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Abstract

Marine luciferases are increasingly used as reporters to study gene regulation. These luciferases have utility in
bioluminescent assay development, although little has been reported on their catalytic properties in response to substrate
concentration. Here, we report that the two marine luciferases from the copepods, Gaussia princeps (GLuc) and Metridia
longa (MLuc) were found, surprisingly, to produce light in a cooperative manner with respect to their luciferin substrate
concentration; as the substrate concentration was decreased 10 fold the rate of light production decreased 1000 fold. This
positive cooperative effect is likely a result of allostery between the two proposed catalytic domains found in Gaussia and
Metridia. In contrast, the marine luciferases from Renilla reniformis (RLuc) and Cypridina noctiluca (CLuc) demonstrate a
linear relationship between the concentration of their respective luciferin and the rate of light produced. The consequences
of these enzyme responses are discussed.
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Introduction

Luciferases, the enzymes responsible for the bioluminescence

reaction, are present in multiple animal phyla and bacteria. The

luciferases oxidize luciferins to produce light and the chemical

nature of the luciferins can vary widely. Perhaps the best known

are the ATP-dependent beetle luciferases that catalyze the

oxidation of firefly luciferin in a photochemical reaction that has

been widely used for the detection of low levels of ATP. In

contrast, most marine luciferases do not use ATP, requiring only

their luciferin and molecular oxygen as substrates with oxyluci-

ferin, CO2 and light as products. Different species use different

luciferins: coelenterazine is the cognate luciferin for Renilla,

Gaussia and Metridia luciferases (RLuc, GLuc and MLuc,

respectively), while cypridina luciferin is the cognate luciferin for

Cypridina luciferase (CLuc) (Figure 1). The two chemically related

luciferins share the common chromophore, imidazopyrazinone.

Some of the marine luciferase proteins have been extensively

studied and mutated in order to improve their yield and

bioluminescent properties [1–8]. The three dimensional structure

of RLuc has been solved. It is a 37 kDa monomer and it contains a

single substrate binding site [9]. CLuc is a 62 kDa protein [10].

GLuc and MLuc are 18.5 kDa and 22 kDa respectively with

similar amino acid sequence and both contain a duplication of a

proposed catalytic domain [1,2] Figure 2. RLuc and CLuc

sequences are neither similar to each other nor to GLuc or MLuc.

In the past twenty years, the genes of Renilla [11], and more

recently Gaussia [12,13], Metridia [14] and Cypridina [10] luciferases

have been used as expression reporters for determining how

particular genes are regulated by placing the luciferase gene

downstream of particular regulatory sequences. Typical reporter

assays measure the amount of luciferase protein that has been

produced by measuring its activity in relative light units (RLU)

from cell extracts or conditioned media by adding nearly

saturating luciferin concentrations. Furthermore bioluminescent

imaging of whole animals with marine luciferases has been used to

identify tumors or tissue specific reporter gene expression [15].

Despite extensive structural and molecular biology characteriza-

tions, no classical kinetic characterization of these enzymes has

been reported.

The range of sensitivity for detection of these luciferases spans

many orders of magnitude. At a fixed high substrate concentra-

tion, very low levels of luciferase can be detected. In contrast here,

it was of interest to determine whether the presence of very low

levels of substrate (picomolar) could be detected in the presence of

a fixed amount of luciferase. In this study we compared the kinetic

properties of several marine luciferases in relation to their luciferin

concentration, in an effort to identify a luciferase enzyme that

offers the highest sensitivity in such an assay. Similar biolumines-

cent assays utilizing marine luciferases have been performed with

RLuc in linked reactions to measure the concentration of 39–59

adenosine diphosphate (PAP) [16,17]. This assay requires extreme

sensitivity, and it was anticipated that luciferases having a higher

rate of turnover than RLuc [18] e.g. GLuc [5] would perform

substantially better for the detection of PAP.

Results

In examining the detection limit of the marine luciferases for

their luciferins, a fixed amount of luciferase was incubated with

varying concentrations of its corresponding luciferin and the light

generated was measured. Figure 3 shows the light released during

the first 10 seconds of the reaction from GLuc, GLuc (M43L/

M110L), RLuc, MLuc and CLuc luciferases over a large range of

luciferin concentrations. The quantity of light generated in 10

seconds with RLuc was nearly linear with respect to the substrate
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over a 5 order of magnitude range of concentration: for every 10

fold decrease in coelenterazine concentration the light decreased

about 10 fold. Likewise the rate of light generation by CLuc was

linear with respect to the concentration of its substrate, cypridina

luciferin. However GLuc, MLuc and the variant GLuc M43L/

M110L of Welsh et al. [5] displayed a non-linear response to

substrate concentration; as the substrate concentration decreased

10 fold the light generated decreased about 1000 fold. The same

non-linear response was observed with GLuc that was expressed

and secreted from CHO cells (data not shown) indicating that this

property is not a result of how the protein was produced and

processed in E. coli. Additionally, whether these reactions were

performed in 20 mM Tris-HCl pH 7.5, 100 mM NaCl buffer as

shown, or in a commercial assay buffer containing a signal

stabilizer (Biolux GLuc Flex Assay Buffer), the same effect was

observed (data not shown). Therefore it appears the luciferase

reaction catalyzed by CLuc and RLuc are apparent first order

with respect to their luciferin, while GLuc and Mluc are higher

order with respect to their luciferin.

Cooperativity is expressed by the Hill plot shown in Figure 4

and demonstrates the positive cooperative response of the GLuc

activity with respect to coelenterazine. The slope y/x = 2.9 for

both GLuc variants indicates a degree of cooperativity requiring,

at a minimum, two binding sites for coelenterazine. In contrast the

slope of the Hill plot for RLuc rates, y/x = 1.1, indicates a non-

cooperative reaction where binding a single molecule of

coelenterazine is sufficient for catalysis [19].

Discussion

We observe a substantial difference in the kinetic properties of

two copepod luciferases (Gaussia and Metridia) from those of other

marine luciferases (Renilla and Cypridina). These luciferases

display positive cooperativity with regard to luciferin concentra-

tion, suggesting multiple substrate molecules must be bound for

efficient catalysis. The Hill coefficient of greater than two reflects

the phenomenon of cooperativity rather than an accurate estimate

of the number of binding sites [20]. Inouye and Sahara [1] have

identified the two repeat sequences corresponding to two catalytic

domains in GLuc (Figure 5). The duplication of a homologous

sequence domain observed in both MLuc and GLuc likely account

for the two binding sites we infer for the effector/substrate. When

either the amino terminal or the carboxyl terminal half of GLuc

were expressed separately, both were found to be capable of

catalyzing the luciferase reaction and thus binding and oxidizing

coelenterazine. Although Inouye and Sahara [1] demonstrated

measurable activity with the half molecules of GLuc, they found

the N-terminal and C-terminal domains possessed only about 2%

and 1%, respectively, of the full length GLuc specific activity. In

the context of the full-length protein, if a single binding domain

could catalyze the reaction at 1% of the maximal rate in a non-

cooperative manner, then the slope (Figure 4) should have a

second phase with a value of 1 as the rate approaches 1% of the

maximal rate. This was not the case as the Hill plot shows a slope

greater than 2, which persists over a 6-log range of V/Vmax-V.

This suggests that the residual activity seen in the separate half

molecules may be due to disruption of the mechanism responsible

for the allosteric effect or some non-covalent interaction of the

separate half molecules to themselves. The arrangement of the two

halves of the molecule in the full-length protein must occlude

catalysis with only a single substrate-binding event. If cooperativity

requires interaction between the two halves of the protein then one

would predict that the cooperativity would be absent for the

individual halves of GLuc. Furthermore, Welsh et al [5] have

characterized several mutants of GLuc that show differences in

specific activity and decay of the luminescent signal from wild type

GLuc. Interestingly, they observed the strongest effect on the

decay of the luminescent signal when both M43L and M110L

mutations are present simultaneously as opposed to the individual

mutations. Therefore a synergistic effect between the two domains

Figure 1. Chemical structure of Coelenterazine and Cypridina luciferin.
doi:10.1371/journal.pone.0040099.g001

Figure 2. Alignment of both the amino terminal and carboxyl terminal halves of GLuc and MLuc. 1) GLuc amino terminal half. 2) Mluc
amino terminal half. 3) GLuc carboxyl terminal half. 4) MLuc carboxyl terminal half.
doi:10.1371/journal.pone.0040099.g002
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of the GLuc protein is demonstrated, since each of these two

residues reside in a different half-domain consistent with the

cooperative effect described here.

Biological Role
Bioluminescent marine organisms have been studied for more

than a century and it has been proposed that their biolumines-

cence is used for purposes such as eluding predators, attracting

prey, and communication [21]. The unexpected result of a

positive cooperative substrate effect for GLuc and MLuc raises the

inevitable question of its biological significance for the organism.

Gaussia and Metridia are closely related copepods that are

presumed to use bioluminescence for defense [21]. The produced

bioluminescence is instantaneous and occurs when enzyme and

substrate are mixed and exuded into the water environment,

thereby making it difficult for the predator to locate its prey. The

nature of the cooperative biochemical reaction perhaps assures

that the light flash is short-lived, as dispersion (dilution) into the

water will rapidly reduce the length of time when light is

generated. While this may be the role of the higher order reaction

kinetics for the substrate, it conceivably may also be a means to

assure that the copepod does not emanate light from its body. The

organism achieves this in part by separating its luciferin from the

luciferase as they are contained in separate compartments.

Additionally, the higher order reaction kinetics would assure that

if low levels of luciferin escape and leak across membranes it

would not lead to inadvertent generation of light. Interestingly the

luciferase of the dinoflagellate Gonyaulax is also a multi-catalytic

domain protein the individual modules of which show catalytic

activity [22]. The evolutionary history of such multi-catalytic

domain enzymes and its significance remains to be established

[23,24].

In this study, we have established that Renilla and Cypridina

luciferases should be more appropriate tools for applications

requiring the detection of small amounts of substrate as in small

molecule detection assays because RLuc and CLuc respond to

their luciferin concentration in a linear non-cooperative manner.

This results in a much lower threshold of detection of the

luciferin. While GLuc and Mluc are perfectly suitable as reporter

molecules, use for detection of low levels of coelenterazine is

problematic, because of the cooperativity with respect to their

luciferin. Furthermore cognizance of the cooperative nature of

GLuc and MLuc should help the design and interpretation of

whole animal imaging experiments. The three dimensional

structure of GLuc remains to be elucidated and should shed

significant light on the allosteric mechanism which achieves this

remarkable cooperativity.

Materials and Methods

Reagents and Enzymes
Coelenterazine and cypridina luciferin were obtained from New

England Biolabs (NEB).

The Metridia, Gaussia and Gaussia (M43L/M110L) variant

were all purified from E. coli SHuffle cells (NEB) [25] harboring a

plasmid encoding an amino terminal His-tagged luciferase gene

controlled by T7 promoter/T7 RNA polymerase. The His-tagged

Renilla luciferase was expressed in NEB T7 express cells. All

amino acid sequences of the expressed luciferases are listed in Text

S1. Crude extracts were obtained by sonication and clarified by

centrifugation. The clarified extracts were then applied to nickel

resin and the luciferases eluted with an imidazole gradient. The

purified luciferases were dialyzed against 20 mM Tris-HCl

pH 7.5, 200 mM NaCl, 50% glycerol and stored at 220uC.

Cypridina luciferase was expressed from a stable CHO cell line

Figure 3. Activity of luciferases at various concentrations of luciferins. Plot of luciferase activity where a fixed amount of each luciferase was
mixed with varying amounts of its corresponding luciferin.
doi:10.1371/journal.pone.0040099.g003
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Figure 4. Hill plots of GLuc variants and RLuc. The Hill coefficient for RLuc of 1.1 and for the GLuc variants of 2.9 was determined by calculating
the slope, y/x.
doi:10.1371/journal.pone.0040099.g004

Figure 5. Alignment of the GLuc and MLuc Proteins. The GLuc half molecules described by Inouye and Sahara are shaded in green (amino
terminal) and pink (carboxyl terminal). The GLuc methionine residues 43 and 110 are boxed.
doi:10.1371/journal.pone.0040099.g005
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constructed with the pCMV-CLuc-2 vector (NEB) (data not

shown). The conditioned media containing the secreted luciferase

was stored at 220uC and was used as the source for CLuc.

Luciferase Assay
A Centro LB 960 luminometer (Berthold) was used to determine

luciferase activity in relative light units (RLU). CLuc, RLuc, MLuc

and GLuc luciferases were diluted in 10 mM Tris-HCl pH 7.5,

100 mg/mL BSA to a level where each luciferase resulted in 1–

36108 RLU/10 s with 10 mM cognate luciferin (25 mM luciferin

for MLuc). 50 mL of luciferase was injected into 50 mL of 10 mM

Tris-HCl pH 7.5 containing various concentrations of luciferin.

The RLUs were integrated over the first 10 seconds immediately

after the enzyme was injected. Biolux GLuc Flex Assay Buffer was

from NEB.

Hill Plot
The initial velocity of the reactions at each concentration of

substrate was inferred from the integration of the light units

generated over the first ten seconds of the reaction. The Vmax

value for each luciferase was determined at saturating substrate

concentration.

Supporting Information

Text S1 Amino Acid Sequence of 5 Luciferases.

(DOC)
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