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Abstract

Background: Despite the importance of the human leukocyte antigen (HLA) gene locus in research and clinical practice,
direct HLA typing is laborious and expensive. Furthermore, the analysis requires specialized software and expertise which
are unavailable in most developing country settings. Recently, in silico methods have been developed for predicting HLA
alleles using single nucleotide polymorphisms (SNPs). However, the utility of these methods in African populations has not
been systematically evaluated.

Methodology/Principal Findings: In the present study, we investigate prediction of HLA class II (HLA-DRB1 and HLA-DQB1)
alleles using SNPs in the Wolaita population, southern Ethiopia. The subjects comprised 297 Ethiopians with genome-wide
SNP data, of whom 188 had also been HLA typed and were used for training and testing the model. The 109 subjects with
SNP data alone were used for empirical prediction using the multi-allelic gene prediction method. We evaluated accuracy of
the prediction, agreement between predicted and HLA typed alleles, and discriminative ability of the prediction probability
supplied by the model. We found that the model predicted intermediate (two-digit) resolution for HLA-DRB1 and HLA-DQB1
alleles at accuracy levels of 96% and 87%, respectively. All measures of performance showed high accuracy and reliability for
prediction. The distribution of the majority of HLA alleles in the study was similar to that previously reported for the Oromo
and Amhara ethnic groups from Ethiopia.

Conclusions/Significance: We demonstrate that HLA class II alleles can be predicted from SNP genotype data with a high
level of accuracy at intermediate (two-digit) resolution in an African population. This finding offers new opportunities for
HLA studies of disease epidemiology and population genetics in developing countries.
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Introduction

The human leukocyte antigen (HLA) locus, located on

chromosome 6p21.3, is the most polymorphic and gene-dense

region of the human genome [1]. HLA genes play important roles

in the immune system and have multiple alleles that show

extensive variation across human populations. The HLA locus has

been a focus for genomic research and clinical practice for several

reasons: (i) it is associated with susceptibility to or resistance against

several infectious, autoimmune and inflammatory diseases; (ii) it is

very informative in studies of human genetic diversity; and, (iii) it is

central to donor-recipient matching in tissue and organ trans-

plantation [2]. Understanding the HLA system in African

populations has unique advantages. Africa is the most genetically

diverse geographical region in the world and consequently, it

harbours diverse and novel HLA alleles such as the class II

DQA1*0403N [3], DPA1*010602 [4], DPB1*9401, DPB1*9501

[5], DPA1*010303, and DPA1*0303 [6] alleles. HLA alleles are

found to be associated with susceptibility and resistance to

infectious diseases including HIV/AIDS, tuberculosis, and malaria

that impose huge public health burdens in Africa [7,8]. HLA

studies have also yielded important insights into the role of

pathogens in driving HLA polymorphism. For example, a study

that analyzed 61 human populations across the world showed that

populations that have a greater burden of pathogens show higher

HLA diversity and that populations farther from Africa (geo-

graphic distance measured through landmasses from Ethiopia) are

characterized by lower HLA diversity [9]. Despite such interest in

HLA studies from diverse disciplines, direct typing of HLA genes is

time consuming and expensive. Analysis of the results and

assignment of HLA gene alleles requires special software and

expertise [10,11,12,13]. Of particular concern is the fact that most

of the resources needed for direct typing of HLA alleles are

inaccessible to research institutions and clinical centers in many

developing countries, including those in Africa.

The use and acceptance of single nucleotide polymorphism

(SNP) genotype data in the HLA region to predict HLA alleles is

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e40206



increasing, especially in non-African populations. This approach is

less expensive than classical HLA typing, and in some instances the

required SNP data may already have been generated through

high-throughput genotyping done for large-scale genomic studies.

Computational and statistical algorithms that have been developed

to predict HLA alleles using SNPs include: (i) a ‘tag SNP’ method

that predicts HLA alleles using up to three tagging SNPs that are

in strong linkage disequilibrium with HLA genes [14,15], (ii) an

identity-by-decent (IBD) algorithm for predicting HLA gene alleles

using SNP haplotypes and phased HLA data [16,17], (iii) a unified

framework for inferring HLA alleles using pedigree information,

known HLA types of some individuals, and the relationship

between SNP haplotyes and HLA alleles [18], (iv) an iterative

method for HLA allele prediction using unphased SNP data and

shared IBD segments between pairs of individuals [19], and (v) a

multi-allelic gene prediction (MAGPrediction) method for predicting

highly polymorphic gene alleles using unphased SNP genotype

data [20,21].

Despite promising reports of prediction performance of the

above in silico methods, which were developed and validated using

data from European populations, most have not been systemat-

ically evaluated in datasets generated from African populations.

Only the tag SNP method has been used on an African population

dataset (the YRI - Yoruba from Nigeria - in the HapMap dataset)

to construct a high resolution HLA and SNP haplotype map.

However, the approach has limitations for HLA inference because

HLA genes are highly polymorphic and several tag SNPs need to

be typed. Furthermore, two or three tag SNPs cannot usually

provide the resolution needed to identify rare HLA alleles that

have multiple haplotype backgrounds [16]. This problem becomes

more marked in African datasets because of weaker linkage

disequilibrium among neighboring loci [22,23]. More importantly,

for several reasons, informative tag SNPs that capture some of the

HLA variation in one African population cannot be used as

proxies for predicting HLA alleles in other African populations.

Firstly, African populations have wide genetic and haplotype

diversity [24,25]. Secondly, of the several alleles of an HLA gene

enumerated across global populations, only a sub-set is found in

any given population [26]. Finally, novel alleles present in one

population group may be absent in other population groups. In

summary, the high polymorphism of HLA genes, genetic diversity

among African populations and resource limitations in these

settings present important challenges to direct HLA typing and/or

the use of the same set of tag SNPs across different African

populations.

Here, we describe the accuracy and reliability of HLA

prediction from SNP data in an African population with the goal

of evaluating this as a simple, inexpensive, and accurate method of

determining HLA types in African populations in general. To

achieve this goal, we predicted the HLA class II DRB1 and DQB1

alleles in the Wolaita population from southern Ethiopian

population using genome-wide SNPs generated from a commer-

cial genotyping array. We also describe distributions of HLA-

DRB1 and HLA-DQB1 alleles in our sample using predicted and

directly typed HLA data, and compare the allele distributions with

available published data from two other Ethiopian ethnic groups,

the Amhara and the Oromo.

Results

Prediction
Demographic characteristics of the HLA typed individuals

included in the prediction (training and testing) were presented in

Table S1. A set of 19 SNPs (within the region from 32,514,144 to

32,582,075 bp) and 10 SNPs (within the region from 32,606,390

to 32,643,859 bp) were selected by the MAGPrediction model for

predicting HLA-DRB1 and HLA-DQB1 alleles, respectively. Of

these SNPs, three were within the HLA-DQB1 gene (Table S2).

Evaluation of Accuracy of Prediction
At intermediate (two-digit) resolution, the prediction probabil-

ities calculated by the model were high: 87.8% and 91.6% for

HLA-DRB1, and 87.4% and 85.4% for HLA-DQB1 in the test

and prediction sets, respectively. However, at high (four-digit)

resolution, the prediction probabilities were ,32% and the model

did not output any alleles. Below we describe only intermediate

resolution prediction results. The prediction accuracy of the model

was also high: 95.5% for HLA-DRB1 and 87.0% for HLA-DQB1

(Table 1). The flanking boundaries determined by the objective

function showed that SNPs in a region spanning 635–40 kb of

HLA-DRB1 and HLA-DQB1 genes were optimal for predicting the

respective HLA alleles (Fig. S1).

The accuracy of the prediction by the intermediate resolution

model was high. The sensitivity, specificity, positive predictive

value (PPV), and negative predictive value (NPV) of the model was

,100% for the majority of HLA-DRB1 alleles. The model also

has high diagnostic validity for HLA-DQB1: sensitivity (77.8–

100%), specificity (95.3–99.4%), PPV (77.4–92.7%), and NPV

(91.7–100%) (Table 2). The predicted and directly typed HLA

alleles had high level of agreement: k= 0.95 (95% CI = 0.91–0.98)

for HLA-DRB1 and k= 0.83 (95% CI = 0.77–0.90) for HLA-

DQB1 (Table 3). The receiver operating characteristic (ROC)

curve showed that the model had ‘‘excellent’’ [27] discriminative

ability for HLA-DRB1 (area under the curve [AUC] = 0.86,

SE = 0.07, 95% CI = 0.78–0.99). For HLA-DQB1, the model had

‘‘good’’ [27] discriminative ability (AUC = 0.73, SE = 0.03, 95%

CI = 0.59–0.87) (Fig. 1). The proportion of individuals for which

both of the predicted HLA alleles (the HLA genotype) was correct

was 91% and 78% and those for which at least one of the two

alleles was correct was 100% and 98.9% for HLA-DRB1 and

HLA-DQB1, respectively. Next, a 10-fold cross-validation done in

WEKA [28] using two independent algorithms showed the average

accuracy of prediction of HLA-DQB1 and HLA-DRB1 to be 0.81

and 0.94 and the AUC to be 0.88 and 0.93, respectively (Table
S3).

HLA-DRB1 and DQB1 Allele Distributions in Three
Ethiopian Ethnic Groups

A total of 16 alleles (11 DRB1 and 5 DQB1) were identified in

the Wolaita ethnic group. Eleven of the 16 alleles had frequencies

greater than 5%. The allele frequencies were in Hardy-Weinberg

equilibrium. The three most frequently detected HLA-DRB1

alleles in the Wolaita were DRB1*15 (23.1%), DRB1*13 (19.0%),

and DRB1*01 (18.8%). The three most common HLA-DQB1

alleles were DQB1*06 (35.6%), DQB1*05 (21.9%), and DQB1*02

(20.6%). The distribution of HLA alleles in the three populations is

shown in Table 4. When considering the three Ethiopian ethnic

groups (Wolaita, Oromo and Amhara), there were 15 (10 DRB1

and 5 DQB1) common HLA allelic sub-types. In addition, one

Oromo individual had the DRB1*12 allele and one Wolaita

individual had the DQB1*01 allele. Of the 15 HLA alleles

common to the three groups, the differences in frequency of nine

were not statistically significant. However, significant frequency

differences were observed for the following alleles: the frequencies

of DRB1*01 and DQB1*05 were higher in the Wolaita (18.8%

and 21.9%) and Amhara (13.3% and 16.8%) than the Oromo

ethnic group (5.4% and 8.4%); the frequency of DRB1*15 was

higher and that of DRB1*07 and DQB1*02 was lower in the

HLA Allele Prediction in an African Population
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Wolaita (23.1%, 14%, and 20.6%) than the Oromo (12.1%,

21.7%, and 33.7%); and Amhara (10.7%, 20.4%, and 30.1%).

DRB1*04 was significantly less frequent in the Wolaita (6.6%)

than the Oromo (16.3%). The heterozygosity levels of DRB1 and

DQB1 in Wolaita were 0.86 and 0.76, respectively, and were

similar to those in the Amhara (0.86, and 0.75) and Oromo (0.84,

and 0.73). In Wolaita, the inbreeding coefficient of an individual

relative to the population (FIS = 20.003) was not statistically

significant (P = 0.65).

Discussion

This study demonstrated high accuracy of two-digit HLA

prediction using a small set of SNPs in an Ethiopian population.

This suggests that HLA prediction may provide a simpler and less

expensive alternative to direct typing of HLA genes in an African

population. We were able to predict intermediate (two-digit)

resolution HLA-DRB1 and HLA-DQB1 alleles at accuracies of

95.5% and 87.0% using a set of 19 SNPs and 10 SNPs,

respectively. Of the 29 SNPs selected in our prediction, six (i.e.,

rs2516049, rs477515, rs660895, rs532098, rs1063355, rs660895)

belonged to the set of SNPs identified during construction or

validation of different in silico HLA prediction methods [14,16,20]

(Table S4). Compared to the prediction accuracy of the

MAGPrediction model in the European population dataset, its

accuracy in our dataset was higher for HLA-DRB1 and lower for

HLA-DQB1 at confidence threshold (CT) = 0 [20]. The sensitiv-

ity, specificity, PPV and NPV of our prediction was on average

98.2%, 99.4%, 96.3%, and 99.9% for 10 HLA-DRB1 alleles and

88.5%, 97.0%, 86.2% and 97.0% for six HLA-DQB1 alleles

common in our studied population. The levels of agreement (i.e.,

Table 1. Prediction probability and accuracy of predicting HLA-DRB1 and -DQB1 alleles.

Intermediate (2-digit) resolution High (4-digit) resolution

Prediction probability,
mean (S.D.) accuracy

Prediction probability,
mean (S.D.) Accuracy

HLA-DRB1

Test set 0.88 (0.17) 0.96 0.30 (0.17) NAa

Prediction set 0.92 (0.15) – 0.32 (0.21) NA

HLA-DQB1

Test set 0.87 (0.16 0.87 0.31 (0.11) NA

Prediction set 0.85 (0.16) – 0.31 (0.22) NA

aThe symbol NA means not available because prediction was not performed.
doi:10.1371/journal.pone.0040206.t001

Figure 1. Receiver operating characteristic curves of correct HLA allele predictions at different prediction probability cut-off points.
(A) HLA-DRB1, AUC = 0.86 (95% CI = 0.78–0.99), P = 0.001. (B) HLA-DQB1, AUC = 0.73 (95% CI = 0.59–0.87), P = 0.002.
doi:10.1371/journal.pone.0040206.g001
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k= 95% and k= 83% for HLA-DRB1 and HLA-DQB1, respec-

tively) between the predicted and experimentally determined HLA

alleles were ‘‘almost perfect’’ according to the classification of

strength of agreement by Landis and Koch [27]. The AUC of the

ROC curve showed that the model had reliable discriminatory

ability for both accurate and inaccurate predictions. Better

accuracy and specificity could be gained by increasing the CT

for the prediction probability. For example, as can be seen in

Fig. 1, increasing CT to 0.75 in case of HLA-DRB1 and to 0.85

in case of HLA-DQB1 improves both accuracy and specificity

with minimal loss in sensitivity.

While performance of the prediction at intermediate resolution

was robust, there was a sharp fall in accuracy for high resolution

HLA prediction. Therefore, this model is limited for clinical and/

or research applications that require four-digit resolution. As has

been suggested, imputation using population specific dense SNP

data may improve the prediction accuracy [21]. However, we

were unable to conduct imputation in the present study because of

the absence of appropriate reference sequence variation data. The

extensive HLA genetic diversity in African populations (for an

example please see Fig. S2) means there is a need to study

whether the SNPs selected in our samples can be transferred, and

the HLA prediction method applies to other African populations.

The findings showed that the distribution of the majority of

HLA alleles, and the level of heterozygosity at the HLA-DRB1

and HLA-DQB1 loci was similar among the three Ethiopian

ethnic groups. The present study and a previous one [29] also

showed that the frequencies of HLA-DQB1*02 (a risk allele for

podoconiosis) and HLA-DRB1*13 (a protective allele against

podoconiosis) in the Ethiopian population were among the highest

in Sub-Saharan Africa. HLA-DQB1*02 had the third highest

frequency in the Ethiopian ethnic groups following Burkina Faso’s

Fulani (DQB1*0201, 36.0%) and Central African Republic’s Aka

Pygmy group (DQB1*0201, 36.9%). The Fulani from Burkina

Faso and The Gambia share the distribution of other specific HLA

alleles closely with the Amhara and Oromo of Ethiopia [30].

Likewise, HLA-DRB1*1302, a rare allele in the majority of the

world’s populations, has the second and third highest frequencies

in the Ethiopian Amhara (17.3%) and Oromo (16.9%) following

Saudi Arabia (19.6%). The Ethiopian ethnic groups had the

Table 2. Sensitivity, specificity, positive predictive value and negative predictive value of the prediction in the test set at
intermediate (two-digit) HLA allele resolution.

Allele Observed (count) Predicted (count)
Correctly
Predicted (count) Sensitivity (%) Specificity (%) PPVa (%) NPVa (%)

HLA-DRB1

07 41 41 41 100 100 100 100

15 36 36 36 100 100 100 100

13 22 22 22 100 100 100 100

03 19 27 19 100 94.9 70.4 100

04 17 17 17 100 100 100 100

08 14 12 12 85.7 100 100 98.8

01 11 11 11 100 100 100 100

14 7 7 7 100 100 100 100

11 6 0 0 0 100 0 96.6

10 3 3 3 100 100 100 100

Overall mean (excluding HLA-DRB1*10, HLA-DRB1*11, and HLA-DRB1*14 that had
frequency ,0.05 in the training set)

98.2 99.4 96.3 99.9

HLA-DQB1

02 61 55 51 83.6 96.5 92.7 91.7

06 44 48 42 95.5 95.5 87.5 98.4

03 28 31 24 85.7 95.3 77.4 97.2

05 18 17 14 77.8 98.1 82.4 97.5

04 10 11 10 100 99.4 90.9 100

13 1 0 0 0 100 0 99.4

Overall mean (excluding HLA-DQB1*13 that had frequency ,0.05 in the training set) 88.5 97.0 86.2 97.0

The symbols PPV and NPV mean positive predictive value and negative predictive value, respectively.
doi:10.1371/journal.pone.0040206.t002

Table 3. Agreement between predicted and directly typed HLA alleles.

Total allele counts HLA alleles in agreement Kappa, k (95% CI) P value

HLA-DRB1 176 168 0.95 (0.91,0.98) ,0.0001

HLA-DQB1 162 141 0.83 (0.77,0.90) ,0.0001

doi:10.1371/journal.pone.0040206.t003
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highest observed frequencies of HLA-DRB1*13 compared with

other populations in Sub-Saharan Africa (http://www.

allelefrequencies.net/). Interestingly, HLA-DQB1*02 is implicated

in several autoimmune and infectious diseases [2]. The Fulani

mount a stronger humoral immune response to malaria evidenced

by higher levels of antibodies against several P.falciparum antigens,

and are less susceptible to the disease than other ethnic groups in

neighboring areas [31,32,33]. This suggests that the high

frequency of HLA-DQB1*02 observed among the Fulani may

be related to the enhanced immune reactivity reported in this

ethnic group [30]. Similarly the DRB1*13-DQB1*05 haplotype

was associated with protection against severe malaria in the

Gambian population and HLA-DRB1*13 was reported to be

associated with protection against persistent hepatitis B infection

[34]. It is estimated that malaria is endemic in three-quarters of

the landmass of Ethiopia predisposing over two-thirds of the

population to the disease [35]. The Amhara, Oromo and Wolaita

ethnic groups form 64% of the total population of Ethiopia [36],

and podoconiosis is common in regions predominated by these

ethnic groups [37,38,39]. Together, these data raise the hypothesis

that pathogen-driven selective forces, particularly malaria (be-

lieved to have exerted a selective pressure on the immune system

[40]), induced the high frequency of the HLA-DQB1*02 and

HLA-DRB1*13 alleles in the Ethiopian population.

In conclusion, we have demonstrated that HLA class II alleles

can be predicted with high accuracy at intermediate (two-digit)

resolution in an African population using SNP genotype data.

These findings strongly suggest that the prediction model for HLA

alleles described here is promising as an epidemiological tool for

studying HLA associated diseases, understanding the role of

pathogens in human HLA polymorphism, and population

screening programs involving HLA testing in African populations.

Materials and Methods

Ethics Statement
Ethics approval was obtained from ethics review committees of

the Medical Faculty of Addis Ababa University, AHRI/ALERT

and the Ethiopian Ministry of Science and Technology. Written

informed consent was obtained from all participants.

Datasets
Data were obtained from 297 unrelated individuals enrolled

into a genetic epidemiology study on podoconiosis (endemic non-

filarial elephantiasis [41,42]) from Wolaita zone, southern

Ethiopia. SNP genotyping was done by deCODE Genetics using

the Illumina Human610-Quad Bead Chip that contains more

than 620,000 SNPs. After quality filters that removed SNPs with

call rates ,95%, we extracted 3,537 SNPs in the extended HLA

region (chromosome 6:28,799,220–34,204,868) [43] to generate a

set of informative SNPs for HLA allele prediction. HLA-DRB1 and

HLA-DQB1 typing data generated using the high definition

LuminexH xMAPH technology, which analyses PCR-sequence

specific oligonucleotide (PCR-SSO) amplified DNA samples, was

also available in 188 subjects and was used to validate the HLA

allele predictions [11]. Finally, we compared HLA allele frequency

Table 4. Distribution of HLA-DRB1 and HLA-DQB1 alleles in the Wolaita, and comparison of their frequencies with the Ethiopian
Oromo and Amhara ethnic groups.

Allele count (%)a P value based on Chi-square test

Wolaita
(predicted and typed)
n = 197

Oromob

n = 83
Amharab

n = 98

Wolaita
vs.
Oromo

Wolaita vs.
Amhara

Amhara
vs.
Oromo

HLA-DRB1

01 74 (18.8) 9 (5.4) 26 (13.3) ,0.0001 0.09 0.01

03 29 (7.4) 18 (10.8) 16 (8.2) 0.18 0.73 0.38

04 26 (6.6) 27 (16.3) 22 (11.2) 0.0004 0.05 0.16

07 55 (14.0) 36 (21.7) 40 (20.4) 0.02 0.05 0.77

08 24 (6.1) 9 (5.4) 16 (8.2) 0.76 0.35 0.31

10 6 (1.5) 4 (2.4) 6 (3.1) 0.47 0.21 0.71

11 6 (1.5) 4 (2.4) 5 (2.6) 0.47 0.38 0.93

13 75 (19.0) 37 (22.3) 42 (21.4) 0.38 0.49 0.84

14 8 (2.0) 1 (0.6) 2 (1.0) 0.22 0.37 0.66

15 91 (23.1) 20 (12.1) 21 (10.7) 0.003 0.0003 0.69

12 0 1 (0.6) 0 NAc NA NA

HLA-DQB1

02 77 (20.6) 56 (33.7) 59 (30.1) 0.001 0.01 0.46

03 69 (18.5) 35 (21.1) 40 (20.4) 0.48 0.57 0.88

04 12 (3.2) 8 (4.8) 5 (2.6) 0.36 0.66 0.25

05 82 (21.9) 14 (8.4) 33 (16.8) 0.0002 0.15 0.02

06 133 (35.6) 53 (31.9) 59 (30.1) 0.41 0.19 0.71

01 1 (0.3) 0 0 NA NA NA

aThe denominator for each proportion is total number of chromosomes = 2 n.
bSource: HLA Nomenclature, http://www.allelefrequencies.net/.
cThe symbol NA means P values were not calculated because HLA-DRB1*12 and HLA-DQB1*01 were absent in Oromo and Amhara.
doi:10.1371/journal.pone.0040206.t004

HLA Allele Prediction in an African Population

PLoS ONE | www.plosone.org 5 June 2012 | Volume 7 | Issue 6 | e40206



distributions between the population group in our dataset and

unrelated and apparently healthy children of Oromo (n = 83) and

Amhara (n = 98) ethnicity from central Ethiopia (http://www.

allelefrequencies.net/). The mean age of the Oromo and Amhara

subjects was 8.2 years, and ranges between 4 and 12 years [29,44].

The Multi-Allelic Gene Prediction Model
For prediction, we selected the Multi-allelic Gene Prediction

model (MAGPrediction - http://qge.fhcrc.org/MAGprediction/)

[20,21] because it includes important factors that influence

accurate HLA allele prediction including ethnicity, genotyping

platforms and use of both experimentally genotyped and imputed

SNPs. A more detailed description of the model can be found in Li

et al, 2011 [20]. In brief, MAGPrediction is a general method for

predicting highly polymorphic gene alleles using unphased SNP

genotype data. Using a training dataset, the model selects

informative non-redundant SNPs by employing a combined

forward selection and backward elimination scheme, which starts

with SNPs within an HLA gene and gradually extends to flanking

regions. This procedure selects a boundary where the objective

function achieves a minimum value while maintaining maximum

accuracy. The SNP selection process is evaluated by an objective

function (the negative log likelihood of predictive probabilities).

The model calculates a range of prediction probabilities

constructed based on Bayesian probability theorem, each

probability corresponding to one possible pair of alleles for each

individual at CTs supplied by the user. The original model was

trained and validated using European population data from the

Fred Hutchinson Cancer Research Center (FHCRC). The

predictive model achieved intermediate and high resolution

accuracies ranging, respectively, from 97–100% and 95–97% for

HLA-A, from 96–98% and 94–96% for HLA-B, 98% and 97–

98% for HLA-C, from 93–97% and 79–96% for HLA-DRB1, and

from 97–98% and 83–95% for HLA-DQB1 [20,21].

Data Analysis
Based on the MAGPrediction program, we used predicted

alleles obtained at the highest prediction probability, irrespective

of its value, and we assumed a CT of 0, meaning all samples were

predicted. Our training set included the SNP genotype and HLA

alleles of 94 randomly selected individuals, of whom 87 and 77 had

high resolution (i.e., amino acid level variation or four-digit

resolution) HLA-DRB1 and HLA-DQB1 data, respectively. Using

the training set the model selected a set of SNPs as informative

markers for HLA-DRB1 and HLA-DQB1 allele prediction. Using

these SNPs, we predicted HLA-DRB1 and HLA-DQB1 alleles in

a test set comprising 94 individuals of whom 92 had both SNP

genotypes and high-resolution HLA-DRB1 and HLA-DQB1

alleles. The intermediate-resolution (i.e., allelic group designation

or two-digit resolution) HLA allele nomenclature was obtained by

merging high-resolution HLA alleles with identical allele groups at

the first two digits (http://hla.alleles.org/nomenclature/) [45].

Performance of the prediction model was evaluated in the test

set by comparing predicted HLA alleles with experimentally

determined alleles using the LuminexH xMAPH technology using

multiple criteria as follows: (i) accuracy (i.e., the overall overlap

between the predicted and observed HLA-DRB1 and HLA-

DQB1 alleles), sensitivity (i.e., proportion of observed HLA alleles

that were correctly predicted), specificity (i.e., for a specific allele,

proportion of observed alleles that were different from the allele

and different from that specific allele based on prediction), PPV

(proportion of predicted specific HLA alleles that were actually

observed), and NPV (proportion of predicted alleles negative for a

specific HLA allele that were actually observed to be negative for

the specific allele); (ii) a reliability analysis that tested the level of

agreement between allele assignments by the model and the

reference using Cohen’s kappa statistic; and (iii) evaluation of the

ability of the model to be discriminative between correctly and

incorrectly predicted alleles using an ROC curve. ROC curves

plot the relationship between sensitivity (true positive fraction), on

the y-axis, and 1-specificity (false positive fraction) on the x-axis,

for different cut-off levels of test positivity, which in this case is a

likelihood assigned by the model when predicting each individual’s

HLA alleles to indicate the model’s estimate of accuracy. The

AUC of the ROC curve was determined to provide the probability

the model will assign higher prediction likelihood to HLA alleles

that were correctly predicted than to those that were not. The

AUC and its standard error (SE) were estimated using a

nonparametric approach [46]. Further validation of the prediction

was done using a 10-fold cross validation method (i.e., a model

that splits the data into 10 equal sized pieces, and iteratively trains

on 9 pieces and tests on the remainder and outputs the average)

using two independent prediction algorithms (Random forest and

J48) as implemented in WEKA, a machine learning algorithm for

data mining tasks.

After evaluating performance of the prediction model, we

applied the set of SNPs selected by the model to predict HLA

alleles in an independent prediction set comprising 109 individuals

with SNP data and no HLA allele data. Next, we compared HLA-

DRB1 and HLA-DQB1 allele frequencies in a combined dataset

(n = 197) comprising Wolaita ethnic individuals in the prediction

set (n = 109) and previously HLA typed controls free of

podoconiosis in the training set (n = 88) with those previously

reported in apparently healthy children of Oromo (n = 83) and

Amhara (n = 98) ethnicity from semi-urban parts of Asela town,

Arsi, central Ethiopia (http://www.allelefrequencies.net/) [29,44].

Individuals with podoconiosis (an HLA associated disease [42])

were excluded to minimize bias in allele frequency. Data were

analyzed using SPSS version 19. Statistical significance was tested

using the chi-square test and level of significance was set at 0.05.

Expected heterozygosity was calculated using FSTAT version

2.9.3.2 [47].
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