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Abstract

Background: Plants have proved to be an important source of anti-cancer drugs. Here we have investigated the cytotoxic
action of an aqueous extract of Fagonia cretica, used widely as a herbal tea-based treatment for breast cancer.

Methodology/Principal Findings: Using flow cytometric analysis of cells labeled with cyclin A, annexin V and propidium
iodide, we describe a time and dose-dependent arrest of the cell cycle in G0/G1 phase of the cell cycle and apoptosis
following extract treatment in MCF-7 (WT-p53) and MDA-MB-231 (mutant-p53) human breast cancer cell lines with a
markedly reduced effect on primary human mammary epithelial cells. Analysis of p53 protein expression and of its
downstream transcription targets, p21 and BAX, revealed a p53 associated growth arrest within 5 hours of extract treatment
and apoptosis within 24 hours. DNA double strand breaks measured as c-H2AX were detected early in both MCF-7 and
MDA-MB-231 cells. However, loss of cell viability was only partly due to a p53-driven response; as MDA-MB-231 and p53-
knockdown MCF-7 cells both underwent cell cycle arrest and death following extract treatment. p53-independent growth
arrest and cytotoxicity following DNA damage has been previously ascribed to FOXO3a expression. Here, in MCF-7 and
MDA-MB-231 cells, FOXO3a expression was increased significantly within 3 hours of extract treatment and FOXO3 siRNA
reduced the extract-induced loss of cell viability in both cell lines.

Conclusions/Significance: Our results demonstrate for the first time that an aqueous extract of Fagonia cretica can induce
cell cycle arrest and apoptosis via p53-dependent and independent mechanisms, with activation of the DNA damage
response. We also show that FOXO3a is required for activity in the absence of p53. Our findings indicate that Fagonia cretica
aqueous extract contains potential anti-cancer agents acting either singly or in combination against breast cancer cell
proliferation via DNA damage-induced FOXO3a and p53 expression.
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Introduction

Following genotoxic stress, an intact DNA damage response

(DDR) is necessary to eliminate lethal and tumorigenic mutations.

The DDR is a network of molecular signalling events that control

and coordinate DNA repair, cell cycle arrest and apoptosis [1]. An

impairment in the DNA damage response represents a double-

edged sword, where on one side loss of repair mechanisms can

drive tumorigenesis and on the other, can affect sensitivity to

genotoxic chemotherapy [2,3].

The tumour suppressor protein, p53, plays a pivotal role in

regulating the cellular response to stress and damage signals.

Several of the cell signalling pathways involved in the DDR and

cell differentiation converge with p53 [4] and loss of p53

functionality is common in more than 50% of cancers [5]. In

response to stress signals, post-translational modifications of p53

such as phosphorylation, drive its nuclear translocation and

subsequent target gene transcription [6,7]. Normally, upon DNA

damage, p53 is rapidly stabilised by the DNA damage sensor,

ATM, via phosphorylation of serine-15 within the p53 N-terminus

activation domain [8]. Consequently, dissociation of the MDM2-

p53 repressor complex, prevents monoubiquitination of p53 and

its degradation [9,10]. This in turn increases p53 half-life and

activates its transcriptional program [11].

Important p53 transcriptional targets include cell cycle control

genes such as p21 (WAF1/CIP1), 14-3-3s and cyclin G, and pro-

apoptotic genes such as BAX [12]. The cyclin dependent kinase

inhibitor, p21, is a direct regulator of the cell cycle, inducing

growth arrest in G1-phase of the cell cycle by binding to and

inhibiting the activity of cyclinD-CDK2/4 complexes [13].

Increased transcription and translation of p21 prevents cyclinD-

CDK2/4 mediated phosphorylation of retinoblastoma protein

(pRb), thus, inhibiting E2F transcriptional activity and cell cycle

progression to S-phase [14].

However, p53-independent growth arrest and cell death has

also been observed following ionizing radiation and DNA damage

(the cell death machinery governed by p53 [15]. Recently, it has

been shown that in response to DNA damage, the transcription
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factor FOXO3a is vital to initiating growth arrest [16]. Moreover,

induction of DNA damage by ionizing radiation, activates

FOXO3a and increases its nuclear translocation. The FOXO3a-

dependent activation of Bim and Fas ligand expression is

associated with induction of apoptosis, and is observed indepen-

dently of p53, highlighting a potential FOXO3a-mediated

response to DNA damage [17]. As well as this, FOXO3a is a

regulator of metabolic homeostasis, via its interaction with Akt and

AMPk signaling pathways [18]. Pharmacological modulation of

these pathways has been shown to induce cell death in cancer cells

via FOXO3a-dependent mechanisms [19,20].

Targeting the cell cycle to induce arrest pharmacologically is

known to be effective in restricting tumour growth in vitro and in

vivo [21,22], particularly in transformed cells that have an

aberrant response to genotoxic and cellular damage [23]. We

have investigated the potential for Fagonia cretica to inhibit the

growth of breast cancer cells via a DNA damage driven response.

Fagonia cretica is a herbaceous plant found in arid, desert regions of

Pakistan, India, Africa and parts of Europe. It is a common plant

used in local medicine as a herbal tea to remedy breast cancer.

However, mechanism(s) of action for Fagonia cretica extracts on

breast cancer cells have not been investigated. Herein, we show

that an aqueous extract of Fagonia cretica induces growth arrest and

apoptosis in human breast cancer cells by inducing DNA damage

and activation of p53 and FOXO3a.

Results

Extract treatment induces cell cycle arrest and apoptosis
in MCF-7 cells

In order to determine whether an aqueous extract of Fagonia

cretica had any cytotoxicity towards normal and breast cancer cells

in vitro, we tested its effects on MCF-7 and MDA-MB-231 cell

viability and cell cycle status, alongside HMEpC. Extract

treatment in the concentration range 0-2mg/ml over 72 hours

induced a significant time and dose dependent reduction in MCF-

7 cell viability (Figure 1A) with an approximate 75% reduction in

cell viability after 72 hours treatment with 2mg/ml aqueous

extract. Similar treatment of MDA-MB-231 cells also induced a

significant time and dose dependent decrease in cell viability

(Figure 1B), with an approximate 67% reduction in cell viability

after 72 hours with 2mg/ml extract. The cytotoxic/static effect of

extract treatment was more pronounced in MCF-7 cells

[IC25 = 0.43mg/ml] than MDA-MB-231 cells [IC25 = 1.01mg/

ml] at 24h, although the concentration of active(s) within the

extract is unknown. In parallel, it was shown that an IC25 could

not be reached and only extract treatment of 2mg/ml had any

significant effect on HMEpC viability after 72 hours, with an

approximate 20% reduction in cell viability (Figure 1C). This

suggests greater activity of extract towards human breast cancer

cell lines.

As hyper-proliferation is a characteristic common to tumour

cells, which as a result are more susceptible to cell cycle

modulation, we assessed the effects of extract treatment on

MCF-7 and MDA-MB-231 cell cycle using flow cytometry. We

found that extract treatment could induce a significant increase in

cells expressing low levels of cyclin A associated with G1-phase of

the cell cycle (Figure 2A) with a parallel reduction in G2-phase

cells expressing higher levels of cyclin A (Figure 2B and data not

shown) after 5 hours treatment in MCF-7 cells. This suggests a

potential blockade of cell cycle progression at the G1/S

checkpoint. Extract-treated MDA-MB-231 cells also exhibited a

G1 arrest (Figure 2C) and a parallel reduction in G2-phase cells

(Figure 2D) but induction of G1 arrest was delayed until after

24 hours treatment. Cell cycle checkpoints represent an intersec-

tion of cell survival and cell death where conditions for successful

interphase and mitosis have to be favourable for complete cell

division or the cell commits to death. In accordance with this,

analysis of apoptosis by flow cytometry, was used to determine the

effects of extract treatment on apoptotic induction in MCF-7 cells.

The results revealed a significant increase of annexin V binding in

Figure 1. Fagonia cretica extract treatment reduces breast
cancer cell viability. (A) MCF-7, (B) MDA-MB-231 and (C) HMEpC cells
were treated with up to 2mg/ml aqueous extract for up to 72 hours
prior to analysis of cell viability by MTT assay. Data denoted * (p,0.05)
and *** (p,0.001) are significant at all time points compared to
untreated control analysed by one-way ANOVA with Dunnett’s multiple
comparison post test. Data denoted # (p,0.05) is significant at
72 hours only compared to untreated control analysed by one-way
ANOVA with Dunnett’s multiple comparison post test. All data is
representative of at least three independent experiments performed in
triplicate.
doi:10.1371/journal.pone.0040152.g001
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PI negative cells, representative of apoptosis, after 24 hours

treatment which increased through to 72 hours (Figure 2E).
Cell cycle arrest is associated with activation of the DNA
damage response

Cell cycle arrest is initiated via activation of the DNA damage

response following genotoxic stress. We used the comet assay to

detect the presence and level of DNA strand breaks in extract-

treated MCF-7 cells. Our results indicate that extract treatment

Figure 2. Fagonia cretica extract induced cell cycle arrest and apoptosis in human breast cancer cells. MCF-7 and MDA-MB-231 cells
were treated with 2mg/ml extract for up to 24 hours prior to cell cycle analysis using cyclin A/propidium iodide staining. (A) G0/G1 MCF-7, (B) G2
MCF-7, (C) G0/G1 MDA-MB-231, (D) G2 MDA-MB-231. (E) MCF-7 cells were treated with 2mg/ml extract for up to 72 hours prior to detection of
apoptosis as annexin V positive/propidium iodide negative stained cells (Q4). Data denoted * (p,0.05), ** (p,0.01) and *** (p,0.001) are significant
compared to controls (time = 0) analysed by one-way ANOVA with Dunnett’s multiple comparison post test (n = 3 independent experiments). Blots
are representative of at least three independent experiments.
doi:10.1371/journal.pone.0040152.g002
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induces a dose dependent increase in DNA damage, measured as

% DNA present in a comet tail after 3 hours (Figures 3A and 3B),

that is sustained through at least 24 hours (Figures 3A and 3C).

Post-treatment incubation with FPG, a protein that excises 8-oxo-

dG, did not alter the level of DNA damage seen suggesting that

DNA damage is non-oxidative (Figure 3B and 3C). Furthermore

cell survival in the presence of extract was not affected by

pretreatment with the antioxidant N-acetyl-cysteine (data not

shown). Treatment of MCF-7 and MDA-MB-231 cells for up to

24 hours with 2mg/ml extract induced double strand breaks to

DNA as shown by increased levels of c-H2AX over time

(Figure 3D). Induction of the DDR involves sensors such as

ATM relaying a signal to transducers such as p53 to exert cell

cycle arrest via their transcriptional targets. Immunoblotting of

MCF-7 cell lysates after treatment with 2mg/ml extract for up to

24 hours revealed a significant increase in p53 protein expression

as well as increased expression of its transcriptional targets, p21

(Figure 3E) and BAX (Figure 3F), suggesting that extract treatment

is modulating p53-directed cell cycle arrest and apoptosis. In order

to determine if activation of p53 is linked to the presence of DNA

damage we used caffeine, a known inhibitor of ATM/ATR [24],

in combination with extract and assessed p53 and p21 protein

expression. Our results show that inhibition of the DNA damage

sensors ATM/ATR with caffeine prevents the increased expres-

sion of p53 and p21 caused by extract treatment (Figure 4A).

Furthermore, caffeine attenuated some but not all of the extract-

induced cytotoxicity (Figure 4B). Taken together, these results

suggest that extract treatment induces double strand breaks, which

stabilises p53 in an ATM/ATR dependent manner, thus

increasing p53 dependent transcription of p21 and inducing cell

cycle arrest.

Activation of p53 is not essential for loss of cell viability
We have shown that extract treatment of MCF-7 cells induces

DNA damage leading to activation of p53, cell cycle arrest and

apoptosis. The tumour suppressor p53 is mutant in over 50% of

cancers and its loss of function has been shown to be a key event in

neoplasia. We have already shown that the mutant-p53 breast

cancer cell line MDA-MB-231 is susceptible to extract treatment

and that inhibition of extract-induced p53 expression in MCF-7

cells associates with improved cell survival in response to extract

but does not abrogate extract effect completely. In order to verify

the role of p53, we successfully transfected MCF-7 cells (wild-type

p53) with TP53 siRNA and treated them with extract for 24 hours.

Our results show that siRNA knockdown could significantly

reduce an extract-induced increase in p53 expression while

reducing loss of cell viability (Figures 4C and 4D). However, this

did not fully alleviate the effect of extract treatment, providing

further evidence that factors other than p53 are contributing to the

loss of cell viability seen in MCF-7 cells. Taken together, this data

suggests that while p53 activation is occurring in response to DNA

damage, the overall effect of cell cycle arrest and cell death appear

to remain intact, albeit reduced. This suggests that activation of

p53 is important but not essential for cytotoxic activity of extract

treatment.

Extract-induced cytotoxicity is dependent on FOXO3a
expression

The FOX class ‘O’ (FOXO) transcription factors are involved

in the cellular stress response and regulate cell cycle progression

and apoptosis. The FOXO member FOXO3a has been shown to

be vital in the initiation of cell cycle arrest, as well as being

involved in DNA damage mediated apoptosis, independently of

p53. It is also known that FOXO3a is an important tumour

suppressor and is under-expressed in many breast cancers.

Therefore, we hypothesised that extract treatment may increase

FOXO3a expression in MCF-7 and MDA-MB-231 cells resulting

in p53-independent cytotoxicity. Our results show that FOXO3a

expression in both MCF-7 and MDA-MB-231 cells is increased

after 3 hours treatment with 2mg/ml extract (Figure 5A). In both

cell lines this increase peaks at 5 hours and tapers off towards

24 hours treatment. To determine whether or not an extract-

induced increase in FOXO3a was required for cytotoxicity, MCF-

7 and MDA-MB-231 cells were successfully transfected with

FOXO3 siRNA, prior to extract treatment. Knockdown of

FOXO3a expression (Figure 5B and Figure S2) in MCF-7 cells

significantly reduced extract-induced loss of cell viability compared

to extract treatment alone at concentrations above 0.5mg/ml

(Figure 5C). Extract-induced loss of cell viability was still

significant after FOXO3a siRNA transfection probably due to

the p53-mediated effects described previously. In comparison,

knockdown of FOXO3a expression (Figure 5B and Figure S2) in

MDA-MB-231 cells completely abrogated loss of cell viability, in

response to extract treatment (Figure 5D).

Discussion

In this study we report mechanisms of Fagonia cretica aqueous

extract-induced cytotoxicity in breast cancer cells. Local medical

practitioners use Fagonia cretica for treating a wide variety of

ailments, including cancer [25]. This substance is well tolerated

and does not exhibit adverse effects like vomiting, diarrhea or

alopecia, which are common side effects of standard cytotoxic

therapy. To the authors’ best knowledge, this study is the first time

that cytotoxic activity towards human breast cancer cell lines has

been described. Herein, we have shown that an aqueous extract of

Fagonia cretica is able to induce cell cycle arrest and apoptosis in

wild type p53 MCF-7 and mutant p53 MDA-MB-231 cells, while

only exerting a limited effect on primary HMEpC at high

concentrations and extended treatment time. We have also

demonstrated that cell cycle arrest may be associated with

induction of DNA damage and in MCF-7 cells, via activation of

the ATM/p53-mediated DNA damage response. Interestingly, the

requirement of p53 activation is not essential for cytotoxicity, as

we have shown with siRNA p53 knockdown in extract-treated

MCF-7 cells, and the significant treatment effects on mutant-p53

MDA-MB-231 cells. In contrast, extract-induced cytotoxicity is

shown to be dependent on induction of FOXO3a expression, in

both cell types.

Induction of cell cycle arrest occurs in response to various

stresses including DNA damage [26]. Stabilisation and activation

of p53 can occur as a result of serine-15 phosphorylation by

ATM/ATR in the presence of DNA damage [27]. This in turn

allows for p53 nuclear translocation and activation of transcrip-

tional targets such as p21 and BAX to regulate cell cycle control

and apoptosis [28]. According to our results, extract treatment of

MCF-7 cells induced arrest in G1-phase of the cell cycle and

triggered apoptosis, which may be controlled by p53-mediated

transcription of the CDK-inhibitor p21 and pro-apoptotic BAX.

This result is consistent with the literature on tamoxifen which

describes G1-arrest induced by DNA damage in cancer cells [29].

Blockade of extract-induced p53 expression using a phamacolo-

gical inhibitor of ATM/ATR, caffeine, attenuated loss of cell

viability in MCF-7 cells. This suggests activation of the DNA

damage response is driving p53-mediated effects in extract-treated

MCF-7 cells. Indeed, it was further shown that extract treatment

may induce double strand breaks in MCF-7 cells, detectable by

comet assay and by the presence of c-H2AX, however, other
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forms of DNA damage can increase comet assay results and c-

H2AX expression. This DNA damage response pathway is well

characterised and provides a potential mechanism by which

extract treatment induces cell cycle arrest and apoptosis in MCF-

7 cells [30,31]. Mutations in p53 that generate a non-functional

phenotype are common in tumours [5], and although frequency is

lower in breast tumours than in other tumour types, mutant status

is associated with a more aggressive disease and mediates tumour

cell survival [32,33]. It is therefore important that drugs are

developed that can specifically target cancer cells independent of

their p53 status. We used siRNA against TP53 to knockdown p53

expression in p53 wild-type MCF-7 cells and then treated the cells

with aqueous extract. Inhibition of p53 expression did reduce the

cytotoxic effect of treatment but did not fully abrogate the loss of

cell viability due to extract treatment. This suggests that p53

mediated cytotoxicity is an additional effect seen in cells that carry

a functional form of p53 but is not vital to the treatment effect. We

confirmed this effect in MDA-MB-231 breast cancer cells, which

carry a mutant, non-functional form of p53. Indeed, we

demonstrated that extract-induced cytotoxicity in MDA-MB-

231 cells is less than in MCF-7 cells but remains significant at

24h. It has been shown previously that cells can arrest in the G1-

phase of the cell cycle independent of the p53-p21 axis [34], and

also that apoptosis can be initiated without p53 activation [35].

Extract-treated MDA-MB-231 cells also underwent G0/G1 arrest

but induction was delayed until 24 hours providing further

support for the notion that p53 expression in MCF-7 cells drives

extract-induced growth arrest. It has been shown previously that

p53 functionality governs kinetics of cell cycle arrest in response to

DNA damage thus providing a mechanism by which absence of

p53 could delay onset of cell cycle arrest [36]. It was evident that

double strand breaks were induced in both MCF-7 and MDA-

MB-231 cells upon extract treatment suggesting a shared mech-

anism driving cell death. Indeed, it has been shown recently that in

response to DNA damage, p53-mutant cells undergo p53-

independent cell cycle arrest and apoptosis, offering a significant

therapeutic strategy for p53-mutant cancers [37].

Members of the forkhead class ‘O’ (FOXO) family of

transcription factors have been implicated in tumorigenesis [38].

In particular FOXO3a has been shown to function as a tumour

suppressor in ERa-positive and negative breast cancers [39,40]. It

has also been reported recently that nuclear localisation of

FOXO3a and subsequent transcriptional activity is a marker of

good prognosis among breast cancer patients [41]. As well as this,

FOXO3a has been show to regulate cell cycle arrest and apoptosis

in response to DNA damage, via activation of transcriptional

targets such as Bim, p27 and Fas-L [17,42]. We report here that

FOXO3a expression is increased in both MCF-7 and MDA-MB-

231 cells in response to extract treatment. Furthermore, suppres-

sion of extract-induced FOXO3a expression using FOXO3

siRNA, attenuated cytotoxicity in MCF-7 cells and completely

abrogated cytotoxicity in MDA-MB-231 cells. Interestingly, levels

of FOXO3a protein expression correlate with time points where

significant DNA damage is exhibited, suggesting FOXO3a

expression may be directly linked to DNA damage. This provides

evidence for FOXO3a-dependent cell cycle arrest and death in

breast cancer cells that works independently of p53 following

extract treatment. Although FOXO3a involvement in oxidative

stress and survival signal withdrawal-induced transcriptional

activity is well documented [43], the role of FOXO3a in response

to DNA damage, is relatively unclear. FOXO3a is activated as a

survival response to energy depletion and can drive autophagy and

apoptosis [44]. Indeed, treatment with Fagonia cretica reduced ATP

levels significantly in MDA-MB-231cells within 3 hours (data not

shown). Energy depletion can occur as a result of excessive PARP

activation due to DNA damage [45]. Therefore, it is possible that

DNA damage may induce a metabolic stress, which directly

activates FOXO3a. Furthermore, FOXO3a driven transcription

of DNA repair genes, including PARP, may further deplete

cellular NAD+ and ATP and lead to cell death [42,46].

Why do HMEpC remain viable following extract treatment

compared to MCF-7 or MDA-MB-231 cells? Cytotoxic agents are

known to induce DNA damage in normal cells as well as cancer

cells. However, fast growing cells are more susceptible to DNA

damaging agents due to the greater probability of more sites being

exposed on DNA within replicative cycles and, in addition, cancer

cells frequently have defective repair pathways resulting in DNA

damage being sustained. While normal cells may also up-regulate

FOXO3a in response to energy depletion and DNA damage, they

are less dependent on glycolytic metabolism than cancer cells.

They may be less energetically challenged in the presence of

Fagonia cretica because of the potential to use oxidative phosphor-

ylation as an additional energy source.

Conclusion
We have shown here for the first time that an extract of Fagonia

cretica induces cell cycle arrest and apoptosis in two phenotypically

distinct breast cancer cell lines. Extract activity involves DNA

damage and p53-induction but is not fully dependent on p53

functionality. In addition, extract treatment induces FOXO3a

expression which may be attributed to DNA damage directly or

induction of DNA repair pathways. We also demonstrated that

FOXO3a expression is required for extract activity in the absence

of functional p53. This provides a novel mechanism by which an

aqueous extract of Fagonia cretica, used extensively in Pakistan, can

kill breast cancer cells in vitro. However, the molecular composition

of the bioactive(s), remains to be determined.

Materials and Methods

Cell culture
MCF-7 (HPA Cultures, UK) and MDA-MB-231 human breast

cancer epithelial cells (HPA Cultures, UK) were cultured in RPMI

1640 with stable glutamine (PAA, UK) supplemented with 10%

FCS and 1% penicillin/streptomycin (50U/ml) and incubated at

37uC with 5% C02. HMEpC cells (Invitrogen, UK) were cultured

in mammary epithelial growth medium (Invitrogen, UK) supple-

mented with growth supplements (Invitrogen, UK; bovine

pituitary extract 0.4% v/v, bovine insulin 5mg/ml, hydrocortisone

0.5mg/ml, human epidermal growth factor 3ng/ml) and 1%

penicillin/streptomycin (50U/ml) and incubated at 37uC with 5%

CO2. Cells were seeded at a density of 26105 cells per ml in T75

Figure 3. Fagonia cretica extract treatment induces double strand breaks in human breast cancer cells. MCF-7 cells were treated with
up to 2mg/ml extract for (B) 3 or (C) 24 hours prior to detection of DNA damage using the comet assay with and without FPG protein incubation. (A)
Representative comets after 0, 3 and 24 hour exposure to 2mg/ml extract. (D) MCF-7 and MDA-MB-231 cells were treated with 2mg/ml extract for
24 hours prior to SDS-PAGE and western blot detection of c-H2AX and b-actin. MCF-7 cells were treated with 2mg/ml extract for up to 24 hours prior
to SDS-PAGE and western blot detection of (E) BAX (F) p53, p21 and b-actin. Data denoted * (p,0.05) and *** (p,0.001) are significant compared to
control analysed by one-way ANOVA with Dunnett’s multiple comparison post test.
doi:10.1371/journal.pone.0040152.g003
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Figure 4. Fagonia cretica extract-induced p53 expression occurs as a result of activation of the DNA damage response and is only
partly responsible for loss of cell viability. (A, B) MCF-7 cells were treated with and without 3mM caffeine (caff) for 60 minutes prior to up to
2mg/ml extract treatment for up to 24 hours. Expression of p53 and b-actin was determined by SDS-PAGE and western blot. Cell viability was
determined by MTT assay. (C, D) MCF-7 cells were transfected with 10nM TP53 siRNA for 24 hours prior to up to 2mg/ml extract treatment for up to
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and allowed to reach 80–90% confluence over 7 days prior to sub-

culture.

Fagonia cretica extract preparation and cell treatment
An aqueous extract was prepared by soaking dried plant

material (20g) in 500ml d.H2O at 70uC for 5 hours with constant

agitation. The extract was filtered with Fisherbrand filter paper

(Fisher Scientific, FB59020, UK) to remove solids before being

subjected to liquid-liquid partition with 3 times equal volumes of

hexane. The aqueous phase was dried under vacuum and stored at

4uC.

Cells were treated for up to 24 hours with 2mg/ml extract prior

to MTT assay or cell lysate collection for SDS-PAGE and western

blot. For caffeine pre-treatment experiments, cells were incubated

with 3mM caffeine for 60 minutes, prior to extract treatment.

24 hours. Expression of p53 and b-actin was determined by SDS-PAGE and western blot. Cell viability was determined by MTT assay. Data denoted
*** (p,0.001) is significant compared to control analysed by one-way ANOVA with Dunnett’s multiple comparison post test. Data denoted ¤
(p,0.001) is significant compared to ‘no-siRNA’ as analysed by two-way ANOVA with Bonferroni’s multiple comparison post test. All data is
representative of at least three independent experiments.
doi:10.1371/journal.pone.0040152.g004

Figure 5. Fagonia cretica extract-induced cytotoxicity is dependent on FOXO3a expression. (A) MCF-7 and MDA-MB-231 cells were
treated with 2mg/ml extract for up to 24 hours prior to FOXO3a protein expression analysis by SDS-PAGE and western blot. b-actin was used as a
loading control. (C) MCF-7 and (D) MDA-MB-231 cells were treated with up to 2mg/ml extract for 24 hours with and without FOXO3 siRNA
transfection (B). Cell viability was determined by MTT assay. Data denoted * (p,0.05), ** (p,0.01) and *** (p,0.001) are significant compared to
untreated control as analysed by one-way ANOVA with Dunnett’s multiple comparison post test. Data is representative of three independent
experiments.
doi:10.1371/journal.pone.0040152.g005
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siRNA interference
Validated Silencer TP53 siRNA (Ambion, UK) was used to

knockdown p53 expression in MCF-7 cells. Sequences were: sense

59-GGGUUAGUUUACAAUCAGC(dtdt)-39 and antisense 59-

GCUGAUUGUAAACUAACCC(dtdt)-39. Efficiency of siRNA

knockdown was monitored for effects on cell viability (MTT) and

p53 expression (immunoblot). Transfection controls used Silen-

cerH Negative Control (Ambion. UK, 4404021). 10nM of siRNA

oligonucleotides was incubated in Opti-MEM (Invitrogen, UK) at

a ratio of 1:50 with 1% v/v lipofectamine RNAiMAX (Invitrogen,

UK) and incubated at room temperature for 20 minutes. Cells

were seeded at a density of 16105 cells per ml in antibiotic-free

RPMI to tissue culture plates containing siRNA-lipofectamine

duplexes and incubated in cell culture conditions for 24 hours.

Validated Silencer FOXO3 siRNA (Ambion, UK) was used to

knockdown expression MCF-7 and MDA-MB-231 cells. Sequenc-

es were: sense 59-GGCUCCUCCUUGUACUCAAtt-39 and

antisense 59-UUGAGUACAAGGAGGAGCCtg-39 Efficiency of

siRNA knockdown was monitored for effects on cell viability

(MTT) and p53 expression (immunoblot). Transfection controls

used SilencerH Negative Control (Ambion. UK, 4404021).

Methods of siRNA knockdown was as per TP53 siRNA

transfection.

Cell viability – MTT assay
Cell viability was determined using the MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimet-

ric assay. Cells were seeded at a density of 26105 cells per ml in

tissue culture plates and allowed to adhere overnight. Cells were

treated with extract (0–2mg/ml) for up to 72 hours prior to

addition of MTT reagent (0.5mg/ml in PBS) and incubation for

4 hours at 37uC with 5% CO2. Cells were lysed and formazan

solublised over 24 hours with lysis buffer (0.7M SDS, 50% DMF,

pH 4.7) and results determined using a spectrophotometer at

570nm.

Cell cycle analysis – Flow cytometry
Cell cycle status was determined using flow cytometric analysis

and gating against cellular cyclin A levels in combination with

cellular DNA content (Figure S1). Cells were seeded at a density of

26105 cells per ml in tissue culture plates and allowed to adhere

overnight. Cells were treated with extract (2mg/ml) for up to

24 hours before cells were washed twice with 1ml PBS and

scraped into 1ml PBS. Cells were pelleted (300g, 5 minutes) and

fixed (1% formaldehyde in PBS) for 20 minutes at room

temperature. Cells were pelleted (300g, 5 minutes) and washed

once with 1ml PBS before being re-suspended in permeabilisation

buffer (0.25% Triton X-100, 0.5% BSA, 50mM PBS) and stored

for 10 minutes at room temperature. Cells were stained with either

anti-cyclin A-FITC (BD Pharmingen, UK) or FITC mouse IgE

isotype control for 50 minutes at room temperature in the dark

followed by propidium iodide staining (10mg/ml, 1% sodium

citrate) for 10 minutes. Cells were washed in permeabilisation

buffer before immediate analysis by flow cytometry (Beckman

Coulter) using FL1 (Em: 525nm) and FL3 (Em: 670nm).

Detection of apoptosis – Flow cytometry
Induction of apoptosis was assessed using flow cytometric

analysis of outer membrane phosphatidylserine translocation. Cells

were seeded at a density of 26105 cells per ml in tissue culture

plates and allowed to adhere overnight. Cells were treated with

extract (2mg/ml) for up to 72 hours before washing twice with 1ml

PBS and scraping into 1ml PBS. 16105 cells per sample were

stained with annexin V-FITC (Abcam, UK) and propidium iodide

(0.005%) for 5 minutes. Cells were analysed immediately by flow

cytometry using FL1 (Em: 525nm) and FL3 (Em: 670nm).

DNA damage detection – Comet assay
Presence of DNA strand breaks was measured using the single-

cell gel electrophoresis comet assay. Cells were seeded at a density

of 26105 cells per ml in tissue culture plates and allowed to adhere

overnight. Cells were treated with 2mg/ml extract for up to

24 hours before washing twice with 1ml PBS and scraping into

1ml PBS. 26104 cells were embedded in type VII-A low melting

point agarose on a microscope slide before lysis (100mM

Na2.EDTA, 2.5M NaCl, 10mM Tris-HCl, 1% Triton-X) for

1 hour at 4uC in the dark. Cells were incubated with and without

FPG protein from E. coli (20U/ml) for 30 minutes at 37uC. Slides

were submerged in ice cold electrophoresis buffer (0.3M NaOH,

1mM Na2.EDTA) for 40 minutes at 4uC in the dark before being

subjected to electrophoresis (25V, 300mA) for 30 minutes at 4uC
in the dark. Slides were neutralised (0.4M Tris-HCl, pH 7.5) and

washed with d.H2O before staining with propidium iodide

(150mM PI, 10mM KH2PO4, 150mM NaCl) for 20 minutes at

room temperature in the dark. Comets were visualised and

analysed using COMETscore (http://www.autocomet.com). At

least 50 comets were scored per slide and strand breaks reported as

percentage DNA in comet tail.

Protein characterisation – Western blot
Specific protein expression was measured by western blot. Cells

treated with 2mg/ml extract for up to 72 hours were collected in

lysis buffer (150mM NaCl, 1% Triton X-100, 0.5% SDS, 50mM

Tris-base, 0.1% protease inhibitor cocktail (AEBSF 104mM,

Aprotinin 80mM, Bestatin 4mM, E-64 1.2mM, Leupeptin 2mM,

Pepstatin A, 1.5mM) pH 8.0) and DNA was sheared by passing 10

times through a 25-gauge needle. Protein concentration was

determined using BCA reagent and 25mg total protein used for

western blot. Samples were prepared with Laemmli buffer (1:1 v/

v) and heated at 95uC for 5 minutes before loading into SDS-

PAGE gels (16%). SDS-PAGE was achieved in running buffer

(25mM Tris-base, 190mM glycine, 0.1% SDS) for 120 minutes at

115V. Separated proteins were transferred to HybondTM-P

membrane (Amersham, UK) in transfer buffer (25mM Tris-Base,

190mM glycine, 20% methanol) for 70 minutes at 240mA.

Membranes were blocked with 3% BSA in TBS-Tween (50mM

Tris-base, 200mM NaCl, 0.05% Tween-20, pH 7.5) overnight at

4uC. Membranes were probed with primary antibody for 2 hours

in TBS-Tween (0.2% BSA) followed by probing with secondary

detection antibody. Primary antibodies were anti-p53 (Abcam,

ab2433), anti-p21 (Abcam, ab7960), anti-BAX (Abcam, ab7977),

anti-cH2AX (Sigma, H5912), anti-FOXO3a (Abcam, ab47285)

and loading control anti-b-actin (Sigma, A5441). Secondary

antibodies were HRP conjugated anti-mouse IgG (Sigma) and

anti-rabbit IgG (Abcam). Visualisation of bound secondary

antibody was by enhanced chemiluminescence.

Reagents
All reagents are from Sigma unless otherwise stated.

Statistics
Statistical analyses were carried out using one-way ANOVA or

two-way ANOVA with Dunnett’s or Bonfferoni’s multiple

comparison post test. Statistics were calculated using Prism 5.0.

Error bars are representative of the standard deviation.
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Supporting Information

Figure S1 Serum starvation and colchicine treatment
induces growth arrest in MCF-7 cells. MCF-7 cells (a)

untreated, (b) serum-starved, or (c) colchicine (0.1mM)-treated for

24 hours were subjected to cell cycle analysis by flow cytometry.

Histograms were generated by plotting log cyclin A-FITC(FL-1)

against propidium iodide (FL-3). A = G0/G1, B = S phase, C = G2

and D = M phase. Data is representative of three independent

experiments performed in duplicate.

(TIF)

Figure S2 Densitometry of FOXO3a expression in
extract treated MCF-7 and MDA-MD-231 cells presented
in figure 5c and 5d. (a) MCF-7 cells and (b) MDA-MB-231 cells

were transfected with and without 5nM FOXO3 siRNA for

24 hours prior to 2mg/ml extract treatment for up to 24 hours.

Cell lysates were collected and FOXO3a protein expression was

assessed by western blot. b-actin was used as a loading control.

Data is expressed as a fold change in FOXO3a density normalised

to b-actin. Data denoted * (p,0.05) and *** (p,0.001) is

significant compared to siRNA treated control (time = 0 hours).

Data denoted + (p,0.01) and ++ (p,0.001) is significant

compared to untreated control (time = 0 hours). All data was

analysed by one-way ANOVA with Dunnett’s multiple compar-

ison post test. Data is representative of three independent

experiments.

(TIF)
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