (Dako). Sections were counterstained with

hemalaun (Merck).

Ex-vivo Human Cells
Human DCs and macrophages were generated from buffy coats

obtained from healthy volunteers recruited at the German Red

Cross (Deutsches Rotes Kreuz). Peripheral blood mononuclear

cells were recovered from interphase of Ficoll gradient according

to standard protocols. To obtain untouched monocytes, cells were

subjected to negative MACS selection using the Monocyte

Isolation Kit II (Miltenyi Biotec). Flow-through cells were collected

and grown in complete RPMI1640 medium containing 800 U/ml

hGM-CSF and 500 U/ml hIL-4 (Strathmann) for 7 days to obtain

immature DCs. Macrophages were generated from CD14+ cells

by adherence to plastic culture flasks. For T cell assays, cells from

healthy PPD+ donors were used to obtain DCs and T cells. DCs

were generated as previously described and CD3+CD4+ and

CD3+CD8+ T cells were obtained by negative MACS selection

according to manufacturer’s instructions (Pan T cell Isolation Kit,

Miltenyi).

Kynurenine Detection
Cell culture supernatants from infected and stimulated cells

(DCs and macrophages) were deproteinized and kynurenines and

tryptophan concentrations were measured by high-performance

liquid chromatography using a Waters reverse phase C-18 column

with a photodiode array detector (Waters 996). IDO1 enzymatic

activity was assessed as a direct function of kynurenine production

[71].

T Cell Assay
Monocyte-derived DCs treated with 1-methyl-tryptophan-DL

(1-MT-DL) or with 1-MT-DL plus 3-OH-kynurenine (Kyn) and

pulsed with PPD (10 mg/ml) and ManLAM (15 mg/ml) were

cocultured with autologous T cells at a ratio of 1:20 (104 DCs and

26105 T cells in triplicates). T cells were labeled with carboxy-

fluorescein diacetate succinimidyl ester (CFSE, CellTrace CFSE

Cell Proliferation Kit, Molecular Probes) at 2.5 uM according to

manufacturer’s instructions. After 4 days of coculture, T cell

proliferation was assessed by flow cytometry using anti-CD3, -

CD4 and -CD8 monoclonal antibodies (all from BD) in

combination with CFSE. Lymphocytes were gated based on

forward and side scatter, and propidium iodide-positive cells were

excluded from the analysis. The reduction in CFSE fluorescence

intensity was analyzed on CD3+CD4+ and CD3+CD8+ gated cells.

The ratio of proliferating to nonproliferating T cells was calculated

and normalized to untreated controls. Data were analyzed by

Anova with Dunnet’s multiple comparison test.

Metabolic Profiling of TB

PLoS ONE | www.plosone.org 11 July 2012 | Volume 7 | Issue 7 | e40221



Quantitative RT-PCR
RNA was isolated with TRIzol (Invitrogen) and High Pure RNA

Isolation Kit (Roche). cDNA was synthesized using the SuperScript

III First-Strand Synthesis System and random hexamer primers

(Invitrogen). RT-PCR was performed in triplicates using the

ABIPRISM SDS 7900 system (Applied Biosystems). Fragments

were amplified using the SYBR Green I Reaction Mix (Applied

Biosystems) and specific primers for IDO1 (Hs_IDO1_1_SG

QuantiTect Primer Assay, Qiagen) and normalized to the expres-

sion of human acidic ribosomal protein (HuPO) housekeeping gene

(F-59-GCTTCCTGGAGGGTGTCC-39; R-59-

GGACTCGTTTGTACCCGTTG-39). Threshold cycle values

CT for each PCR product were determined using ABIPRISM

SDS7900 software and DCT values were calculated. Fold differ-

ences (FD) in expression levels between IDO1 and HUPO were

calculated according to the formula FD = 2DCT.

Statistical Analysis
Relative abundances of biochemical compounds obtained by

MS were normalized using the aquantile normalisation method

from the R package limma [72] and used as an entry point for

further statistical analyses. For a general comparison, biochemical

compounds with altered levels in the different groups (TST ,–

TST+ and TBactive) were obtained and compared using t-test and

Wilcoxon sum rank test (see Table S2). Significant p values were

adjusted for multiple testing using the Benjamini and Hochberg

correction [73]. Also, several groups of biochemically similar

compounds were tested in an ANOVA. Second, a RF classifier

was used to identify biomarkers sufficiently distinct between

groups. Functional linkage between different compounds was

obtained by first fitting a simple linear model for each compound

and subsequently calculating the correlation coefficient between

the models’ residuals applying a bootstrapping procedure. In the

applied linear model Y = aX+b, where Y equals group classifica-

tion (TST–, TST+ and TBactive) and X is the vector of the relative

levels of the compounds. R scripts used to generate the data are

available upon request. Significantly correlated compound profiles

were used to infer clusters of functionally related small biochemical

compounds. To explore the link between metabolic and cytokine

profiles, we calculated Spearman correlation coefficients between

the analyzed cytokine profiles and small metabolic compounds,

and corrected for multiple testing. Next, to determine which

categories of metabolic compounds correlated with cytokine and

chemokine profiles, we performed an enrichment analysis using a

hypergeometric test for the main categories of metabolic

compounds (amino acids, carbohydrates, cofactors and vitamins,

energy metabolism, lipids, nucleotides, peptides and xenobiotics).

Classification Analysis
The predictive value of small metabolic compounds as

biomarkers in TB diagnosis was estimated using a supervised

machine learning algorithm [23], as implemented in the R

package ‘‘randomForest’’ (RF) [74]. The run parameters selected

for sensitivity were mtry = 50 and ntree = 1,000. The classifiers

were obtained for all three experimental groups as one data set,

and in pairwise comparisons between each of the two groups as

another data set. The findings were independently confirmed

using SPLS-DA [24]. To estimate the number of variables needed

for a robust classification, we applied an external leave-one-out

(LOO) cross-validation. In each LOO round, one sample was

removed from the data set. An RF model was constructed based

on all variables, and the variables were sorted based on the

importance from that model. Next, a series of secondary RF

models were constructed based on the top 2, 3, 4, etc. variables

from the importance list. Each of these secondary models was then

validated against the LOO sample. The results were summarized

for each number of variables tested, and plotted on Figure S1.

Clustering
Biochemical compounds were clustered using normalized

relative compound levels and averaged hierarchical clustering,

correlation-based distance and with bootstrapping implemented in

the R package pvclust [75]. Clusters obtained for 10,000

bootstraps with approximately unbiased (AU) bootstrap confi-

dence values .0.95 were considered significant.

Data Availability

List of Abbreviations
1-MT-DL, 1-methyl-DL-tryptophan

AU, approximately unbiased

BCG, bacille Calmette-Guérin

CFSE, carboxyfluorescein diacetate succinimidyl ester

CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid

CXCL-10, C-X-C motif chemokine 10

DC, dendritic cell

EGF, epidermal growth factor

FGF, fibroblast growth factor

GC–MS, gas chromatography–mass spectrometry

G-CSF, granulocyte colony-stimulating factor

GITR, glucocorticoid-induced tumor necrosis factor receptor

GM-CSF, granulocyte macrophage colony-stimulating factor

HPLC, high-performance liquid chromatography

HuPO, human acidic ribosomal protein

IDO1, indoleamine 2,3 dioxygenase 1

IFN-c, interferon-gamma

IL, interleukin

IP, interferon-inducible protein

LC–MSMS, liquid chromatography-tandem mass spectrometry

LOO, leave-one-out cross-validation

LPCs, lysophosphatidylcholines

ManLAM, mannosylated lipoarabinomannan

MCFA, medium-chain fatty acid

MCP, monocyte chemotactic protein

MDC, macrophage-derived cytokine

MGIT, Mycobacteria Growth Indicator Tube

MIP, macrophage inflammatory protein

NAM, N-acetyl-L-methionine

NMR, nuclear magnetic resonance

PDGF, platelet-derived growth factor

PPD, purified protein derivative

RF, random forests

sIL2ra, soluble alpha chain of the IL-2 receptor

SPLS-DA, sparse PLS discriminant analysis

TB, tuberculosis

TBactive, patients with active TB

TGF, transforming growth factor

TNF, tumor necrosis factor

TST, tuberculin skin test

TST–, healthy M. tuberculosis-uninfected controls

TST+, latently M. tuberculosis-infected healthy individuals

VEGF, vascular endothelial growth factor
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Supporting Information

Figure S1 Fifteen to twenty metabolites suffice to
distinguish between TB patients and latently infected
groups. Figure shows the decrease of the average classification

error rate as a function of the number of different small metabolic

compounds chosen for the classification. Error bars denote

standard error of the mean of 50 re-sampling procedures.

(TIF)

Figure S2 Heatmap showing relative levels of small
metabolic compounds in TB patients (TBactive) and
latently infected individuals (TST+). For purposes of

illustration, 10 profiles from each group were randomly assigned

to a test set, and calculations were repeated for the remaining

training set. Left, training-set levels; only 50 compounds selected

by variable importance from the RF model were chosen. Right,

test-set levels; all test set samples were correctly assigned to a study

class.

(TIF)

Figure S3 Network showing functional relationships
between the small metabolic compounds in TB patients,
healthy uninfected and latently infected individuals.
Nodes correspond to metabolites; edges correspond to statistically

significant correlation between residual small metabolite profiles

corrected for study classes. Colors correspond to differences

between the TST– and TBactive (A), TST+ and TBactive (B) or TST–

and TST+ classes (C). Color intensity indicates significance of

difference with darker colors corresponding to more significant

differences. Metabolites with adjusted p value .0.05 are not

colored. Line widths correspond to the absolute Spearman

correlation coefficients corrected for groups (see ‘‘Methods’’).

Figure S3.A is the same as Figure 3 in the Manuscript and has

been included here for completeness.

(TIF)

Table S1 Demographic characteristics of study sub-
jects.
(DOCX)

Table S2 Significant differences between serum con-
centrations of small metabolic compounds between each

two groups. A), differences between TST- and TST+; B),

differences between TST- and TBactive; C) differences between

TST+ and TBactive. p denotes the p value from Wilcoxon rank sum

test; q is the p value corrected for multiple testing using false

discovery rate correction (Benjamini 1995). Only compounds for

which the q value was smaller than 0.01 are shown.

(DOCX)

Table S3 Top 50 compounds sorted by importance from
the random forests analysis of biochemical compound
discriminatory power between TST+ and TBactive. Com-

pounds with names starting with an ‘‘X’’ could not be uniquely

identified in the analysis. The columns TST2, TST+ and TBactive

give the average relative abundance levels in the corresponding

study groups. Top twenty compounds are sufficient to sensitively

discriminate latent infection from active TB. See text for details.

(DOCX)

Table S4 Significant clusters of small metabolic com-
pounds containing at least five different members.

(DOCX)
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